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Category knowledge can be explicit, yet not conform to a perfect
rule. For example, a child may acquire the rule ‘‘If it has wings, then
it is a bird,’’ but then must account for exceptions to this rule, such
as bats. The current study explored the neurobiological basis of
rule-plus-exception learning by using quantitative predictions from
a category learning model, SUSTAIN, to analyze behavioral and
functional magnetic resonance imaging (fMRI) data. SUSTAIN
predicts that exceptions require formation of specialized represen-
tations to distinguish exceptions from rule-following items in
memory. By incorporating quantitative trial-by-trial predictions from
SUSTAIN directly into fMRI analyses, we observed medial temporal
lobe (MTL) activation consistent with 2 predicted psychological
processes that enable exception learning: item recognition and
error correction. SUSTAIN explains how these processes vary in
the MTL across learning trials as category knowledge is acquired.
Importantly, MTL engagement during exception learning was not
captured by an alternate exemplar-based model of category
learning or by standard contrasts comparing exception and rule-
following items. The current findings thus provide a well-specified
theory for the role of the MTL in category learning, where the MTL
plays an important role in forming specialized category representa-
tions appropriate for the learning context.
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Introduction

Is this person a friend or a foe? Is this plant edible or poisonous?

Organisms use categories to make decisions that range from

critical to mundane. Categories facilitate generalization based

on previous experiences, thus enabling inferences about future

events. A central challenge in category learning research is

determining how category knowledge is represented. Many

category learning models propose a single fixed form of

representation, such that all category representations share

a common form, irrespective of the objective structure of the

category information in the environment. For example,

exemplar models always represent categories as collections

of previously encountered category examples (Medin and

Schaeffer 1978; Nosofsky 1986; Kruschke 1992), prototype

models always represent categories by a single average (i.e.,

abstraction) of category members (Posner and Keele 1968;

Rosch 1973; Smith and Minda 1998), and rule-based (Bruner

et al. 1956; Trabasso and Bower 1968) and decision bound

models (Ashby and Gott 1988; Ashby and Lee 1991) always

represent categories by decision criteria that determine

category membership.

Using these fixed representational approaches as building

blocks, multiple systems’ models (We use the term system to

refer to systems that are theorized to contain functionally

separate representations [e.g., rules vs. prototypes] as opposed

to ‘‘systems’’ that may instantiate different component pro-

cesses of categorization [e.g., object representation vs. decision

processing] but operate on common representations.) combine

2 or more single system models to address behavioral findings

outside the scope of most single system models (e.g., Nosofsky

et al. 1994; Erickson and Kruschke 1998; Ashby et al. 1998). For

example, Erickson and Kruschke (1998) combine exemplar

and rule approaches to capture patterns of data that neither

single system model can account for alone. In contrast to most

single and multiple systems’ models that represent all forms of

categories in the same way, cluster-based models build

appropriate representations for a given category structure

(Anderson 1991; Love et al. 2004). This flexibility allows

cluster-based models to manifest characteristics of various

single system models; the model’s behavior is determined by

the demands of the learning context. While it is well

established that people do build category representations that

are appropriate for a category’s structure, there is little work

describing the neural processes that accomplish this feat.

Many of the fixed representational forms proposed by

category learning models have been ascribed to systems in

the brain that are associated with learning categories (for

reviews, see Ashby and Maddox 2005; Ashby and O’Brien 2005;

Poldrack and Foerde 2008; Smith and Grossman 2008). The

prefrontal cortex and head of the caudate nucleus are

theorized to engage a rule-based category learning system that

depends on working memory to support maintenance of rules

and new hypothesis testing (Ashby et al. 1998; Seger et al. 2000;

Monchi et al. 2001; Patalano et al. 2001; Maddox and Ashby

2004; Seger and Cincotta 2006). The tail and body of the

caudate nucleus are theorized to support a category learning

system that involves the strengthening of associations between

individual stimuli and category responses, often described as

procedural learning (Knowlton et al. 1994, 1996; Ashby et al.

1998; Poldrack et al. 2001; Maddox and Ashby 2004; Shohamy

et al. 2004; Foerde et al. 2006, 2007). Exemplar representations

have been associated with regions in the temporal and occipital

lobes that are associated with processing objects (e.g., Sigala

and Logothetis 2002; Palmeri and Gauthier 2004; Palmeri and

Tarr 2008).

One neurobiological system that has proven difficult to

characterize in terms of its role in category learning is the

medial temporal lobe (MTL). The essential role of the MTL for

encoding and retrieval of declarative memories—long-term

memory for facts and events—is well established (Scoville and
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Milner 1957; for reviews, see Squire 1992; Preston and Wagner

2007). However, the role of the MTL in category learning

remains controversial; each of the major fixed representational

forms have been ascribed to the function of the MTL by

different groups of researchers. For example, many theories

suggest that the MTL uses exemplar-based representations

(Pickering 1997; Ashby and Maddox 2005; Ashby and O’Brien

2005). However, empirical work has suggested that the MTL

may be essential for the storage of category rules (Seger and

Cincotta 2006; Nomura et al. 2007) or representations of

category prototypes (Aizenstein et al. 2000; Reber et al. 2003;

Zaki et al. 2003; Zeithamova et al. 2008). In contrast, other

theories question whether the MTL is involved in category

learning at all (Ashby et al. 1998; Maddox and Ashby 2004).

Given these difficulties in ascribing a single fixed representa-

tional type to the function of the MTL, one plausible alternative

that may integrate these disparate theories is that the MTL

builds representations that are appropriate for a specific

learning context, like those proposed by clustering models

(e.g., Anderson 1991; Love et al. 2004).

In the current study, we present a theory of MTL function in

category learning that relies on a category learning model,

SUSTAIN (Love et al. 2004). This model-based approach

provides a method for formalizing our hypothesis that the

MTL builds representations that are appropriate for a category’s

structure (Love and Gureckis 2007). SUSTAIN is a network-

based category learning model that works by comparing the

similarity between incoming stimuli and category representa-

tions that are stored in memory. SUSTAIN represents categories

as clusters that code the features and categories of items that it

has experienced before. SUSTAIN initially represents categories

as simply as possible but is able to dynamically recruit new

category representations (clusters), if needed, to solve a task. For

example, for a task in which subjects learn categories that are

defined by rules or a simple prototype structure, SUSTAIN will

encode a single cluster to represent each category. For tasks in

which accurate performance cannot be achieved by storing

a single cluster per category, SUSTAIN will encode additional

clusters as needed to represent the category. If a category

structure is complex enough, SUSTAIN will act like an exemplar

model storing every category member in its own cluster.

Our cluster-based theory of MTL function in category

learning is informed by current theories of the representational

and functional roles of the MTL and its subregions in de-

clarative memory. In terms of declarative memory, the hip-

pocampus is theorized to play a critical role in rapidly forming

conjunctive representations that bind together different

sources of information into a single flexible memory (Brown

and Aggleton 2001; Norman and O’Reilly 2003; Eichenbaum

et al. 2007). Conjunctive representations are thought to be

encoded by the hippocampus in response to novelty (Stern

et al. 1996; Tulving et al. 1996; Yamaguchi et al. 2004), in as

little as a single trial (Morris et al. 1982; Rutishauser et al. 2006),

as well as code information about the spatiotemporal context

in which an item occurred (Wallenstein et al. 1998; Staresina

and Davachi 2009). SUSTAIN’s clusters resemble hippocampal

conjunctive representations in that they can be dynamically

recruited in response to novelty on a single trial and that they

bind together multiple item features and category information

into a single flexible representation that can promote generali-

zation to novel contexts (e.g., Yamauchi et al. 2002; Love et al.

2004).

In addition to the hippocampus, components of SUSTAIN’s

architecture may relate to functionality in other regions of the

MTL. For example, the perirhinal cortex is associated with

representing object-level information (Wan et al. 1999; Davachi

et al. 2003; Staresina and Davachi 2008), which contrasts with

hippocampal representations that bind object-level and cate-

gory/contextual information. Stimulus matching mechanisms

in SUSTAIN that compute an item’s similarity to stored

representations may relate to object-based representations in

the perirhinal cortex (Love and Gureckis 2007).

Our theory relating SUSTAIN’s representational properties to

the MTL may help to explain how factors like expectations,

goals, and category structure combine to influence how

category representations are formed. To foreshadow our study

design, many real world categories often appear to be describ-

able by simple representations, such as logical rules, but upon

closer inspection are found to be more complex (Wittgenstein

1953/2001). For example, natural categories such as birds and

mammals are often associated with verbalizable rules such as,

‘‘If it has wings, it is a bird’’ but also contain violations of these

rules, such as bats. People can verbally report descriptions of

bats and explicitly relate bats to other mammals, but these

descriptions are not rules, per se. In order for people to learn

that examples as diverse as bats and ponies are all members of

the category mammals, people need to build representations of

the category mammals that are appropriate for this goal.

SUSTAIN would predict that people achieve this goal by

forming a separate cluster for birds and mammals and then

creating additional specialized clusters for exceptions, like bats,

as they are encountered. Other models that are able to learn

the task, such as exemplar models, may accomplish the goal of

categorizing birds and mammals but would do so by storing

each member separately, making all items equally differentiated

in memory. Given the need to store exceptions as specialized

representations, we predict exceptions and rule-following

category members will be differentiated to the extent that

encoding and retrieval processes in the hippocampus and

surrounding MTL cortex are engaged.

We use amodel-based functionalmagnetic resonance imaging

(fMRI) approach to test the proposed mapping between MTL

function and SUSTAIN’s representational properties by collect-

ing fMRI data during a rule-plus-exception task that pre-

serves critical aspects of the mammals and birds example.

During scanning, subjects learn to sort schematic beetles (Fig.

1A) into categories based on trial and error. Each trial of the

category learning task contains a stimulus presentation period

in which subjects try to predict the correct category assignment

for a single beetle followed by a feedback period during which

subjects are told whether they are right or wrong and the

correct category assignment (Fig. 1B). Subjects are instructed

that most of the beetles (i.e., rule-following items) in each

category can be classified accurately by using a rule based on

a single stimulus dimension that they were cued to attend to but

also that each category contains an exception item that appears

as if it should belong to the opposing category based on the rule.

After scanning, a surprise memory test queried subjects’

memory for both the exception and the rule-following items.

SUSTAIN learns rule-plus-exception tasks in a manner anal-

ogous to the birds and mammals example. Thus, it can provide

a mechanistic account of how psychological processes associ-

ated with category learning unfold in a rule-plus-exception

task. SUSTAIN predicts that subjects will build representations
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that are appropriate for the task by encoding rule-following

items in common clusters and recruiting additional clusters to

store exception items. Based on the theoretical relationship

between SUSTAIN and the brain, encoding and retrieval of both

item types are hypothesized to be dependent on the MTL.

However, because exception items are predicted to be more

differentiated than rule-following items in memory, SUSTAIN

predicts different levels of MTL involvement in encoding and

retrieval processes for the 2 item types.

We test our theory relating SUSTAIN’s representational prop-

erties to MTL function through model-based analyses of fMRI

data. We focus on SUSTAIN’s characterization of recognition and

error correction processes, which we hypothesize to corre-

spond to the function of MTL in this task. For each of these 2

processes, we specify a quantitative measure that characterizes

SUSTAIN’s moment-to-moment operation and relate these

measures to brain activation during stimulus presentation and

feedback. Figure 2A,B illustrates these 2 measures, which

capture SUSTAIN’s psychological account of how encoding and

retrieval processes dynamically change during learning.

According to our quantitative measures of SUSTAIN,

exception and rule-following items should elicit different levels

of activation across learning trials. We test whether subjects

exhibit patterns of brain activation that are consistent with the

recognition strength and error correction measures by in-

cluding the measures directly in the fMRI analysis as parametric

regressors. Parametric regression is used in fMRI data analysis

to assess whether activation within a condition varies accord-

ing to a specified measure. While this analysis technique has

been used extensively in model-based fMRI paradigms in

reinforcement learning (for review, see Daw forthcoming;

O’Doherty et al. 2007; Gläscher and O’Doherty 2010), it has not

yet been used to relate predictions from category learning

models to fMRI data.

Model-based fMRI techniques offer a powerful method for

assessing whether similar computational processes underlie

SUSTAIN’s operations and MTL involvement in rule-plus-

exception learning. Because we fit the model to behavioral

data and not to fMRI data directly, in contrast to other methods,

there is no risk of over fitting the brain data. Indeed,

predictions from SUSTAIN and subjects’ pattern of brain

activation during the task are measured independently, and

thus finding a statistical relationship between them strongly

suggests that subjects are using similar mechanisms to guide

performance in the task.

In our analysis, the recognition strength measure derived

from SUSTAIN (Fig. 2A) is used to predict activation during

stimulus presentation, when we believe subjects are attempt-

ing to retrieve stored category representations to predict

category membership. The recognition strength measure

indicates the extent to which a stimulus matches SUSTAIN’s

stored cluster representations and is proposed to reflect

stimulus matching and cluster retrieval processes that may

occur in the hippocampus and MTL cortex. Exception and rule-

Figure 1. (A) An example category structure. The beetles vary on 4 of the following 5 perceptual dimensions, where the fifth dimension is held fixed: eyes (green or red), tail
(oval or triangular), legs (thin or thick), antennae (spindly or fuzzy), and fangs (pointy or round). The rule-relevant dimension in this example is legs. Most (3/4) of Hole A beetles
have thick legs, whereas most (3/4) of Hole B beetles have thin legs. The 2 stimuli circled are the exceptions because they have legs consistent with the opposing category. The
rest of the features are evenly distributed across the exemplars, with the exception of eyes, which is held constant in this example (for abstract structure, see Supplementary
Table S6). (B) Trial structure. During stimulus presentation, a beetle was presented, and subjects were asked to classify an either Hole A or Hole B beetle. Following a variable
fixation period, subjects received feedback about their response. Feedback was followed by a variable number of even--odd digit trials that served as baseline.
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following items yield different recognition strength measures

across trials such that exception items are predicted to have

greater overall recognition strength. SUSTAIN predicts that

exception items more closely match clusters stored in memory

because these items match their own cluster perfectly and

have moderate matches to clusters representing rule-following

items from the opposing category. In contrast, rule-following

items tend to only moderately match stored clusters because

the rule-following clusters represent abstractions, or averages,

of the rule-following items within a category rather than

representations of the items themselves. The recognition

strength measure predicts that this difference between rule

and exception recognition will increase over trials as subjects

learn.

The error correction measure derived from SUSTAIN

(Fig. 2B) is used to predict brain activation during the feedback

portion of a trial when subjects are told whether their response

was correct or incorrect. The error correction measure

indicates a mismatch between SUSTAIN’s prediction for

category membership and the actual category assignment.

Thus, the error correction measure is predicted to relate to

prediction error or novelty signals (Ranganath and Rainer 2003;

Strange et al. 2005; Kohler et al. 2005; Kumaran and Maguire

2006, 2007a, 2007b) in the MTL cortex and hippocampus that

lead to the encoding of new memories. SUSTAIN predicts

that exceptions should lead to greater prediction error than

rule-following items because exception items are somewhat

confusable with rule-following items from the opposing

category (see above discussion of the recognition measure).

In contrast, rule-following items significantly activate only

those clusters associated with correct rule application. For

both items types, SUSTAIN’s error correction measure

decreases over trials as subjects learn.

SUSTAIN’s predictions for exception learning have been

validated in a number of behavioral studies and are consistent

with the prediction that exceptions recruit MTL-based pro-

cesses more than rule-following items. One robust finding from

this literature is that exceptions items are better remembered

than rule-following items at the end of learning (Sakamoto and

Love 2004, 2006), even when subjects are not explicitly

encouraged to use a rule (Palmeri and Nosofsky 1995). Early

attempts to model subjects’ behavior in rule-plus-exception

tasks relied on a multiple system model that combined rule and

exemplar-based representations (RULEX; Palmeri and Nosofsky

1995). Later research found that SUSTAIN was able to account

for these findings and additional patterns of behavior in rule-

plus-exception tasks not predicted by other models (Sakamoto

and Love 2004, 2006). For example, a critical question in early

research on exceptions was whether the high number of errors

subjects make in learning exceptions drove the increase in

exception recognition or whether it was because exceptions

violate a salient knowledge structure (i.e., the rule). SUSTAIN

successfully predicts that items that violate a knowledge

structure result in stronger memories than those that are

simply associated with high errors (Sakamoto and Love 2004).

Finally, SUSTAIN is able to predict differences in exception

learning performance between older adults, who have puta-

tively impaired MTL function, and young adults by varying

Figure 2. Illustrations of recognition strength (A) and error correction (B) measures derived from SUSTAIN that were used as predictors of brain activation during stimulus
presentation and feedback. Recognition strength is the sum of the total cluster activation for a given stimulus/trial, and error is the absolute value of the model’s output
error on a given trial. Below the measures are the corresponding statistical maps associated with each regressor. Activation during stimulus presentation is presented in
red and activation during the feedback period in yellow. (C) MTL regions exhibiting a significant (P\0.05, false discovery rate [FDR] corrected) correlation between activity
during the categorization period and the predicted recognition strength measure. (D) MTL regions exhibiting a significant (P\ 0.05, FDR corrected) correlation between
during feedback and the predicted error correction measure.
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a parameter corresponding to the degree of cluster recruit-

ment, which is hypothesized to relate to MTL function (Love

and Gureckis 2007).

In addition to evaluating our predictions derived from

SUSTAIN, we also conduct model-based analyses based on an

exemplar model, ALCOVE (Kruschke 1992), and standard

condition-based fMRI analyses. In contrast to our view of

MTL function in category learning, the prevailing view

proposes that MTL function is best described by exemplar

models (Pickering 1997; Ashby and Maddox 2005; Ashby and

O’Brien 2005). Standard exemplar models provide a strong

theoretical contrast to SUSTAIN. Whereas SUSTAIN builds

representations appropriate for the structure of a category,

exemplar models store all items separately in memory for all

categories, regardless of their structure. Thus, where SUSTAIN

is able to differentiate between rule-following and exception

items, standard exemplar models hold that both types of items

have the same status in memory and thus incorrectly predict

that exception and rule-following items will be recognized at

the same rates (One caveat comes from exemplar model

variants that allow for exemplar-specific attention weights

(Sakamoto and Love 2004; Rodrigues and Murre 2007) or

update item representations on the basis of how much error

they elicit (Sakamoto and Love 2004). These nonstandard

exemplar models make predictions that are virtually indistin-

guishable from SUSTAIN because such models embody similar

principles at the computational level (Sakamoto and Love

2004). ALCOVE was chosen to provide a strong theoretical

contrast to SUSTAIN, not to serve as the standard-bearer for all

possible variants of exemplar model.).

Model-based fMRI analyses using SUSTAIN should offer

several advantages over standard general linear model (GLM)-

based contrasts that sort items into experimentally defined

conditions. Model-based analysis should better characterize

within-condition variance due to learning and avoid some of

the risks associated with standard fMRI analyses. Standard

condition-based comparisons can mistakenly lead to a conclu-

sion that a region exhibits functional specificity for a particular

condition when the underlying processing difference between

2 conditions is more accurately described as a matter of degree

(see Fig. 2). Our model-based analyses using recognition

strength and error correction measures derived from SUSTAIN,

along with their comparisons to ALCOVE and standard fMRI

analysis techniques, should provide a window into the un-

derlying computations and representations used by the MTL

during category learning.

Materials and Methods

Subjects
Twenty-two healthy right-handed volunteers (13 females) ages 19--28

participated in the current experiment after giving informed consent in

accordance with a protocol approved by the University of Texas at Austin

Institutional Review Board. Each subject received a $50 payment for his

or her participation. Seven additional subjects were excluded for failing to

achieve greater than 50% performance on exception items in the final

(sixth) run.

Materials
Subjects completed a rule-plus-exception category learning task (Love

and Gureckis 2007) during fMRI scanning. The stimuli used in the task

were schematic beetles that varied along 4 perceptual dimensions (see

Fig. 1A) and were assigned to categories (Hole A or Hole B) based on

their combinations of feature values. For each of the stimuli, 4 of 5

possible dimensions (eyes, tail, legs, antennae, and fangs) were

randomly selected to vary and the unselected dimension was held

fixed at a constant value. Six of the stimuli were rule-following items

and could be categorized correctly based on the value of a single rule-

relevant dimension. In the example in Figure 1A, the rule-relevant

dimension was the legs; all but one of the beetles in Hole A had thick

legs and all but one of the beetles in Hole B had thin legs. The other 2

beetles (red circles in Fig. 1A) served as exceptions to the rule and

appeared to belong to the opposing category based on their value on

the rule-relevant dimension (legs). An abstract representation of the

category structure is given in Supplementary Table S6. In order to

minimize the effects of feature salience, the mapping of each abstract

dimension to a physical dimension was randomized for each subject.

Procedures
On each trial of the category learning task, a single beetle was

presented in the center of the screen, and subjects were asked to

decide whether it was a Hole A or Hole B beetle (Fig. 1B). Each stimulus

was presented for 3.5 s during which time subjects had to indicate

category membership via button boxes held in their left and right

hands. After a brief fixation (0.5, 2.5, or 4.5 s; mean = 2.5 s), feedback

was presented for 2.0 s during which time the beetle would appear

next to the correct category (i.e., the correct Hole), and subjects were

informed whether their response on that trial was correct or incorrect.

In between categorization trials, subjects completed between 1 and 4

trials (2 s each) of an even/odd digit task that served as baseline (mean

baseline time per trial = 4 s). Such active baselines are often used in

memory research because the MTL has high resting state activity (Stark

and Squire 2001). No feedback was given during the even/odd digit

task.

Subjects were trained using the rule-plus-exception procedure for 6

functional runs, each lasting 8 min and 27 s. During each run, the 8

stimuli (beetles) were presented 5 times sequentially in a pseudoran-

dom order. Trial order and duration were optimized for each of the 6

functional runs to allow for efficient deconvolution of the hemody-

namic response using standard optimization techniques. A Latin square

design was used to balance the order of the 6 functional runs across

subjects. The first 12 s of each run, consisting of fixation, were

discarded. Prior to beginning the task, subjects were given explicit

instructions indicating the rule-relevant dimension for category

membership and were encouraged to memorize the exceptions to

the rule (Love and Gureckis 2007).

Following the category learning task, subjects completed a self-paced,

2-alternative forced choice recognition memory task outside of the

scanner. On each trial of the recognition task, subjects were presented

with 2 beetles: one that was presented during the category learning

phase and a foil (see Supplementary Material) that was not presented

during the category learning phase. Subjects were asked to identify

the old item presented during the scanned rule-plus-exception task.

fMRI Data Acquisition
Whole-brain imaging data were acquired on a 3.0 T GE Signa MRI

system (GE Medical Systems). Structural images were acquired during

a T2-weighted flow-compensated spin-echo pulse sequence (time

repetition [TR] = 3 s; time echo [TE] = 68 ms; 256 3 256 matrix, 1 3

1-mm in-plane resolution) using thirty-one 3-mm thick oblique axial

slices (0.6 mm gap), approximately 20 degrees off AC--PC line, oriented

for optimal whole-brain coverage. Functional images were acquired

using a multiecho GRAPPA parallel imaging echo planar imaging (EPI)

sequence using the same slice prescription as the structural images (TR

= 2 s; TE = 30 ms; 2 shot; flip angle = 90�; 64 3 64 matrix; 3.75 3 3.75-mm

in-plane resolution). For each functional scan, the first 6 EPI volumes

corresponding to the initial 12-s fixation period were discarded to allow

for T1 stabilization. Head movement was minimized using foam padding.

fMRI Data Analysis
Data were preprocessed and analyzed using SPM5 (Wellcome De-

partment of Cognitive Neurology) and custom Matlab routines.
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Functional images were corrected to account for the differences in

slice acquisition times by interpolating the voxel time series using sinc

interpolation and resampling the time series using the first slice as

a reference point. Functional images were then realigned to the first

volume in the time series to correct for motion. The T2-weighted

structural image was coregistered to the mean T2
*-weighted functional

volume computed during realignment. The structural image was then

spatially normalized into common stereotactic space using the

Montreal Neurological Institute template brain. The spatial trans-

formation calculated during the normalization of the structural image

was then applied to the functional time series and resampled to 2-mm

isotropic voxels. After normalization, the functional images were

spatially smoothed using an 8-mm full-width at half-maximum Gaussian

kernel. Voxel-wise analysis was performed under the assumptions of

the GLM. Regressor functions were constructed by modeling condition

related activation as an impulse function convolved with a canonical

hemodynamic response function.

For the model-based analysis, model-based measures of recognition

strength and error correction were fit as parametric modulators of the

stimulus presentation and feedback periods separately. In all cases, the

model-based measures were obtained by fitting the model to subjects’

aggregate behavioral performance (see Supplementary Material) and

thus were not biased when interrogating fMRI data. In the primary

analysis, the recognition strength and error correction measures of

SUSTAIN (see Supplementary Methods) were included as parametric

modulators of the stimulus presentation and feedback period of the

trial, respectively. SUSTAIN’s recognition strength measure indexes the

sum of the cluster outputs across trials, providing a measure of the

degree of match between a presented item and a stored memory

representation. SUSTAIN’s error correction measure indexes the

difference between SUSTAIN’s expectations for a queried dimension

on a given trial and the actual outcome (i.e., the expected and given

category label). Measures are averaged over 1000 runs of the model.

One key question is whether SUSTAIN’s measures of recognition and

error correction are specific to particular phases of the trial as

predicted by our model and hypotheses regarding MTL function. To

evaluate the explanatory power of each hypothesized process and its

relationship to MTL activation during stimulus presentation and

feedback, the role of the 2 measures in the parametric analyses was

swapped such that the recognition strength measure was implemented

as a parametric modulator of feedback and the error correction

measure was implemented as a parametric modulator during stimulus

presentation. If our predictions regarding the proposed mapping

between psychological processes and MTL function are correct, this

swapped analysis should be less effective in identifying MTL in-

volvement in the task.

Another goal of the current study was to test the predictions for MTL

function derived from SUSTAIN with alternate accounts of MTL

function in category learning. To this end, an additional set of

parametric analyses assessed whether predictions derived from

ALCOVE, an exemplar model of category learning, isolated MTL

involvement in exception learning. The parametric analysis using

ALCOVE was performed in the same manner as the analysis using

SUSTAIN. Paralleling the SUSTAIN analysis, ALCOVE’s recognition

strength and error correction measures (see Supplementary Material)

were fit to the categorization and feedback periods, respectively.

Finally, a set of standard linear contrast analyses was conducted

comparing exception and rule-following items. These analyses provide

an important comparison to the model-based analyses. Unlike model-

based analyses, simple linear contrasts do not model changes in the

time course of activation as subjects learn the task. For these linear

contrasts, we examined a GLM model that included regressors for each

stimulus (exception or rule following) and subjects’ behavior (correct

or incorrect) at each trial period (stimulus presentation or feedback).

For each subject, fixed effects analysis tested the effects of interest

(e.g., parametric modulation with recognition strength and error

correction measures derived from SUSTAIN or contrasts between

exception and rule-following items). The resulting contrast images

generated in the individual subject analysis were analyzed across subjects

using a mixed effects GLM, treating subjects as a random effect to allow

for population inference. Activation in the MTL was identified in all group

analyses by masking the whole-brain results at a threshold of 20 or more

contiguous voxels exceeding a false-discovery-rate corrected threshold of

P < 0.05 with an anatomical MTL gray matter mask derived from the

statistical parametric mapping template. A whole-brain threshold of 20

or more contiguous voxels exceeding a false-discovery-rate corrected

threshold of P < 0.01 was used for all other regions.

Results

Behavioral Results

Subjects remembered exception items (mean = 0.75, standard

deviation [SD] = 0.20) more accurately than rule-following

items (mean = 0.45, SD = 0.13) during the postscan recognition

memory test, t14 = 5.09, P < 0.001 (Fig. 3). In contrast, during

the learning phase, subjects were less accurate at categorizing

exception items (mean = 0.66, SD = 0.19) in comparison to

rule-following items (mean = 0.87, SD = 0.07), t14 = 4.80, P <

0.001. The enhanced memory for exception items is consistent

with previous work on exception learning (Palmeri and

Nosofsky 1995; Sakamoto and Love 2004, 2006) and predic-

tions from SUSTAIN that exception representations are more

differentiated in memory than representations of rule-following

items. In addition, the behavioral data served as the basis for

estimating SUSTAIN’s and ALCOVE’s parameters to create

model-based trial-by-trial predictions for brain activation (see

Supplemental Methods for modeling procedures).

MTL Activation Tracks Model-Based Estimates of
Recognition Strength and Error

First, we identified brain regions in which activation during the

stimulus presentation period correlated with the measure of

recognition strength derived from SUSTAIN (Fig. 2A). Psycho-

logically, the recognition strength measure relates to the

amount of information that subjects retrieve or remember on

a given trial and should therefore correlate with MTL regions

such as the hippocampus that are thought to support retrieval

of stored memories. SUSTAIN also predicts how recognition

should change over the course of the experiment. The

recognition strength measure predicts that subjects should

not recognize the exceptions early in learning because they

Figure 3. Behavioral results for the postscanning recognition phase and the scanned
category learning phase. Error bars represent 95% confidence intervals.
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have not yet formed representations for them. Likewise,

subjects should recognize exceptions more so than rule-

following items later in learning because, unlike exception

items, rule-following items tend to share common clusters.

These common clusters match on the rule dimension but tend

to mismatch on the other stimulus dimensions, which obscures

information that individuates items. In contrast, exception

items must be fully differentiated from rule-following items in

memory for subjects to categorize them accurately. As a result,

exception items will be recognized to a greater extent later in

the experiment when exception representations have been

established. Consistent with our predictions, activation in

several MTL regions was correlated with the recognition

strength measure derived from SUSTAIN, including bilateral

hippocampus, parahippocampal cortex, and perirhinal cortex

(Fig. 2C; Supplementary Tables S1 and S5, which control for

reaction time).

Next, we identified regions in which activation correlated

with SUSTAIN’s error correction measure (Fig. 2B). The error

correction measure gives the difference between SUSTAIN’s

expectations for category membership and the correct

category membership on a given trial. This error signal is used

by the model to determine the extent to which it updates

category representations based on feedback. Psychologically,

the error correction measure is similar to mismatch or

associative novelty signals that are thought to engage MTL-

based encoding processes leading to the formation of new

memory representations (Kohler et al. 2005; Kumaran and

Maguire 2006). The similarity between these 2 constructs

derived from the category learning and declarative memory

literatures suggests a unifying principle that describes MTL

activation during feedback based learning tasks such as the

one in the current study. To this end, SUSTAIN makes intuitive

predictions for how psychological processes related to error-

driven learning change over time. Early in learning, subjects

should make large numbers of errors for both item types be-

cause the task is novel and category memberships are unknown.

As learning progresses, the rule-following items should produce

less error than exception items because, unlike exceptions, they

tend to only match clusters for their own category. Consistent

with these predictions, activation in bilateral hippocampus and

perirhinal cortex was correlated with the error correction

measure (Fig. 2D; Supplementary Table S2).

Early in learning, exceptions are unexpected in the context

of their category, and recruitment of hippocampus during

feedback may reflect an associative novelty response that

a particular exception item is a novel example of a specific

categorical context (Ranganath and Rainer 2003; Kohler et al.

2005; Kumaran and Maguire 2007a, 2007b). This mismatch

signal may lead to the formation of a new representation of the

specific exception item in perirhinal cortex. While associative

mismatch signals are often considered in the context of

declarative memory, they nonetheless bear striking resem-

blance to SUSTAIN’s error-driven learning mechanisms and may

highlight important commonalities in MTL function that are

shared across category learning and declarative memory tasks.

Model-based analyses using SUSTAIN revealed distinct

psychological processes related to recognition and feedback

that occurred at distinct points within a trial and changed in

different ways across trials. These results suggest that MTL

activation may shift during learning such that regions active in

response to prediction error early in learning are recruited in

later trials to recognize exception items after the necessary

representations have been formed. While both of SUSTAIN’s

measures predict that exception items will elicit greater

activation than rule-following items across trials, the 2

measures strongly differ in how they vary over the course of

learning. Overall recognition strength increases in later trials,

whereas error correction decreases. Important differences are

also manifest between rule and exception items across trials.

The recognition strength measure predicts that the difference

between exceptions and rule-following items during stimulus

presentation will increase throughout the experiment as

subjects learn, whereas the error correction measure predicts

that the difference between exceptions and rule-following

items during the feedback decreases as subjects learn. In-

terestingly, when we swapped the role of the 2 measures in our

parametric analyses by fitting the recognition measure to the

feedback trial component and the error correction measure to

the stimulus presentation trial phase, we failed to reveal

significant effects in the MTL except at an extremely liberal

threshold of P < 0.05, uncorrected. This finding provides

additional support for the explanatory power of SUSTAIN in

describing the contributions of MTL structures to forming and

retrieving category representations.

While our model-based analyses using SUSTAIN focused on

the MTL, activation in a number of additional brain regions

was correlated with SUSTAIN’s recognition strength and error

correction measures (Fig. 4A,B; Supplementary Tables S1 and

S2), including prefrontal cortex, posterior parietal cortex, and

the lateral occipital complex. Each of these regions has been

implicated in recognition memory and controlled retrieval

processes (Malach et al. 1995; Grill-Spector et al. 2001; Badre

and Wagner 2002; Dobbins et al. 2002; Moscovitch and

Winocur 2002; Sommer et al. 2005; Wagner et al. 2005; Fleck

et al. 2006; Cabeza et al. 2008; Hutchinson et al. 2009). In

addition, correlations with SUSTAIN’s recognition strength and

error correction measures were found in the midbrain, insula,

and regions of the ventral striatum, which have been associated

with reward processing and reinforcement learning (Schultz

et al. 1997; Knutson et al. 2001; Bayer and Glimcher 2005;

Aston-Jones and Cohen 2005; Bechara and Damasio 2005;

O’Doherty et al. 2006) as well as the anterior cingulate which

has been differentially described as being involved in reward

learning and conflict resolution (Botvinick et al. 2001; Holroyd

and Coles 2002; Kerns et al. 2004; for relations between these

perspectives, see Botvinick 2007).

Comparison between SUSTAIN and ALCOVE’s Ability to
Model MTL Contributions to Exception Learning

Recognition strength and error correction measures for

ALCOVE, an exemplar model, were generated in the same

manner as those used in the SUSTAIN model-based analyses.

The key difference between SUSTAIN and ALCOVE is that the

representational forms used by ALCOVE are fixed such that,

regardless of the category structure, ALCOVE assumes that all

items are stored individually in memory. ALCOVE does not

predict a recognition advantage for exceptions because

exceptions and rule-following items are equally differentiated

in ALCOVE’s representational space. Accordingly, the recogni-

tion strength measure of ALCOVE (Fig. 5A) failed to reveal

significant MTL activation during the categorization period,

even at a liberal threshold of P < 0.05, uncorrected. However,
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like SUSTAIN, ALCOVE was able to predict that the exception

items result in more prediction error than rule-following items

(Fig. 5B). ALCOVE’s error correction measure identified

bilateral clusters of activity in the MTL (Fig. 5D; Supplementary

Table S3) similar to those found in the SUSTAIN error

correction analysis.

Comparisons between Model-Based and Standard
Condition-Based Regressors

An important point highlighted by the model-based results is

that activation associated with experimentally defined con-

ditions is not constant throughout an experiment as is

commonly assumed by simple linear contrasts comparing 2

(or more) conditions. Thus, standard contrast-based analyses

are less able to predict changes in activation over time when

compared with measures derived from models like ALCOVE

and SUSTAIN that incorporate empirically derived learning

functions that change across learning trials. For example,

accuracy increases throughout the experiment for exception

items, whereas accuracy peaks early and asymptotes for rule-

following items. Directly comparing exceptions and rule-

following items thus confounds differences between items

with differences in the engagement of psychological processes

across learning trials. Accordingly, a linear contrast of excep-

tion and rule-following items during the stimulus presentation

and feedback periods failed to detect MTL activation during

learning except at a liberal threshold of P < 0.05, uncorrected.

The failure to detect MTL activation using standard linear

contrasts suggests an important advantage for our model-based

approach in isolating the contributions of MTL structures to

category learning.

A number of post hoc comparisons are possible that can

improve our ability to identify regions associated with

Figure 4. Whole-brain statistical maps for regions exhibiting a significant (P\0.01, FDR corrected) correlation between (A) the recognition strength measure of SUSTAIN during
the categorization period and (B) the error correction measure of SUSTAIN during feedback. Red indicates activation present during stimulus presentation and yellow indicates
activation present during feedback.

Figure 5. Illustrations of the recognition strength (A) and error correction (B) measures derived from ALCOVE that were used to predict activation during stimulus presentation
and feedback. Recognition strength is the sum of the similarities between a given stimulus/trial and all items stored in memory, and error correction is the absolute value of the
model’s output error on a given trial. Below the measures are the corresponding statistical maps associated with each regressor. Activation during stimulus presentation is
presented in red and activation during the feedback period in yellow. (C) No MTL regions exhibited a significant correlation between activation during stimulus presentation and
the predicted recognition strength measure. (D) MTL regions exhibiting a significant (P\ 0.05, FDR corrected) correlation between during feedback and the predicted error
correction measure.
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exception processing when using linear contrasts. For exam-

ple, it is both intuitive and predicted by SUSTAIN that

recognition differences between exception and rule-following

items should be highest late in the experiment when subjects

have mastered the task. Accordingly, contrasting correct

exception trials with correct rule-following trials reveals similar

statistical maps to those found for the recognition strength

measure of SUSTAIN (Fig. 6A,C; Supplementary Table S4).

However, no intuitive post hoc contrasts (correct exception >

correct rule following; incorrect exception > incorrect rule

following) recovered MTL activation associated with error

correction at feedback except at a liberal threshold of P < 0.05,

uncorrected. One general weakness of such post hoc linear

contrasts is that, rather than utilizing all of the data, biased

samples of data are used. For example, because subjects learn

rule-following items faster than exceptions, the correct >

incorrect analysis includes rule-following item trials from

throughout the experiment, but the majority of exception

trials included are only from later stages of the experiment. In

contrast, the model-based analysis uses all of the data when

predicting patterns of activation.

Another weakness of standard linear contrasts is that they

can lead to potentially questionable and incorrect conclusions

regarding the functional specificity of a particular brain region.

For example, SUSTAIN predicts that MTL structures will

contribute to successful categorization of both exception and

rule-following items but predicts a quantitative difference in

the degree of MTL involvement with exception items recruit-

ing MTL processing to a greater degree. In contrast, the post

hoc comparison between correct exceptions and correct rule-

following items could lead to the incorrect conclusion that

there is a qualitative difference between exceptions and rule-

following item such that the MTL is not engaged during

categorization of rule-following items. As evidenced by the

success of our measures from SUSTAIN in fitting not only the

exception items but also the rule-following items, rule-

following items simply have a different time course and, on

average, recruit the MTL less strongly than exception items, as

predicted by our theory.

Discussion

The role of the MTL in category learning has long been

debated, and central questions remain regarding the functional

contributions of MTL structures to the acquisition, represen-

tation, and use of novel category information. A number of

recent observations have implicated MTL structures in a variety

of category learning paradigms from prototype learning (Reber

et al. 2003; Zeithamova et al. 2008) to rule storage (Nomura

et al. 2007) and probabilistic categorization (Poldrack et al.

2001; Hopkins et al. 2004). Rather than characterizing these

discrepant findings as contradictory, our view is that the MTL

builds category representations that are tailored to the

requirements of the learning context. In other words, as

a function of the category learning task, MTL representations

can mimic that of an exemplar-, prototype-, or rule-based

model. On this view, one key challenge is to specify a model

that is able to flexibly adapt category representations to the

nature of the learning context and thus capture the essential

function of the MTL in category learning.

Figure 6. Illustrations of standard linear contrasts as applied in the present paradigm. (A) Contrast weights for correct exceptions[ correct rule-following items and (B) contrast
weights for incorrect exceptions[ incorrect rule-following items. Below the contrast weights are the corresponding statistical maps associated with each comparison. Activation
during stimulus presentation is presented in red and activation during the feedback period in yellow. (C) MTL regions exhibiting significant (P\ 0.05, FDR corrected) activation
during stimulus presentation for correct exceptions compared with correct rule-following items. (D) No MTL activation was found for comparisons during feedback.
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We suggest that SUSTAIN, a mathematical model of category

learning, addresses this challenge by building category repre-

sentations that are tailored to the learning context. Consistent

with our view, model-based fMRI analyses using SUSTAIN

highlight the role of the MTL in the formation and retrieval of

specialized representations for exception items that violate

a category rule. By combining predictions from SUSTAIN with

fMRI data from a rule-plus-exception learning task, we iso-

lated trial-by-trial fluctuations in MTL activation that were

associated with encoding (via error-driven learning) and re-

trieval (via recognition) of novel category information. In this

task, exception and rule-following items fundamentally differ

in their representational requirements. Exceptions are both

more difficult to learn and easier to recognize (once learned)

than rule-following items. SUSTAIN captures the representa-

tional differences between exception and rule-following items

and accurately predicts greater MTL engagement for exception

items during category decisions and feedback. These findings

suggest that, like SUSTAIN, the MTL contributes to category

learning by forming specialized category representations ap-

propriate for the learning context.

One interesting result of our model-based approach is that in

many of the analyses, activation was observed not only in the

hippocampus, the region thought to be primarily involved in

the encoding and retrieval of cluster representations (Brown

and Aggleton 2001; Norman and O’Reilly 2003; Eichenbaum

et al. 2007; Love and Gureckis 2007) but also in regions of the

MTL cortex, including perirhinal and parahippocampal corti-

ces. While historically the MTL as whole was considered

a system for declarative memory (Squire 1992), current

research suggests that the hippocampus and MTL cortical

regions may differ in their functional roles. For example, the

perirhinal cortex is often implicated in stimulus-based famil-

iarity processes that rely on the global similarity between

a stimulus and stored representations, while hippocampus has

been associated with encoding and retrieval processes that

underlie associative memory and recollection of event details

(for review, see Brown and Aggleton 2001; Davachi 2006;

Eichenbaum et al. 2007; Diana et al. 2007).

One possibility for the role of the MTL cortex in the present

task is that it provides representations of stimulus features to

the hippocampus, which then retrieves or encodes additional

associated information such as an item’s category label. Indeed,

the recognition strength and error correction measures are

aggregate measures and contain information about global

matching processes as well as local associative processes that

are likely implemented in different MTL regions. Future model-

based fMRI analyses could develop measures to separately

interrogate these theoretical processes and dissociate the

function of hippocampus fromMTL cortex in category learning.

While model-based analysis is a powerful tool for localizing

mental function, care must be taken in interpreting results.

Like other fMRI analysis techniques, model-based analysis is

correlational. Therefore, it is possible that areas can correlate

with a model measure yet not instantiate the corresponding

mental processes in the brain. One strength of model-based

analysis is that it can help identify such situations. Whenever 2

measures (from the same or different models) correlate with

one another, one can expect that overlapping brain areas will

be recovered by the 2 analyses. Furthermore, models can be

compared with help design future studies that tease apart (i.e.,

decorrelate) measures of interest.

In the present study, it is likely that SUSTAIN’s regressors

correlated with brain areas not directly related to the targeted

processes. For example, areas related to reward processing

(e.g., ventral striatum, midbrain, insula) were recovered by

SUSTAIN’s recognition strength measure. One possible in-

terpretation is that SUSTAIN’s recognition measure in a rule-

plus-exception task tracks processes related to category

uncertainty (for supportive results, see Grinband et al. 2006).

As learning progresses, exceptions items should be high on

measures tapping recognition, uncertainty, and response

conflict at stimulus presentation (Davis et al. 2009). Given

the multitude of processes involved in any category learning

task, any one measure in any one study is likely to correlate

with activity in regions that are not of direct interest. This

observation underscores the importance of integrating findings

across multiple studies and methods to formulate predictions.

Along these lines, applying the same set of models across

studies offers an effective means for triangulating mental

function.

In other cases, SUSTAIN’s regressors may correlate with

activation in particular regions because they support psycho-

logical processes that do have a direct relationship with the

measure of interest. To this end, a number of other brain

regions, including the prefrontal cortex, posterior parietal

cortex, and lateral occipital complex, were found to correlate

with measures of recognition strength and error correction.

Prefrontal and posterior parietal cortices are known to support

attentional processes (Posner and Petersen 1990; Miller and

Cohen 2001) that extend to the domain of memory (Wagner

et al. 2005; Fleck et al. 2006; Cabeza et al. 2008). Likewise,

lateral occipital complex has been associated with object

representation (Malach et al. 1995; Grill-Spector et al. 2001)

and may provide object-level information to MTL structures

in memory tasks (Sommer et al. 2005). Accordingly, prefrontal

and parietal regions may correlate with the recognition

strength and error correction measures in the present task

because they support attentional processes needed for encod-

ing and retrieval of clusters. Lateral occipital complex may

correlate with these measures because it encodes information

about specific stimuli (Sigala and Logothetis 2002; Palmeri and

Gauthier 2004) that becomes bound in the higher-level

mnemonic representations in the MTL (i.e., clusters). Again,

deciding whether a region that correlates with a model

measure is directly involved with the computational processes

of interest requires careful integration across research studies.

While the same issues arise when interpreting standard imaging

analyses, model-based analyses can provide a more powerful

and theoretically motivated means for integrating past and

present findings, and charting a way forward.

The preceding discussion makes clear that multiple brain

areas are likely engaged to support category learning. While the

dominant view in the neuroscience community is that different

brain systems support performance in different types of

categorization problems (for reviews, see Ashby and Maddox

2005; Ashby and O’Brien 2005; Poldrack and Foerde 2008;

Smith and Grossman 2008), many behavioral findings thought

to indicate the need for multiple systems of representation

have subsequently been shown to be consistent with a single

system interpretation (Nosofsky and Zaki 1998; Nosofsky and

Johansen 2000; Johansen and Palmeri 2002). Our approach is to

specify model-based mechanisms and relate these mechanisms

to brain function as opposed to arguing for or against
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a particular number of learning systems, as we believe that, in

practice, the criteria for delineating separate systems is often

underspecified and can lead to needless controversy. Indeed,

SUSTAIN is a single system model, which forms representations

(i.e., clusters) that can behave like exemplar-, prototype-, or

rule-based representations depending on the nature of the

category learning task. We relate the properties of SUSTAIN’s

learning mechanisms primarily to MTL function and theorize

that this mapping will hold in many category learning tasks. It is

possible, however, that other learning systems are better

characterized by alternate mechanisms and forms of represen-

tation (cf. Love and Gureckis 2007). SUSTAIN may not be the

preferred model for experimental manipulations and category

structures that preferentially tap learning systems outside the

MTL.

Tasks that could potentially be better characterized by

mechanisms other than those proposed by SUSTAIN include

‘‘information integration’’ or procedural learning tasks (Nomura

et al. 2007). Models like the covering map version of ALCOVE

(Kruschke 1992) and the Striatal Pattern Classifier (SPC; Ashby

and Waldron 1999) may provide a better characterization of

procedural learning mechanisms and tasks. Unlike SUSTAIN,

these models do not build specialized representations for

a category learning problem. Instead, these models learn to

associate various visual inputs with a behavioral (category)

response in the same manner for all learning tasks, much like

how exemplar and prototype models always represent catego-

ries in the same format. This mode of incremental associative

learning is sufficiently powerful that these models can

eventually learn any possible category structure (Ashby and

Waldron 1999), consistent with theories of procedural

category learning that focus on the striatum (Ashby et al. 1998).

However, this form of learning differs from the way in which

SUSTAIN builds category representations. For example, whereas

SUSTAIN builds specialized representations for the exception

items in our study, covering map models of procedural learning,

such as SPC, do not; therefore, covering map models do not

predict the recognition advantage observed for exception items.

In models of procedural learning, regions activated by stimuli,

regardless of whether these items are exceptions or rule

following, are associated with the reinforced response. More

generally, MTL representations are hypothesized to be more

readily adapted to novel uses beyond the original learning

circumstances than the representations formed by other

learning systems (Eichenbaum and Cohen 2001; Preston et al.

2004). Consistent with this notion, SUSTAIN is able to use

previously acquired clusters in novel contexts (Yamauchi et al.

2002; Love et al. 2004), whereas procedural learning models

would have to begin anew in associating stimuli with novel

responses. Thus, while more than one learning system may be

able to master a particular category learning task, the nature of

the representations across systems and the adaptive functions

they can serve may dramatically differ.

We favor a model-based approach that makes strong theo-

retical connections to the broader literature. The theory we

forward relating SUSTAIN to the MTL, much like the theory

relating the SPC to the striatum, goes beyond the model’s

equations by tying model operations to brain regions (see Love

and Gureckis 2007). For instance, although not reflected in any

equation, one would expect SUSTAIN’s parameters to change

given task manipulations that are known to reduce MTL

involvement. Conversely, manipulations that affect striatal

mediated learning should alter the SPC model’s operation.

The encompassing theory linking brain and computation can

guide the application and interpretation of model fits.

A final issue in category learning that model-based ap-

proaches are well suited to address is whether the brain

systems that support category learning change as subjects learn

a task. Representational shifts in category learning are hotly

debated in the behavioral and modeling literature where

ultimately the behavioral data alone underdetermine whether

such shifts occur (Johansen and Palmeri 2002). Similarly, in the

literature on MTL involvement in category learning, some

studies suggest that the MTL is involved only early in learning

(Poldrack et al. 2001; Poldrack and Rodriquez 2004; Little et al.

2006) or late in learning (Knowlton et al. 1994; Knowlton et al.

1996), whereas other results suggest that the MTL is involved

throughout a categorization task (Zeithamova et al. 2008;

Degutis and D’Esposito 2009). Our results highlight that

regions recruited for category learning, such as the MTL, may

be differentially recruited during different stages of learning,

during different trial components, and for different items

within categories (e.g., exceptions). Early MTL involvement

may reflect formation of specialized representations (consis-

tent with the error correction measure of SUSTAIN) and later

MTL involvement may reflect retrieval of those representations

(consistent with the recognition strength measure of SUS-

TAIN). Commonly employed fMRI methods, such as block

designs or modeling stimulus presentation and feedback

portions of a trial with a single regressor, average over trial-

level information as well as across trial components and may

thus obscure important information about different mecha-

nisms that support performance at the level of individual trials.

Model-based fMRI approaches thus have additional power to

resolve existing debates about the engagement of different

learning systems during distinct stages of learning.

In conclusion, we present a model-based approach that

proposes a role for the MTL in learning categories that require

subjects to build cluster-based category representations that fit

the needs of the learning context. Using quantitative predic-

tions from SUSTAIN, a mechanistic category learning model, we

observed activation in hippocampus and MTL cortex consistent

with the notion that the MTL builds specialized representations

appropriate for the categories to be learned. In the present

study, such specialized representations were required to mas-

ter exceptions to a category rule. Our results extend current

neurobiological approaches of category learning by providing

a well-specified theory for the role of the MTL in the formation

and use of novel category information, and in doing so, have

the potential to unite the results from a number of disparate

category learning studies in which MTL activation has been

observed. Importantly, our model-based analysis suggests that

MTL involvement in category learning can vary across items

within a task and thus likely across different category learning

tasks themselves. More broadly, model-based methods will

prove critical for integrating results across different category

learning paradigms and for reaching a general consensus

regarding the mechanisms and brain systems that underlie

category learning.
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Sommer T, Rose M, Weiller C, Büchel C. 2005. Contributions of

occipital, parietal and parahippocampal cortex to encoding of

object-location associations. Neuropsychologia. 43:732--743.

Squire LR. 1992. Memory and the hippocampus: a synthesis from

findings with rats, monkeys, and humans. Psychol Rev. 99:195--231.

Staresina BP, Davachi L. 2008. Selective and shared contributions of the

hippocampus perirhinal cortex to episodic item and associative

encoding. J Cogn Neurosci. 20:1478--1489.

Staresina BP, Davachi L. 2009. Mind the gap: binding experience across

space and time in the human hippocampus. Neuron. 63:267--276.

Stark CEL, Squire LR. 2001. When zero is not zero: the problem of

ambiguous baseline conditions in fMRI. Proc Natl Acad Sci U S A.

98:12760--12766.
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