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Category learning is a complex phenomenon that engages multiple cognitive processes, many of which
occur simultaneously and unfold dynamically over time. For example, as people encounter objects in the
world, they simultaneously engage processes to determine their fit with current knowledge structures,
gather new information about the objects, and adjust their representations to support behavior in future
encounters. Many techniques that are available to understand the neural basis of category learning assume
that the multiple processes that subserve it can be neatly separated between different trials of an
experiment. Model-based functional magnetic resonance imaging offers a promising tool to separate
multiple, simultaneously occurring processes and bring the analysis of neuroimaging data more in line
with category learning’s dynamic and multifaceted nature. We use model-based imaging to explore the
neural basis of recognition and entropy signals in the medial temporal lobe and striatum that are engaged
while participants learn to categorize novel stimuli. Consistent with theories suggesting a role for the
anterior hippocampus and ventral striatum in motivated learning in response to uncertainty, we find that
activation in both regions correlates with a model-based measure of entropy. Simultaneously, separate
subregions of the hippocampus and striatum exhibit activation correlated with a model-based recognition
strength measure. Our results suggest that model-based analyses are exceptionally useful for extracting
information about cognitive processes from neuroimaging data. Models provide a basis for identifying
the multiple neural processes that contribute to behavior, and neuroimaging data can provide a powerful
test bed for constraining and testing model predictions.
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Categorization is a fundamental process that supports numerous
behaviors in many organisms. Categories help organisms make
sense of a complex world by grouping objects that share behav-
iorally relevant properties together to facilitate generalization and
inference. For example, the category wombats allows people to
recognize multiple instances of wombat as members of a kind and

to generalize properties, such as likes trees, from one wombat to
another.

Categorization itself is not a unitary process but, like many
psychological phenomena, is made up of a number of component
processes. Many of the processes associated with categorization
occur simultaneously or within close temporal proximity to one
another. For example, a person watching a wombat outside the
window of his or her Peugeot may retrieve memories of past
experiences with wombats and facts about wombats, all while
visually processing the wombat and (one hopes) the road ahead. A
central problem in categorization research is how to identify mul-
tiple, simultaneously occurring processes both behaviorally and
neurally.

The problem of how to separate multiple cognitive processes
that underlie a behavior is particularly pertinent in the neuroim-
aging literature. Standard functional magnetic resonance imaging
(fMRI) analysis techniques typically compare brain activation
across two or more task conditions (e.g., correct categorization
relative to incorrect categorization) to identify brain regions that
are more engaged for one condition than for another. These
contrast-based techniques assume that some cognitive process of
interest differs between conditions. However, in reality, most
cognitive processes are not neatly separated between conditions
but are simultaneously engaged to varying degrees throughout a
task. For example, when encountering a novel object, a person may
simultaneously engage recognition processes to determine the ob-
ject’s fit to current knowledge structures and motivational pro-
cesses promoting exploration of the object to acquire additional
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information. Accordingly, condition-based contrasts typically
identify a wide variety of brain regions for a given comparison.
While the common assumption is that different regions active for
a particular condition support different cognitive processes, the
ascription of a cognitive process onto any given region is vastly
underdetermined by the data and relies unduly on “reverse infer-
ences” from past research and theory (Poldrack, 2006).

Model-based fMRI offers a potential solution to the problem of
localizing cognitive function in the brain (Daw, 2011; O’Doherty,
Hampton, & Kim, 2007). In model-based imaging, quantities
linked to processes in mathematical models are used to isolate and
interpret patterns of brain activation. These model measures can be
used to interrogate neuroimaging data and provide a more precise
description of the cognitive functions mediated by different brain
structures. Importantly, unlike most standard condition-based neu-
roimaging approaches, models can define distinct processes that
are engaged at the same moment in time. Thus, combining fMRI
with mathematical models of cognition offers an extremely pow-
erful technique for understanding the neural basis of cognitive
processes that govern behaviors like categorization.

Here, we combine computational modeling with high-resolution
fMRI of the medial temporal lobes (MTL) and striatum, two neural
systems that have played a central role in recent, neurobiologically
inspired category-learning research. By combining the strengths of
both techniques, we are able to identify separable computational
processes related to category learning that occur simultaneously
within subregions of the MTL and striatum. Specifically, we use a
category-learning model to interrogate the brain basis of concur-
rent processes associated with item recognition and the uncertainty
(i.e., entropy) of an item’s assignment to a learned knowledge
structure (i.e., cluster).

Neurobiological Accounts of MTL and
Striatal Function

The MTL is one of the most frequently studied systems in
neurobiological research on category learning, but current theories
provide conflicting accounts of its computational role in category
learning. Different theories have described the MTL’s role in
category learning a variety of different ways, including an explicit
long-term memory-based system (Smith & Grossman, 2008), an
exemplar-based system (Ashby & Maddox, 2005; Ashby &
O’Brien, 2005; Pickering, 1997), a locus for storage and/or re-
trieval of rules in a rule-based system (Nomura et al., 2007; Seger
& Cincotta, 2006), and a prototype-based system (Aizenstein et al.,
2000; Glass, Chotibut, Pacheco, Schnyer, & Maddox, 2012; Reber,
Gitelman, Parish, & Mesulam, 2003; Zeithamova, Maddox, &
Schnyer, 2008). Recently, we put forward a more general, model-
based account, which proposes that the MTL forms cluster-based
representations that are tailored to meet the demands of the learn-
ing context (Davis, Love, & Preston, 2011). When categories can
be distinguished by a regularity that can be captured by a prototype
or a simple rule, a single cluster represents each category. If a
context requires more fine-grained discriminations, multiple clus-
ters are stored. That is, opposed to assuming a fixed representa-
tional form across learning contexts (e.g., rule, prototype, or ex-
emplar), our approach suggests that the MTL can flexibly tailor
representations to a given task.

Consistent with this theory, in a previous whole-brain fMRI
study, we found that predictions generated from a clustering
model, supervised and unsupervised stratified adaptive incremen-
tal network (SUSTAIN; Love, Medin, & Gureckis, 2004), tracked
MTL activation during a category-learning task. One measure,
recognition strength, indexed model-based processes related to
retrieving stored representations from memory. The recognition
strength measure predicted MTL activation during a stimulus
presentation period when participants were trying to determine
category membership. Another measure, error-correction, indexed
processes related to updating memory in response to errors; this
measure predicted MTL engagement during feedback when par-
ticipants could update current category representations in response
to decision outcomes.

The striatum is another region that has received widespread
attention in the neurobiological category-learning literature. The
striatum is believed to have a role in connecting category repre-
sentations to behavioral responses via associative learning mech-
anisms (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Mad-
dox & Ashby, 2004; Seger, 2008; Shohamy, Myers, Kalanithi,
Gluck, 2008). The striatum is thought to support a procedural
learning system that is functionally separate from and competitive
with an explicit memory system comprising the frontal lobes and
the MTL (Ashby et al., 1998; Poldrack & Packard, 2003). Al-
though not the focus of our previous study, we found widespread
activation in the striatum that correlated with both the recognition
strength and the error correction measures, suggesting that the
psychological processes indexed by our model-based measures
may also depend on computations occurring in the striatum (Davis,
Love, & Preston, 2011).

In the category-learning literature, the MTL and striatum are
often treated as unitary structures that engage a single computa-
tional process at any given point in time. Anatomically, however,
the MTL and striatum have a number of distinct subregions that
may simultaneously contribute different cognitive processes in
support of category-learning behavior. Anatomical differences be-
tween regions of the MTL provide possible clues to differences in
their underlying function. While the MTL as a whole is often
thought of as a region critical for the storage and retrieval of
information in memory (for reviews, see Eichenbaum, Yonelinas,
& Ranganath, 2007; Preston & Wagner, 2007; Squire, 1992)
because of its increased neuromodulatory input and connectivity
with putatively emotional regions of the brain (Canteras & Swan-
son, 1992; Cavada, Company, Tejedor, Cruz-Rizzolo, & Reinoso-
Suarez, 2000; Witter, Wouterlood, Naber, & Van Haeften, 2006),
the anterior hippocampus may be more sensitive to motivational
factors than are other parts of the MTL (Fanselow & Dong, 2010;
Moser & Moser, 1998; Strange & Dolan, 2006). Accordingly, in
category learning and the broader memory literature, the anterior
hippocampus is particularly engaged by novel and uncertain stim-
uli (Daselaar, Fleck, & Cabeza, 2006; Henson, Cansino, Herron,
Robb, & Rugg, 2003; Schott et al., 2004; Seger, Dennison, Lopez-
Paniaqua, Peterson, & Roark, 2011; Strange, Duggins, Penney,
Dolan, & Friston, 2005; Strange, Fletcher, Henson, Friston, &
Dolan, 1999; Strange, Hurlemann, Duggins, Heinze, & Dolan,
2005). Such novelty signals may relate to motivational signals that
are present during category learning and may serve to orient
attention to uncertain or behaviorally salient events (Davis, Love,

822 DAVIS, LOVE, AND PRESTON



& Maddox, 2009) and to guide memory formation (Lisman &
Grace, 2005).

Like the MTL, anatomical diversity within the striatum provides
clues to functional differences between striatal subregions in terms
of knowledge retrieval and uncertainty processing. The striatum
interacts with cortical regions via a number of corticostriatal loops
(Alexander, Delong, & Strick, 1986). Regions of the striatum that
instantiate visual and motor loops, the dorsal tail and body of the
caudate and putamen, form connections with cortical regions in-
volved in visual perception and motor behavior and may have a
role in guiding categorization choice by associating category rep-
resentations to behavioral responses (Ashby et al., 1998; Cincotta
& Seger, 2007; Seger & Cincotta, 2005; Seger, 2008). The ventral
striatum is thought to engage a motivational loop (Seger & Miller,
2010) that connects the striatum to motivational processing centers
in the ventromedial frontal cortex, midbrain, and amygdala. Like
the anterior hippocampus, motivational loops in the ventral stria-
tum may be involved with aspects of category learning related to
motivational salience (Seger & Miller, 2010) and reinforcement
learning (Seger et al., 2010). While the ventral striatum has re-
ceived less attention in the category-learning literature than have
other parts of the striatum, in the broader reinforcement learning
literature, it is associated with signaling unexpected rewards from
feedback (Berns, McClure, Pagnoni, & Montague, 2001;
O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003; Shultz et
al., 1997) and may be a source for a “novelty exploration bonus”
or uncertainty signal when people are confronted with uncertain
but motivationally salient events (Krebs, Schott, Schutze, & Duzel,
2009; Wittman, Daw, Seymour, & Dolan, 2008).

Model-Based Predictions

We use the rational model of categorization (RMC; Anderson,
1991; Sanborn, Griffiths, & Navarro, 2010) to generate predictions
about the simultaneous engagement of cognitive processes in
subregions of the striatum and the MTL during category learning.
The RMC was originally proposed as a computational-level model
that describes, from a Bayesian perspective, what the basic cate-
gorization problem is and how it can be solved rationally. Here, we
take a different approach, adopting a mechanistic interpretation of
the RMC (Jones & Love, 2011; Sanborn, Griffiths, & Navarro,
2010) and using it to predict the processes that are occurring in
different brain regions as participants learn novel categories. The
RMC embodies many of the same processes as SUSTAIN, a
different clustering model that we previously used to predict
patterns of activation related to error correction and recognition
strength in a similar task (Davis, Love, & Preston, 2011). Indeed,
because of the high degree of similarity in the RMC and SUS-
TAIN’s functional architecture, predictions for error correction
and recognition strength from the two models share a high degree
of overlap. Here, we use the RMC, instead of SUSTAIN, because
the probabilistic formulation of the RMC makes it straightforward
to define an additional measure, entropy, which may index moti-
vational processes related to uncertainty processing in the striatum
and the MTL.

We explore how the measures derived from the RMC relate to
activation in the MTL and the striatum as participants learn a
rule-plus-exception category-learning task (Davis, Love, & Pres-
ton, 2011; Love & Gureckis, 2007). In this task, participants learn

to sort schematic beetles into one of two categories based on
perceptual features (see Figure 1A, Table 1). Each trial contains a
stimulus presentation period, during which participants make judg-
ments about the category membership of a stimulus, and a feed-
back period, during which they receive corrective feedback (see
Figure 1B). Participants are informed prior to beginning the task
that most beetles can be accurately categorized by using a simple
rule (e.g., if it has thick legs it is a Category A beetle) and are
explicitly provided with directions to attend to the dimension (e.g.,
legs) that the rule will be based on. Participants are also informed
that each category will contain an exception item that violates the
rule and appears as if it should belong in the opposing category.

Behaviorally, exceptions tend to be associated with a higher
frequency of errors during learning and lead to greater recognition
success in postlearning recognition memory tests (Davis, Love, &
Preston, 2011; Palmeri & Nosofsky, 1995; Sakamoto & Love,
2004, 2006). Neurobiologically, rule-plus-exception tasks are
thought to engage clustering mechanisms in the MTL that form
task appropriate groupings of the items by separating exceptions
and rule-following items into their own clusters (Davis, Love, &
Preston, 2011). Regions of the striatum that instantiate visual and
motor loops may be involved with associating these category
representations to behavioral responses (Meeter, Radics, Myers,
Gluck, & Hopkins, 2008). The RMC is able to account for basic
behavioral effects in rule-plus-exception tasks because, like SUS-
TAIN, it tends to form clusters or groupings of items that are
appropriate for the task (see Figure 2). Exceptions tend to be
represented by their own separate clusters, whereas rule-following
items are more likely to be grouped in shared clusters.

Given that the RMC, like SUSTAIN, is a valid behavioral model
for rule-plus-exception tasks, it has the potential to also provide an
accurate account of the neural processes that participants engage
while they learn the task. We examine three quantitative measures
derived from the RMC: two that are designed to identify different
computations that are present during the stimulus presentation
period of the trial, recognition strength and entropy, and one that
is used to account for activation during the feedback portion of the
trial, error. The recognition strength and error measures predicted
by the RMC overlap highly with predictions from SUSTAIN, and
the entropy measure is a completely novel measure that captures
processes related to motivated learning under uncertainty. Here,
we give a brief algorithmic description and psychological inter-
pretation of these measures (see the Appendix for model formal-
ism).

The first measure that we examine in relation to activation
during stimulus presentation is recognition strength. Recognition
strength indexes the degree to which a stimulus is likely or ex-
pected given the RMC’s probabilistic representation of the task
(i.e., the probability of an item given the model). Recognition
strength strongly relates to familiarity measures used to predict
recognition performance following learning in rule-plus-exception
tasks (e.g., Palmeri & Nosofsky, 1995; Sakamoto & Love, 2004).
Psychologically, the recognition strength measure relates to the
extent to which an item matches the RMC’s stored category
representations. Recognition strength tends to be similar for ex-
ceptions and rule-following items early in the task but differenti-
ates the item types as learning progresses. The exception and
rule-following items are differentiated because exception items
tend to be stored in their own clusters, which provide a perfect
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match to exception features, leading to high likelihood. The rule-
following items tend to be less differentiated than exception items
because they are stored in shared clusters that do not tend to match
any particular rule-following item perfectly, leading to lower like-
lihood for rule-following items on average.

The recognition strength measure (see Figure 3) is predicted to
correlate with regions of the MTL involved with retrieving stored
category representations from memory, as found in previous stud-
ies with SUSTAIN. We also predict that regions of the striatum
that instantiate visual and motor loops, such as the tail of the
caudate and posterior striatum, will correlate with the recognition

strength measure because they are thought to be recruited for
associating category representations to behavioral responses.

A second measure that we use to examine activation during
stimulus presentation, entropy (see Figure 3), indexes the extent to
which the RMC is uncertain about which cluster a stimulus be-
longs to, given the model’s current probabilistic representation of
the task. Entropy is highest when all potential outcomes (i.e.,
cluster assignments) are equally probable and lowest when only
one potential outcome is likely. Events in the real world can be
measured in terms of entropy as well. For example, on any normal
day, a woman might expect to get a phone call only from her life

Figure 1. A: An example of category structure. The beetles vary on four of the following five perceptual
dimensions when the fifth dimension is held fixed: eyes (green or red), tail (oval or triangular), legs (thin or
thick), antennae (spindly or fuzzy), and fangs (pointy or round). The rule-relevant dimension in this example is
legs. Most (3/4) of Hole 1 beetles have thick legs, whereas most (3/4) of Hole 2 beetles have thin legs. The two
stimuli circled are the exceptions because they have legs consistent with the opposing category. The rest of the
features are evenly distributed across the exemplars, with the exception of eyes, which are held constant in this
example. B: Trial structure. During the stimulus presentation, a beetle was presented, and participants were asked
to classify it as a Hole 1 or a Hole 2 beetle. Following a variable fixation, participants received feedback about
whether they were correct or incorrect and about the correct category assignment. Feedback was followed by a
variable number of even–odd digit trials that served as baseline.
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partner, making the identity of a caller highly predictable and
entropy low. On a birthday or holiday, however, the number of
people who are likely to call may increase, making the identity of
a caller less predictable and entropy high.

In the task, entropy is higher initially for both item types
because the model’s representations of the category structure are
still being formed and updated by new stimuli. As learning pro-
gresses, entropy decreases because the assignment of items to
clusters becomes more certain. In addition to the primary temporal
component whereby entropy decreases over the course of the
experiment, the entropy measure also predicts an item-based com-
ponent whereby entropy is higher for the exception items, com-
pared with rule-following items, throughout the task. Exception
items are associated with higher entropy rather than rule-following
items because exceptions are more confusable with stimuli in the
opposing category and, thus, partially match clusters for the op-
posing category. When there are partial matches to multiple clus-
ters, as in the case of exceptions, entropy is higher because the
RMC is more uncertain about which cluster to choose. Eventually,
if the model were to run on the same set of trials indefinitely,
entropy would approach zero for both item types. In short, the
RMC, like people, tends to be more uncertain about which clusters
to assign items to early in the experiment and remains more
uncertain for exception items throughout the number of trials used
in the present experiment. These two factors, greater uncertainty
for exceptions and decreasing uncertainty with more training, are
both reflected in the entropy measure.

Because uncertainty is a powerful motivating force for learning,
the entropy measure could potentially relate to activation in wide-
spread regions of the MTL and striatum. Two subregions that may
be particularly sensitive to the entropy measure are the anterior
hippocampus and ventral striatum. These regions have been asso-
ciated with novelty and uncertainty processing (Strange, Duggins,
et al., 2005; Strange et al., 1999; Strange, Hurlemann, et al., 2005)

and with directing encoding toward sources of novel or unexpected
information (Wittman, Bunzeck, Dolan, & Duzel, 2007; Wittman
et al., 2008). Such “information readiness” signals are conceptu-
ally related to the orienting response (Bradley, 2009; Sokolov,
1966; Sokolov, Spinks, Naatanen, & Lyytinen, 2002), a complex
of neurophysiological motivational responses that have been re-
lated to exception learning in a similar task (Davis, Love, &
Maddox, 2009).

Error is a final measure (see Figure 4) that we use to predict
activation during the portion of the trial in which participants
receive feedback (see Figure 1B). The error measure is the prob-
ability that the RMC will make an error on a given trial and is
thought to index psychological processes associated with updating
representations in memory in response to prediction error. Because
rule-following items look like many of the other members of their
category, they are associated with fewer errors than are the excep-
tion items, which look like members of the opposing category. The
resemblance that rule-following items share with other members of
their category also leads them to be grouped in shared clusters with
other rule-following items, whereas exceptions will be stored in
individual clusters. Because multiple rule-following items are
stored in the rule-following clusters, these clusters also have a
higher base rate than exception clusters, which makes them more
probable and contributes to higher error. MTL regions that store
category representations should correlate with the error measure
when participants receive feedback because an error provides a
signal to update these representations. Likewise, an error should
provide a signal to regions of the striatum that instantiate visual
and motor loops to adjust the strength of their associations between
category representation and behavioral responses.

We use high-resolution fMRI of the MTL and the striatum to
investigate predictions based on the model-based measures. The
greater spatial resolution and higher signal-to-noise ratio of high-
resolution fMRI (Carr, Rissman, & Wagner, 2010) enhances our
ability to isolate simultaneous computational processes within the
MTL and the striatum, compared with conventional whole-brain
imaging techniques employed in previous studies (i.e., Davis,
Love, & Preston, 2011). For example, processes within a single
subregion of the MTL or the striatum may reflect both entropy and
recognition. In conventional whole-brain imaging, such signals are
more likely to be blurred together. By using high-resolution fMRI,
we thus have a greater ability to disentangle patterns reflecting
different processes.

Materials and Method

Participants

Thirty-three healthy, right-handed volunteers participated in the
experiment after giving informed consent in accordance with a
protocol approved by the Stanford and the University of Texas
institutional review boards. Participants received $20 per hr for
their involvement. Seven participants were excluded for failing to
achieve greater than 50% performance on exception items in the
final (6th) run.

Materials

Participants completed a rule-plus-exception category-learning
task (Love & Gureckis, 2007) during fMRI scanning. The stimuli

Table 1
Abstract Category Structure

Hole 1 beetles Hole 2 beetles
2 2 2 2a 1 2 2 2a

1 1 1 2 2 1 1 2
1 1 2 1 2 1 2 1
1 2 1 1 2 2 1 1

Recognition test foils
1 1 1 1
1 1 2 2
1 2 1 2
1 2 2 1
2 2 2 2
2 2 1 1
2 1 2 1
2 1 1 2

Note. Each row represents a unique stimulus (i.e., beetle). The four
values assigned to a stimulus denote the four stimulus dimensions (e.g.,
legs, antennae) assigned to a beetle. Each numeric value (1 or 2) represents
a specific feature instantiation (e.g., red or green eyes). The first dimension
(in bold) indicates the rule-relevant dimension. Most Hole 1 beetles have
a 1 on the first dimension (e.g., thick legs) whereas most Hole 2 beetles
have a 2 (e.g., thin legs). The first stimulus in each of the columns is
therefore an exception.
a Exception item.
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Figure 2 (opposite).
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used in the task were schematic beetles that varied along four
perceptual dimensions (see Figure 1A, Table 1) and were assigned
to categories (Hole 1 or Hole 2) based on their combinations of
feature values. For each stimulus, four of five possible dimensions
(eyes, tail, legs, antennae, and fangs) were randomly selected to
vary, and the unselected dimension was held fixed at a constant
value. Six of the stimuli were rule-following items and could be
categorized correctly based on the value of a single rule-relevant
dimension. In the example in Figure 1A, the rule-relevant dimen-
sion was the legs; all but one of the beetles in Hole 1 had thick
legs, and all but one of the beetles in Hole 2 had thin legs. The
other two beetles (circled beetles in Figure 1A) served as excep-
tions to the rule and appeared to belong to the opposing category
based on their value on the rule-relevant dimension (legs). An
abstract representation of the category structure is given in the
Table 1. In order to minimize the effects of feature salience, the
mapping of each abstract dimension to a physical dimension was
randomized for each participant.

Procedures

On each trial of the category-learning task, a single beetle was
presented in the center of the screen, and participants were asked
to decide whether it was a Hole 1 or Hole 2 beetle (see Figure 1B).
Each stimulus was presented for 3.5 s, during which time partic-
ipants had to indicate category membership via a button box held
in their right hand. After a brief fixation (0.5, 2.5, or 4.5 s; M �
2.5 s), feedback was presented for 2.0 s, during which time the
beetle would appear next to the correct category (i.e., the correct
hole). At the end of the trial, participants were informed about
whether their response on that trial was correct or incorrect. An
even–odd digit task (Stark & Squire, 2001) served as a baseline
between trials (mean baseline time per trial � 6 s). We chose an
active baseline task over a passive baseline task (e.g., rest or
fixation) because the MTL tends to have more variable and higher
magnitude activation during passive baseline tasks. Active-
baseline tasks, which have become standard in the literature on
MTL function, provide enhanced sensitivity for measuring task-
related activation in the MTL (Stark & Squire, 2001). No feedback
was given during the even–odd digit task.

Participants were trained with the rule-plus-exception procedure
for six functional runs, each lasting 9 min and 53 s. During each
run, the eight stimuli (beetles) were presented five times sequen-
tially in a pseudorandom order. We manipulated the order of
stimuli within each run to facilitate exception learning and
reduce the number of nonlearners. In contrast to previous stud-

ies in which stimulus order was random in every block, in the
first block of each run, each of the rule-following items were
presented one time before any exception items. Trial order and
duration were optimized for each of the six functional runs to
allow for efficient deconvolution of the hemodynamic response
using standard optimization techniques. A Latin square design
was used to balance the order of the six functional runs across
participants. The first 12 s of each run, consisting of fixation,
were discarded. Prior to beginning the task, participants were
given explicit instructions indicating the rule-relevant dimen-
sion for category membership and were encouraged to memo-
rize the exceptions to the rule (Davis, Love, & Preston, 2011;
Love & Gureckis, 2007).

Following the category-learning task, participants completed a
self-paced, two-alternative forced-choice recognition memory task
outside of the scanner. Recognition memory tests are often used as
a measure of exception processing in rule-plus-exception tasks
(e.g., Palmeri & Nosofsky, 1995; Sakamoto & Love, 2004, 2006;
Davis, Love, & Maddox, 2009). Testing recognition also serves as
a behavioral check for predictions of the model-based recognition
strength measure, which predicts that exceptions will be recog-
nized more strongly than will rule-following items. On each trial of
the recognition task, participants were presented with two beetles:
one that was presented during the category-learning phase and a
foil that was not presented during the category-learning phase.
Participants were asked to identify the old item presented during
the scanned rule-plus-exception task.

fMRI Acquisition

Imaging data were acquired on a 3.0 T General Electric Signa
whole-body magnetic resonance imaging (MRI) system (GE
Medical Systems, Milwaukee, WI) with an eight-channel head
coil array. High-resolution structural images using a T2-
weighted, flow-compensated spin-echo sequence (TR [repeti-
tion time] � 3 s, TE [echo time] � 68 ms, 0.43 � 0.43 inplane
resolution) were acquired with 20 3-mm thick slices that were
perpendicular to the main axis of hippocampus, to optimize
visualization of hippocampal subfields, MTL cortical subre-
gions, and striatum. Functional images were acquired with a
high-resolution T2*-sensitive, gradient-echo spiral in/out pulse
sequence with the same slice prescription as the structural
images (TR � 4 s, TE � 34 ms, flip angle � 80°, FOV [field
of view] � 22 cm, 1.7 � 1.7 � 3.0 mm resolution). A high-
order shimming procedure was used prior to scanning to reduce
B0 heterogeneity.

Figure 2 (opposite). A trial-by-trial schematic of the task and the rational model of categorization’s (RMC’s) clustering behavior over the first seven trials.
On each trial, a beetle stimulus is presented, and the RMC is asked to guess the category membership. Each beetle corresponds to a four binary-digit code
listed in Table 1 that corresponds to the beetle’s feature instantiations on each of the perceptual dimensions. These codes represent how the beetles’ are
coded in the RMC. The RMC compares the presented beetle to cluster representations stored in memory and makes a choice. After a choice is made, the
RMC is given feedback about the correct category membership. The RMC uses this feedback to update its cluster representations. On each trial, a stimulus
is added to either a current cluster or a new cluster. In this example, the RMC sees all of the rule-following items for each category before the first exception
(on Trial 7). In the first two trials, it forms two clusters that represent the rule-following items in each category. In the next four trials, it adds subsequent
rule-following items to these clusters because they do not violate the regularity in the cluster. In the first 7 trials, all stimuli in a category cluster (Category
1 or 2) have the same value on the first, rule-following dimension. The exception (Trial 7) violates this regularity and thus, when encountered, requires
a new cluster to be formed.
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A total of 858 volumes were acquired for each participant. The
first volume of each functional run was collected with an echo time
2 ms longer than all subsequent volumes to create a field map for
the correction of magnetic field heterogeneity. For each slice, the
map was calculated from the phase of the first two time frames and
applied as a first-order correction during reconstruction of the
functional images to minimize blurring and geometric distortion

on a per-slice basis. Correction for off-resonance due to breathing
was applied on a per-time-frame basis, using phase navigation.
The initial volume and the following two volumes of each func-
tional run (a total of 12 s) were discarded to allow for T1 stabili-
zation.

fMRI Analyses

The fMRI data were analyzed using SPM5 and custom MAT-
LAB routines. Slice timing and motion correction were applied to
all images. A mean functional image was computed and used to
coregister functional and the high-resolution anatomical images.

Voxel-based statistical analyses were conducted at the individ-
ual participant level according to the general linear model. Regres-
sor functions were constructed by modeling condition related
activation as an impulse function convolved with a canonical
hemodynamic response. For the model-based analysis, model-
based measures of recognition strength and entropy were fit, in
separate models, as parametric modulators of the stimulus presen-
tation period. The error measure was fit as a parametric modulator
of the feedback period in each model.

Group-level analyses were conducted using a nonlinear diffeo-
morphic transformation method (Vercauteren, Pennec, Perchant, &
Ayache, 2009). Each participant’s anatomically defined MTL and
striatal regions-of-interest (ROIs) were aligned with those of a
representative “target” participant, using a diffeomorphic defor-
mation algorithm that implements a biologically plausible trans-
formation. First, anatomically defined ROIs were demarcated on
the T2-weighted, high-resolution inplane structural images for
each individual participant. Eight MTL subregions were defined in
each hemisphere: the hippocampal subfields (dentate gyrus/CA2/3,
CA1, and subiculum) within the body of the hippocampus, sur-
rounding MTL cortices (perirhinal, parahippocampal, and entorhi-
nal cortex), and the most anterior and posterior slices of the
hippocampus in which the subfields cannot be delineated at the
resolution employed (Preston et al., 2007; Zeineh, Engel, Thomp-
son, & Bookheimer, 2003). Three striatal subregions were defined
in each hemisphere: putamen, caudate, and pallidum.

All participants’ anatomical images were warped into the target
participants’ space in a manner that maintained the between-
regions boundaries. To enhance the accuracy of the registration
processes, registrations were performed separately for each hemi-
sphere (left–right) for each of the primary ROI groups: hippocam-
pus, MTL cortex, and striatum. Compared with conventional
whole-brain normalization, the use of separate ROIs results in
more accurate correspondence of MTL subregions across partici-
pants and higher statistical sensitivity (e.g., Kirwan, Jones, Miller,
& Stark, 2007; Yassa & Stark, 2009).

Participant-level statistical contrast maps for each region were
transformed with the anatomical normalization matrix and com-
bined across participants for group statistical analyses. Group-level
statistical maps were created with an uncorrected voxel-wise
threshold of p � .025 and a multiple comparisons corrected
cluster-level threshold of p � .05. The minimum cluster sizes were
determined separately for the hippocampus (32 voxels), MTL
cortex (37 voxels), and striatal (43 voxels) ROIs with Monte Carlo
simulations implemented in AFNI’s AlphaSim, which takes into
account the size and shape of each region, as well as the height
threshold p value and the smoothness of actual data. For each

Figure 3. Illustrations of the model-based measures used to predict
activation during the stimulus presentation period and corresponding func-
tional magnetic resonance imaging (fMRI) results. Brain regions associated
with the rational model of categorization’s (RMC’s) recognition strength
measure are depicted in red, and brain regions associated with the entropy
measure are depicted in cyan. The bottom panel represents the predicted
shape of each model-based regressor for the two item-types over the course
of the experiment. For the model-based measures, the predicted pattern for
exception trials is given in red, and the predicted pattern for rule-following
trials is given in green. R � right.
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significant cluster, we report the cluster size, k, and the uncorrected
voxel-wise z value at the peak.

Model-Based Analysis

Recognition strength, error, and entropy measures were formulated
within the single particle filter version of the RMC. Here, we give a
conceptual overview of how the model works and how each of the
measures was generated. A formal mathematical description of the
RMC is detailed in the Appendix (see also, Anderson, 1991; Sanborn
et al., 2010).

Model operation. Figure 2 details a trial-by-trial progression
of how the RMC forms clusters and updates clusters over the first
seven trials of the experiment. On the first trial, the RMC begins
the task with no cluster representations stored in memory and
recruits a new cluster to represent the first stimulus. On each
subsequent trial of the task, the RMC is presented with a stimulus,
and the RMC compares it with cluster representations stored in
memory to try to assign the unobserved category label. The clus-
ters code the conjunctions of stimulus features and category labels
observed on previous trials. The RMC uses the match between the
current stimulus’ features and the features of the stored clusters to
compute a probability of membership for each cluster and an
entirely new cluster. Each of the clusters makes a prediction about
the category to which the stimulus belongs. The RMC combines
the category label predictions across clusters by weighting each
cluster’s prediction by the cluster’s probability, with proper Bayes-
ian aggregation. The model uses the category probabilities that are
aggregated across clusters to choose a response. After choosing a
category, the model, like the participants, is given feedback about
the correct category label. The RMC uses this feedback to update
its representations by recomputing the probability that the stimulus
belongs to each of the clusters, now with information about the
stimulus’ category label. The RMC assigns the stimulus to one of
the current clusters or a new cluster, with a probability propor-
tional to the cluster’s probability, given the stimulus.

Model-based measures. The model-based measures are
computed during different stages of the RMC’s trial-by-trial com-
putations. Recognition strength is computed during the stage at
which the model is computing the cluster probabilities (see Ap-
pendix), and recognition strength reflects the strength of the match
between the current stimulus and all clusters stored in memory.
Recognition strength is the model’s expected probability of seeing
the current stimulus, given its current cluster representations (see
Figure 3). Recognition strength has a general increasing trend
because the stimulus set repeats over blocks, and thus, the model
comes to anticipate each of the items. Recognition strength is
higher for exceptions because they tend to be stored in individual
clusters, which provide an exact match to each exception item.
Rule-following items tend to be stored in shared clusters that do
not perfectly match any given rule-following item (see Figure 2).

Entropy is computed over the uncertainty of cluster membership
(see Appendix for formula for entropy). Entropy is high when the
stimulus is likely to be a member of multiple clusters and low when
only one cluster is likely. The RMC predicts that entropy is high early
in learning but decreases throughout the experiment as the model
becomes more certain in its cluster assignments. Entropy is also
higher for exception items because they tend to partially match
clusters of opposing categories, leading to more cluster uncertainty.

Figure 4. Illustration of the model-based error measure used to predict
activation during the feedback period and corresponding functional
magnetic resonance imaging (fMRI) results. The top panels show the
brain regions associated with the rational model of categorization’s
(RMC’s) error measure in yellow. Bottom panels represent the
predicted shape of the model-based error regressor for the two item-
types (exceptions in red, rule-following items in green) over the course
of the experiment. R � right.
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Finally, the error measure is computed after the RMC has
computed a response probability, and the error measure is the
probability that the category assignment chosen by the model is
incorrect. Because exceptions tend to match clusters that contain
members of the opposing category, this confusion continues into
the decision stage and leads to more errors.

Model fitting. Each of the model-based measures was gener-
ated from fits of the RMC to participants’ average performance over
each scanning run (see Figure 5). For each scanning run, the model’s
predicted performance for exception and rule-following items was
computed and compared with the participants’ actual behavioral per-
formance. The parameters that minimized the discrepancy between
the predicted performance and actual performance across runs were
selected (see Appendix). We followed standard practices in cognitive
modeling and model-based fMRI and used predictions based on fits to
group data (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Daw,
O’Doherty, Dayan, Seymour, & Dolan, 2006; Davis, Love, & Pres-
ton, 2011). Predictions from the models’ fit to group data are fre-
quently used in model-based imaging to overcome the noise inherent
in single-participant data (see Daw, 2011). Because individual partic-
ipant data are often noisy, parameter estimates and measures obtained
from fits to individual participant data can be unreliable (for related,
broader arguments for group-averaged data, see Cohen, Sanborn, &
Shiffrin, 2008).

Measures averaging over items. In addition to fitting each
of the measures as formulated by the model, we also examined
measures that average over the differences between exceptions and
rule-following items predicted by the entropy, recognition

strength, and error measures to test the role of each measure’s
general time course in driving the results obtained. For example,
averaging over exceptions and rule-following items in the entropy
measure creates a single time course that is a weighted average of
the rule-following and exception lines depicted for entropy in
Figure 3. Coupled with the standard item-based analysis, the
temporal measures that average over item effects provide auxiliary
information about model successes and failures; they allow us to
assess the general role of time course in driving the results ob-
served for model-based analysis, whereas the item-based analysis
allows us to assess the role of each of the measures’ predicted
item-based effects.

Results

Behavioral Results

Participants remembered exception items (M � 0.69, SD �
0.28) more accurately than rule-following items (M � 0.52, SD �
0.16) during the postscan recognition memory test, t(25) � 2.91,
p � .001 (see Figure 6). In contrast, during the learning phase,
participants categorized exception items (M � 0.77, SD � 0.14)
less accurately than rule-following items (M � 0.91, SD � 0.05),
t(25) � 7.50, p � .001. Although participants were less accurate in
categorizing exception items in the current task, they were con-
siderably more accurate than in previous related tasks (Davis,
Love, & Preston, 2011; Love & Gureckis, 2007), suggesting that
presenting all rule-following items in the beginning of each run

Figure 5. Illustration of model fit to behavior. Circles depict the observed proportion correct for each item type
(black line � exception; gray line � rule following). Lines depict the proportion correct predicted by the model
for each item type. Observed and predicted results are averaged over the functional runs.
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prior to introducing exception items succeeded in increasing per-
formance.

fMRI Results

Activation during stimulus presentation. The primary goal
of the fMRI analysis was to identify simultaneous processes oc-
curring during the stimulus presentation period, when participants
are trying to determine category membership. Two types of pro-
cesses are hypothesized to occur during this decision phase: (a)
retrieval of category representations from memory to drive choice
and (b) cognitive and motivational processes related to detecting
and processing uncertainty (e.g., Davis, Love, & Maddox, 2009).
The recognition strength measure is used to localize processes
related to memory retrieval, and the entropy measure is used to
localize processes related to uncertainty.

Recognition strength measure. The recognition strength
measure indexes the degree of match between a stimulus and
stored category representations (see Figure 3). Consistent with
previous work (Davis, Love, & Preston, 2011) and a widely
supported role for the hippocampus in the storage and retrieval of
memories, we observe bilateral clusters of activation with peaks in
the posterior hippocampus that correlated with the recognition
strength measure (right: k � 227, z � 3.27; left: k � 66, z � 3.16).

In addition, there was also significant activation in the striatum
with bilateral peaks in the posterior/tail of the caudate (right: k �
390, z � 4.83; left: k � 348, z � 4.33), the location of which is
consistent with the anatomical localization of the visual loop. This
activation extended into the posterior slices of the anterior/head of

the caudate and into the putamen, consistent with the anatomical
localization of the motor loop (right: k � 556, z � 3.95; left: k �
318, z � 3.58). This pattern of activation is consistent with theories
suggesting that the striatum has a role in associating category
representations to behavioral responses.

Entropy measure. The entropy measure indexes the degree to
which the model is uncertain about the cluster assignment for a
stimulus and should relate to cognitive and motivational processes
engaged in the anterior hippocampus and ventral striatum that
detect uncertainty and facilitate learning under uncertain condi-
tions (see Figure 3). Consistent with these predictions, activation
that was correlated with the entropy measure was observed in both
the anterior hippocampus (right: k � 69, z � 4.13; left: k � 70, z �
2.98) and anterior striatum, with the anterior striatal activation also
extending into the ventral striatum (right: k � 901, z � 4.18; left:
k � 868, z � 4.90) and posterior into the body/tail of the caudate.
There were also clusters of activation in the right posterior para-
hippocampal cortex (k � 144, z � 2.89), left entorhinal cortex, and
left perirhinal cortex (k � 55, z � 3.69; k � 108, z � 3.49; k �
45, z � 3.19). The MTL clusters were completely nonoverlapping
with the recognition strength measure, and in the striatum, the
entropy measure was the only model-based measure for which the
clusters extended into the ventral striatum.

Auxiliary measures. In addition to the full model-based
measures, we also examined individual components of the
model-based measures to assess their contribution to the overall
fit. Each model-based measure predicts an item-based compo-
nent (exception � rule-following items) as well as a temporal

Figure 6. Behavioral results for the category-learning phase and postscanning two-alternative forced-choice
(2AFC) recognition phase. Error bars give 95% within-subjects confidence intervals.
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component or the measure’s general trajectory across time. We
assessed the item-based component of the model-based mea-
sures using a standard general linear model based contrast
comparing activation associated with correct exception items to
correct rule-following items. This item-based analysis assumes
that the difference between item types is constant throughout
the task. To assess the general temporal component, we created
measures that averaged over the item effects in the original
model-based measures, thereby predicting a single, average
time course for exceptions and rule-following items (see Ma-
terials and Method section). It is important to note that these
auxiliary measures are not alternative hypotheses to the full
model-based measures. Indeed, they are components of the
model-based measures themselves.

Both the entropy and recognition strength measures predict an
item-based component, and thus the contrast of correct excep-
tions � correct-rule-following items revealed clusters that ap-
proach a spatial mixture of the two model-based measures (see
Figure 7). However, because the item-based component was a
much larger part of the recognition strength measure, the results

most strongly matched those of the recognition strength measure.
In the MTL, activation for this contrast was primarily localized in
the posterior hippocampus (right: k � 432, z � 4.06; left: k � 267,
z � 4.17). The anterior hippocampal region identified with the
model-based entropy measure was not observed with this
condition-based comparison. In the striatum, this contrast revealed
clusters of activation in the caudate that were separately identified
as being associated with model-based measures of recognition and
entropy (right tail: k � 553, z � 4.58; right anterior: k � 55, z �
2.80; left tail: k � 514, z � 4.71).

The general time courses of the model-based measures, averag-
ing over items, were also able to recover aspects of the results
revealed by the full model-based measures. The amount of overlap
between these results and those for the full model-based measures
was largely related to the amount of variance in the full model-
based measures that was accounted for by the general time course.
The general change across time, averaged over items, accounted
for approximately 97% of the variance in the full model-based
entropy measure, but in the recognition strength measure, the
general changes across time only accounted for approximately
28% of the variance. Accordingly, the results revealed by the
general time course in the entropy measure highly overlapped
those predicted by the original entropy measure. Activation was
observed in the anterior hippocampus (right: k � 76, z � 3.84; left:
k � 79, z � 3.04), anterior and ventral striatum (right: k � 775,
z � 4.51; left: k � 779, z � 4.49), and MTL cortex (right: k � 135,
z � 2.85; left: k � 48, z � 3.57; k � 47, z � 3.20; k � 97, z �
3.60). The general time course of the recognition strength measure,
averaging over items, had less success in accounting for the results
of the original recognition strength measure, with clusters re-
stricted to the putamen (right: k � 673, z � 4.53; l‘9eft: k � 782,
z � 4.02).

Taken together, the item-based and temporal aspects of the
model-based measures are able to predict activation in many of the
regions observed for the full model-based measures. This pattern is
expected, as both are components of the full model-based mea-
sures. However, because fMRI data are noisy and likely do not
correspond perfectly with the model-based measures, tests for the
individual temporal or item-based components can be underpow-
ered, particularly for effects that account for a small amount of the
variance in the original measures (e.g., the item-based effect in
entropy). Nevertheless, these auxiliary measures derived from the
model help to illustrate the aspects of the full model-based mea-
sures to which the subregions of the MTL and striatum are par-
ticularly sensitive.

Activation during feedback. In addition to the primary
objective of dissociating the computational processes engaged
during the stimulus presentation period, we examined how the
model-based predictions for error updating engaged MTL and
striatal regions during feedback. The reason for modeling feed-
back is twofold: first, it is critical to model feedback separately
from the stimulus presentation because the psychological pro-
cesses that participants engage during these time periods have
very different time courses. Second, modeling the feedback
period can provide convergent evidence for conclusions drawn
using SUSTAIN in previous studies (Davis, Love, & Preston,
2011).

Error measure. The error measure indexes processes that
occur during the feedback portion of the trial (see Figure 1B)

Figure 7. The fMRI results for the standard condition-based contrasts.
Copper depicts activation during stimulus presentation that is significantly
greater for correct exceptions, compared with correct rule-following items.
Green depicts activation during feedback that is significantly greater for
incorrect exceptions, compared with incorrect rule-following items. R � right.
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associated with updating representations in response to prediction
error (see Figure 4). The striatum is one of the key structures
thought to update associations between visual stimuli or category
representations and motor outputs (Ashby et al., 1998; Cincotta &
Seger, 2007; Seger, 2008; Seger & Cincotta, 2005). Specifically,
connections between the visual and motor loops are thought to be
strengthened on the basis of feedback. Accordingly, we found
peaks of activation that correlated with the error function bilater-
ally in the tail of the caudate (right: k � 125, z � 3.87; left: k �
217, z � 5.05) and putamen (right: k � 432, z � 3.58; left: k �
343, z � 4.38). These regions overlapped with those from the
recognition strength measure, suggesting that regions of the stria-
tum that are engaged during categorization are also engaged during
feedback. That is, the same regions that exhibit one time course
during stimulus presentation exhibit a very different time course
during feedback; however, both time courses are consistent with
the general role of the striatum in associating category represen-
tations and responses.

In contrast to previous research, the error measure did not
correlate with activation in any region of the MTL. The MTL
has also been hypothesized to update representations in re-
sponse to prediction error (Davis, Love, & Preston, 2011), but
its time course at feedback was not well accounted for by the
error measure in the current task (see Auxiliary Measures).
While this result is somewhat surprising, it is likely due to the
accelerated exception learning observed in the present experi-
ment; memory updating was likely faster than the gradual curve
predicted by the RMC. Indeed, as described in the Materials and
Method section, we deliberately presented all rule-following
items before any exceptions at the beginning of each run to
speed up learning and reduce the number of nonlearners from
previous experiments.

Auxiliary measures. We also conducted auxiliary analyses
to separately examine the temporal and item-based effects pre-
dicted by the error measure (see Figure 7). The general time
course of the error measure, averaging over items, accounted
for an intermediate amount of the variance in the original error
measure (69%) and, accordingly, was able to capture some, but
not all of the error measure’s effects, with activation primarily
localized in the putamen (right: k � 411, z � 3.92; left: k �
262, z � 3.30). An item-based contrast comparing incorrect
exceptions to incorrect rule-following items predicted activa-
tion across the striatum similar to those revealed by the error
measure (right: k � 607, z � 3.88; left: k � 900, z � 4.42).
However, this item-based feedback contrast also revealed pat-
terns of activation in the hippocampus that were missed by the
model-based analyses (right anterior hippocampus: k � 92, z �
2.89; left posterior hippocampus: k � 85, z � 4.14), suggesting
that the hippocampus was indeed engaged during feedback but
that its time course was different from that predicted by the
error measure. While this contrast does reveal that the hip-
pocampus is engaged during feedback, it is important to re-
member that it does not speak to the specific computational
processes that the hippocampus is supporting.

Discussion

Our goal in the present study was to use model-based analysis
to identify multiple, simultaneous category-learning processes

within the MTL and striatum. While traditionally the MTL and
striatum have been treated as functionally separate and homo-
geneous systems that contribute a single process to category-
learning behavior, our results suggest that there is functional
heterogeneity within each system in terms of their underlying
computational contributions to category learning. Notably, sub-
regions within the MTL and striatum simultaneously contribute
different computational processes to support category-learning
behavior.

While recent research has begun to posit functional specific-
ity within the MTL and striatum, progress has been hampered
by the fact that many simple behavioral or condition-based
contrasts exhibit activation in widespread regions of the MTL
and striatum. By combining computational modeling’s ability
to predict fine-grained differences between simultaneously ac-
tive computational processes with the enhanced spatial resolu-
tion and signal-to-noise ratio of high-resolution fMRI, we are
able to isolate signals related to three different cognitive pro-
cesses in the MTL and striatum: recognition strength, entropy,
and error correction. These model-based measures, derived
from the RMC, index psychological processes related to the
retrieval of category representations from memory, cognitive
and motivational processes associated with uncertainty, and
processes associated with updating representations in response
to error, respectively.

Consistent with previous results and the general theory that
the hippocampus has a role in storing and retrieving information
from memory, we found that a region of the posterior hip-
pocampus correlated with the model-based recognition strength
measure. A number of recent findings in the episodic memory
literature suggest that retrieval processes are subserved primar-
ily by the posterior hippocampus (Chua, Schacter, Rand-
Givannetti, & Sperling, 2007; Daselaar et al., 2006; Prince,
Daselaar, & Cabeza, 2005; Strange et al., 1999; Strange, Dug-
gins, et al., 2005; Strange, Hurlemann, et al., 2005b); however,
other studies have linked episodic retrieval to both anterior and
posterior hippocampal activation (Kircher et al., 2008). Our
finding of a recognition strength signal localized in the poste-
rior hippocampus may result from the enhanced ability of
model-based methods to separate retrieval-based processes
from other simultaneously occurring processes or, perhaps,
methodological differences between category learning and ep-
isodic memory experiments. Future researchers may wish to
incorporate model-based predictions for retrieval into experi-
ments in the episodic memory domain to provide further delin-
eation between the mnemonic functions of the anterior and
posterior hippocampus.

In addition to the posterior hippocampus, we also found
activation in the tail of the caudate and posterior putamen that
correlated with the recognition strength measure. These results
are consistent with the hypothesis that the tail of the caudate
and posterior putamen engage visual and motor loops that
associate category representations to behavioral responses
(Ashby et al., 1998; Cincotta & Seger, 2007; Seger, 2008; Seger
& Cincotta, 2005). The simultaneous activation of the MTL and
the striatum for the recognition strength measure is consistent
with a cooperative role between the systems during categoriza-
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tion (e.g., Meeter et al., 2008) but, as we discuss below, may be
consistent with other explanations as well.

During stimulus presentation, anatomically distinct subregions
within the MTL and the striatum were associated with recognition
and entropy, providing evidence for simultaneously engaged cog-
nitive processes during categorization decisions. Entropy was
found to predict activation in the anterior hippocampus and ventral
striatum, two regions that have been associated with processing
novelty1 (Daselaar et al., 2006; Strange et al., 1999).

While others have explored uncertainty processing in neurobi-
ological category-learning research, the regions implicated in other
paradigms differ from the present findings. For example, some
studies have associated the ventral striatum with uncertainty pro-
cessing (Grinband, Hirsch, & Ferrera, 2006), whereas others focus
on the dorsal striatum (Daniel et al., 2011; Seger & Cincotta, 2005)
or do not observe striatal activation related to uncertainty (Aron et
al., 2004). Aside from the present study, we know of no category-
learning studies relating the anterior hippocampus to uncertainty.
Many previous tasks examining uncertainty in categorization have
defined uncertainty in relation to the probabilistic structure of their
task (Aron et al., 2004; Seger & Cincotta, 2005), in relation to the
variability in the construction of their stimuli (Daniel et al., 2011),
or in relation to participants’ behavioral performance (Grinband et
al., 2006). In contrast, by using a fully defined computational
model of category learning, our approach takes into account the
structure of the task, the participants’ performance, and the dy-
namics of how psychological processes related to uncertainty
change as participants learn. By combining all of this information
in a psychologically plausible manner, our approach is better
equipped to localize regions involved with processing uncertainty.

In terms of brain mechanisms, cluster uncertainty signals likely
reflect a host of different cognitive, emotional, and motivational
processes that are designed to direct learning resources to poten-
tially significant sources of information. Indeed, one prominent
model of biologically based reinforcement learning suggests that
the anterior hippocampus and the ventral striatum form a circuit
with midbrain dopamine neurons that strategically controls the
impact of events on memory (Lisman & Grace, 2005). Events that
are detected as novel, uncertain, or rewarding lead to higher
midbrain dopamine release, which increases the impact that these
events have on memory. Interestingly, the connection between the
ventral striatum and the anterior hippocampus is thought to occur
via the entorhinal cortex (Witter et al., 2006), one of the other
MTL regions that correlated with the entropy measure. The notion
that additional motivational processes are engaged for uncertain
trials is consistent with findings that exception trials are associated
with more orienting responses in a related paradigm (Davis, Love,
& Maddox, 2009) and findings suggesting that uncertainty can act
as an intrinsic reward or motivator during reinforcement learning
(Krebs et al., 2009; Wittman et al., 2007, 2008).

As auxiliary measures and bases of comparison for our model-
based results, we also separately examined predictions based on
the temporal and item-based components of the original model-
based measures. We examined predictions based on the general
time course of the model-based measures by averaging over each
measure’s (entropy, recognition strength, and error) predicted item
effect. To test the item-based component of the model-based
measures, we employed standard condition-based analyses that
predict that the difference between exception and rule-following

items is constant throughout the task. Both analyses revealed
subsets of the activation that were revealed by the model-based
measures. The general temporal effect of the measures, averaging
over items, was more suited toward revealing activation consistent
with the entropy measure because the entropy measure has a strong
time component. In contrast, while the item-based analyses re-
vealed a spatial mixture of regions engaged for both recognition
strength and entropy measures, the MTL results most closely
matched the recognition strength measure because of the mea-
sure’s strong item-based component. These auxiliary analyses are
useful because they illustrate how components of the model-based
measures are coded in the brain, but ultimately, the only way to
recover the full pattern of results is to use the full model-based
measures.

Beyond their superior ability to model the patterns of activations
observed in the current task, the model-based measures we employ
present a more continuous view of cognitive processes than do
standard item-based methods. Many of our methods and interpre-
tations were informed by previous findings in the neurobiological
category-learning literature, as described above for the entropy
measure. However, the methods employed in many of these sem-
inal studies were not geared toward separating simultaneous pro-
cesses that are present throughout a task, on every trial. For
example, without a model-based approach, many previous studies
had to rely on introducing different types of stimuli (e.g., proba-
bilistic, random, deterministic: Seger & Cincotta, 2005; Seger et
al., 2010) and assuming that different psychological processes
would be engaged for only certain subsets of trials. The model-
based perspective employed in the current study, along with the
findings related to our own item-based contrasts, suggests that
assuming that cognitive processes can be neatly separated between
conditions is potentially misguided. It is not the case that particular
cognitive processes are used during particular trials as opposed to
others; it is that the extent to which cognitive processes are
recruited varies depending on trial-by-trial task demands.

Multiple Systems?

There is a great deal of controversy across the category-learning
literature on exactly how to characterize the roles of the different
brain regions that support categorization behavior. Multiple-
systems theories suggest that many of the brain regions that are
engaged during category learning, such as the striatum, prefrontal
cortex, and MTL, constitute functionally separate representational
systems that learn categories in different ways and sometimes
compete with one another. Single-system theories characterize
different regions as contributing unique processes to a broader,
more distributed category-learning system throughout the brain
that operates on a single representational format (e.g., exemplars).
For example, Palmeri and Flanery (2002) discussed how compu-
tations underlying different aspects of category learning, from
object representation and selective attention to forming associa-
tions between category representations and responses, might all be

1 It is important to note, however, that entropy is not synonymous with
novelty; entropy is a measure of uncertainty, which critically depends on
the model’s representation of the task. Novelty contributes to uncertainty
but is not synonymous with uncertainty.
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mediated by separate brain regions, but only as a whole do they
constitute a category-learning system.

While a multiple-systems characterization has historically been
dominant in neurobiological approaches to category learning, re-
cent trends have begun to lend support to single-system accounts.
Indeed, the MTL and posterior striatum, characterized by multiple-
systems theories as functionally separate representational systems,
are often simultaneously activated and functionally correlated in
category-learning studies (Dickerson, Li, & Delgado, 2011; Mat-
tfeld & Stark, 2011; Sadeh, Shohamy, Levy, Reggev, & Maril,
2011; Seger et al., 2011), leading some researchers to suggest that
the two regions work together to support category-learning behav-
ior. For example, the posterior striatum may associate higher order
category representations in the MTL to behavioral responses
(Meeter et al., 2008; Seger & Miller, 2010).

The architecture of the RMC and our findings suggesting that
the posterior striatum and MTL are both simultaneously correlated
with the recognition strength measure parsimoniously lend them-
selves to a single-system characterization of the brain in which
there is a single representational format (clusters) and in which
there are multiple processes that operate on these representations.
We point out, however, that dissociating single-system from
multiple-systems characterizations is extremely difficult within a
single experiment and that the MTL and striatum could potentially
be simultaneously forming and retrieving functionally independent
category representations in the present task.

In order to fully disentangle the contribution of various
category-learning processes and neural regions, it will be critical to
accumulate model-based imaging results over a range of experi-
mental demands and develop richer methods for evaluating differ-
ent computational models in terms of their ability to fit neural data.
For example, advances in statistical methods that allow for stable
estimation of the hemodynamic response on a trial-by-trial basis
(e.g., Rissman, Gazzaley, & D’Esposito, 2004; Mumford, Turner,
Ashby, & Poldrack, 2012), when coupled with appropriate trial
spacing, may lead to better data visualization methods and allow
for the rapid evaluation of a variety of multiple and single-system
computational models and model-based measures in their ability
explain patterns of activation within particular brain regions.

Conclusion

In conclusion, model-based fMRI presents a potentially power-
ful tool for understanding the neural basis of category learning. In
the real world, cognitive processes associated with categorization
occur simultaneously and unfold continuously over time. In con-
trast, standard fMRI techniques force a view by which cognitive
processes are static and only occur on certain trials or in particular
conditions. Model-based imaging offers category-learning re-
searchers the opportunity to bring analysis strategies in line with
theory and separate the dynamic signals recorded in fMRI tasks
into distinct, simultaneously occurring cognitive processes. In the
present study, by combining model-based measures of recognition
strength, entropy, and error processing with fMRI, we were able to
identify a number of distinct, simultaneously occurring computa-
tional processes that underlie function in subregions of the MTL
and striatum. While the paths of cognitive neuroscience and com-
putational modeling communities have occasionally diverged in
the past, we believe that their futures would be stronger together.
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Appendix

Modeling Procedure

The RMC models category-learning behavior by estimating, on
each trial, the probability that a stimulus will belong to a given
category based on its observed features and the features associated
with cluster representations stored in memory. A cluster is a
grouping of stimuli that code the features and category labels
associated with stimuli in the task and can contain anywhere from
a single stimulus to all of the stimuli observed in a task. The RMC
assumes that one cluster was responsible for generating the ob-
served stimulus and generates an overall probability of the cate-
gory label by aggregating the category label predictions over
clusters.

Formally, the probability that a stimulus i belongs to category j
given its observed feature structure F and the features of k stored
clusters is given by

Pi�j � F� � �
k

P�k � F�Pi�j � k�, (1)

where P�k � F� is the probability of the stimulus i coming from cluster k,
given the observed features, and Pi� j � k� is the probability of i having the
category label j given the cluster. Each P�k � F� is a posterior probability
that combines the prior probability of cluster k and the likelihood of the
stimulus features F, given cluster k:

P�k � F� �
P�k�P�F � k��
k

P�k�P�F � k�
, (2)

where P(k) is the prior probability of the cluster over possible
partitionings of the stimulus space. The denominator in Equation 2
normalizes the cluster probabilities to sum to one.

P(k) is given by

P�k� � �
cnk

�1 � c� � cn
if nk � 0�k is old�

�1 � c�

�1 � c� � cn
if nk � 0�k is new�

, (3)

where c is a coupling parameter that controls how likely objects
are to be stored in the same cluster, n is the total number of stimuli
presented so far, and nk is the number of stimuli assigned to cluster
k. P(k) has a modulating effect on the posterior probabilities such
that as the number of previous items stored in cluster k increases,
the RMC judges the cluster as more probable to have generated a
stimulus.

P(F | k), in Equation 2, is the likelihood of the stimulus features
F given cluster k, given by

P�F � k� � �
i

Pi�j � k�, (4)

where js are the values on each i stimulus dimension in the feature
set F. Equation 4 assumes that features within a cluster are inde-
pendent of one another, so the individual contribution of each
feature dimension can be multiplied to obtain the likelihood. In
discrete dimension cases, like the present application, the contri-
bution of matches–mismatches on an individual feature dimension
i is given by

Pi�j � k� �
nj � �i

nk � 2�i
, (5)

where nj is the number of stimuli in cluster k with the same value
as the to be classified stimulus on dimension i, nk is the number of
stimuli in cluster k (assuming all stimuli have a value on dimension
i), and the �is are symmetric beta priors that control the weight of
matches (mismatches) on dimension i in the likelihood computa-
tion (i.e., dimensional salience). The �is are constrained to be in
the range (0,1), with lower values indicating higher salience. In the
present application, we fit a separate beta prior for the rule-relevant
dimension �r and the last three other dimensions �o to reflect the
instructions given to participants to focus on the rule-relevant
dimension. The beta prior for the category label dimension was
fixed at .01, which reflects the assumption that stimuli with dif-
ferent category labels will belong to different clusters. All priors
are symmetric such that for a given stimulus dimension/category
label, matches and mismatches are weighted the same regardless of
the particular feature instantiation (e.g., whether the category label
is 1 or 2).

In the present application, the probability with which the RMC
responds (resp) with category m given stimulus i is scaled using a
probabilistic choice rule (Nosofsky, Gluck, Palmeri, & McKinley,
1994):

P�resp � m� �
Pi�j � m � F��

�
j�1

J Pi�j � F��
, (6)

where � is a decision parameter that scales the probabilities such
that for � � 1 (see also, Ashby & Maddox, 1993), the model
probability matches and responds proportionally to the probability
of the category label, given i calculated in Equation 1, and as �
approaches infinity, the responses become more deterministic,
such that the model always chooses the most probable category.
After a response is made and feedback is delivered, the cluster
probabilities are recalculated, taking into account the now ob-
served category label; as a result, the stimulus is stored in a given
cluster with a probability proportional to the cluster’s likelihood,
given the stimulus. The probabilistic assignment of a stimulus to a

(Appendix continues)
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cluster implements a single particle filter version of the RMC
(Sanborn, Griffiths, & Navarro, 2010) and is a departure from the
original RMC, which assigns stimuli to clusters deterministically
using a local maximum aposterior probability (MAP) algorithm.

Values for �r, �o, c, and � were estimated by fitting the model,
using a combination of grid search and simplex algorithms, to
participants’ average performance for each trial type over each
scanning run, minimizing the sum of squared error (see Figure 5).
The best fitting parameter values were �r � .354; �o � 1.0; c �
0.347; and � � 1.556. With these parameters, the model was run
to generate the entropy, recognition, and error measures used in the
model-based fMRI analyses.

Model-based measures for fMRI analysis were computed from
the fitted version of the RMC as follows. Recognition strength R
(see Figure 3) indexes the probability of stimulus i (prefeedback),
given the model’s current cluster representations:

R � �
k

P�k� P�F � k�. (7)

Recognition strength is equivalent to the denominator in Equation
2 and is computed during the stage at which the RMC is comparing
an observed stimulus to the current clusters that are stored in its
memory.

Entropy E (see Figure 3) for stimulus i is defined using the
prefeedback cluster probabilities from Equation 2:

E � � �
k

P�k � F� log2	P�k � F�
. (8)

Entropy is computed after the model has compared a presented
stimulus with each of the clusters stored in memory and computed
a probability of the stimulus belonging to each cluster.

The final measure, error, is the probability that the model’s
categorization choice (see Equation 6) is incorrect and is computed
after the decision stage.
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