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How much we like something, whether it be a bottle of wine or a new film, is affected by the
opinions of others. However, the social information we receive can be contradictory and vary in its
reliability. Here we test whether the brain incorporates these statistics when judging value and
confidence. Participants provided value judgments about consumer goods in the presence of
online reviews. We found participants updated their initial value and confidence judgments in a
Bayesian fashion, taking into account both the uncertainty of their initial beliefs and the reliability of
the social information. Activity in dorsomedial prefrontal cortex tracked the degree of belief update.
We find, analogous to how lower-level perceptual information is integrated, that when judging value

and confidence the human brain integrates social information according to its reliability.

Significance Statement

The field of perceptual decision making has shown that the sensory system integrates different
sources of information according to their respective reliability, as predicted by a Bayesian inference
scheme. In this work we hypothesized that a similar coding scheme is implemented by the human
brain to process social signals and guide complex value-based decisions. We provide experimental
evidence that the human prefrontal cortex’s activity is consistent with a Bayesian computation that
integrate social information that differs in reliability and that this integration affects the neural

representation of value and confidence.

Introduction

We may not like to admit it, but our own opinions are greatly influenced by those of other people.
When we book a holiday, buy a new electronic device or choose a film to watch we often rely on
the opinions of other people expressed in the forms of reviews. Taking other people's judgments
into account can be a sensible strategy for a social species. Humans have similar needs and
therefore often share preferences with others in their socio-demographic group. The effect of social
influence on judgments (i.e. social conformity) has been a topic of intense investigation (Cialdini
and Goldstein, 2004) , and in more recent years the field of cognitive neuroscience has begun to
dissect the circuitry underpinning social conformity (Behrens et al., 2009; Berns et al., 2010;
Campbell-Meiklejohn et al., 2010; Klucharev et al., 2011; Izuma and Adolphs, 2013; De Martino et
al., 2013b).

However, the social information we receive, much like our own beliefs, varies in its reliability or

uncertainty. For example, should one purchase headphones on Amazon’s website with a 4-star
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average based on hundreds of reviews or a competing product with a 5-star average based on
only a few people’s opinions? In such circumstances, people should be sensitive to both the

opinions of others but also to their prevalence.

The aim of the current study is to investigate whether the human brain integrates social information
according to its reliability and how this in turn affects valuation and confidence judgments. More
specifically, we evaluate whether people integrate their initial beliefs and those of others in a
Bayesian fashion such that the combination is weighted by the uncertainty of each source of
information. For example, according to the Bayesian view, people should update their beliefs most
toward the social consensus when they are initially uncertain about the value of the headphones

and there are a large number of Amazon reviewers.

Bayesian inference is a normative framework for how prior beliefs are updated in the light of new
information (Vilares and Kording, 2011; O'Reilly et al., 2012). One empirical signature of Bayesian
integration is that the relative uncertainties of an individual’s prior beliefs and some external source
of information should govern how the information is combined. The Bayesian approach has been
successful in providing a compact description of how beliefs are updated during perceptual
decision-making, multisensory integration (Angelaki et al., 2009) , motor control (Ernst and Banks,
2002; Knill and Pouget, 2004; Kérding and Wolpert, 2004; Summerfield et al., 2008) and also
higher level cognitive abilities such as memory, language and inductive reasoning (Chater et al.,
2006). However, it is still unknown whether prior beliefs and social information are integrated in a
Bayesian fashion that weights the information sources by their uncertainty. How this process would

be implemented in the brain is also an open question.

In this study, we test whether people integrate social information with their prior beliefs in a
Bayesian fashion and examine how the integration process is implemented in the brain. The main
focus of our neural analysis is medial prefrontal cortex: more specifically the ventromedial
(mPFC/vmPFC) and dorsomedial medial (dAACC/dmPFC) sub-regions. The first region
(mPFC/vmPFC) has a well-established role in representing value estimates (Levy and Glimcher,
2012; Clithero and Rangel, 2014) and more recently, it has been proposed that the same region
tracks the reliability in these estimates (Rolls et al., 2010; De Martino et al., 2013a; Donoso et al.,
2014; Barron et al., 2015; Lebreton et al., 2015). The second region (JACC/dmPFC) was chosen
because of its central role in social cognition (Gallagher and Frith, 2003; Amodio and Frith, 2006;
Lee, 2013; Ruff and Fehr, 2014; Wittmann et al., 2016) and more specifically in mediating social
influence over value computation (Hampton et al., 2008; Campbell-Meiklejohn et al., 2010; Nicolle
et al., 2012; De Martino et al., 2013b; Suzuki et al., 2015) . However, it is unclear how social
information is integrated into value computation in prefrontal cortex. Does the signal in dorsomedial
prefrontal cortex detect a conflict between the group consensus triggering a compromise to the

group evaluation? Or is it involved in a more complex Bayesian updating that takes into account
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variable levels of reliability in the social information as well as the level of confidence in the prior
belief?

Materials and Methods

Participants. Twenty-two participants aged 18 to 35 (mean age (s.d.) = 24.82 (4.10), 11 female)
were recruited from University College London (UCL) psychology subject pool. One participant was
excluded because of a scanner technical problem. Another participant was excluded because of
excessive head motion (>3° rotation on 4 occasions). Another two participants were excluded
because of erratic product ratings (>3 skewness). A total of 18 participants were therefore
included in the final analysis. The study was approved by the UCL Psychology Ethics Committee.

Written informed consent was obtained from all participants and they were paid for participation.

Stimuli. Stimuli consisted of 210 pictures of products from the retail website Amazon
(https://www.amazon.co.uk/) along with the product name. Each picture was presented once in
each task (pre-scanning task and scanning task, see below) to participants in a randomized order.
Four to five bullet points with descriptions of each product were provided in the pre-scanning task.
These descriptions were based on the information available for the products on the Amazon
website. During the task in the scanner, they were also presented with summary reviews of the
products. This information was presented exactly as it is shown on the Amazon website: the mean
of the reviews (1 to 5 stars), the number of reviewers, and a 5-bar histogram showing the

distribution of ratings across reviewers (right hand side of Figure 1A).

Pre-scanning Task. Participants were required to make a series of product ratings for 210
Amazon products. Participants were required to give their liking rating for each item (left hand side
of Figure 1A) and their confidence in their liking rating. A fixation cross was presented for 500 ms.
Participants then moved the slider located at the bottom of the screen to indicate their rating of the
product. The location of the picture of the product and the respective bullet point descriptions were
left-right counterbalanced across trials. The starting position of the slider was randomized on each
trial. After deciding the product rating, the slider confirmed the selection by changing to the colour
red for 500 ms. Once they provided the product rating, participants were asked to indicate their
confidence in their decision on a continuous sliding scale with six ticks but no numbers, with text
going from “Lower” to “Higher” confidence. After deciding on a confidence rating, the slider
confirmed the selection by changing to the colour red for 1000 ms. There was no time limit for
participants to rate a product or indicate their confidence rating. The 210 trials in which they did
product and confidence ratings were divided into three blocks of 50 trials and one final block of 60
trials. The direction of the product rating scale and the confidence scale were reversed after two
blocks of trials. If a participant started the experiment with a left to right presentation of the scales
(1 to 5 stars and “Lower” to “Higher” confidence, respectively), then after two blocks of trials (100

trials), participants would see the scales in right to left presentation (5 to 1 stars and “Higher” to

4



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

136
137
138
139
140

141
142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157

158
159
160
161
162

163
164
165
166
167
168
169
170
171

“Lower” confidence, respectively). This is necessary to avoid visual and motor confounds during
imaging in the scanning task, which is why it is preferable for participants to get accustomed to this
procedure during the pre-scanning task. The direction of the scale for the first two blocks of trials
was randomly chosen across participants. The pre-scanning session was conducted the same day
of the scanning task.

Scanning Task. The scanning task presented the same 210 products that participants rated in the
pre-scanning task. In this task, participants did not see the product descriptions. Instead, they were
presented with information on other people’s ratings retrieved from Amazon.co.uk. In particular, the
scanning task showed the number of people that rated the product, the mean rating of the product
(on a scale from one to five stars), and the distribution of ratings. An example screen shot is
provided in Figure 1A (right hand side). Participants did not see their own rating from the pre-
scanning task, and were free to change their ratings in the light of other people’s ratings.
Participants were incentivized in this task since they were told that a product would be selected at
random at the end of the experiment and would be given to them at a later date as part of their
compensation. They were told that the higher their rating for a product, the better the chances they
would have in receiving that product. Products had a similar retail price range.

As in the pre-scanning task, a fixation cross was presented, participants decided on a product
rating, and then the slider turned red for 500 ms before moving on to the confidence rating. The
duration of the initial fixation cross was jittered. Unlike the pre-scanning task, participants were only
allowed 7 seconds to rate a product and 4 seconds to report their confidence. Therefore, the
timeline of the fMRI task was the follow: Fixation cross (jittered between 500ms and 1500 ms),

Item presentation + liking rating scale (7000ms), Confidence rating (4000ms).

Post-scanning choice task. At the end of the functional scans, and during the structural scan,
participants made 49 forced choices between a pair of products that were both previously rated
during the preceding scanning task. Each pair contained one product with a low rating (randomly
sampled from the bottom tercile) and one with high rating (randomly sampled from the top tercile).
Participants selected the item from the top tercile on 77.29% (s.d. = 11.07) of the forced choices.

Image acquisition. Scanning acquisition was performed using a 1.5 T Siemens TIM Avanto MRI
Scanner with a 32-channel head coil used to acquire both T1-weighted structural images and T2*-
weighted echoplanar images (64 x 64; 3 x 3 mm voxels; echo time, 50 ms; repetition time, 3132
ms; flip angle, 90 degrees; field of view, 192 mm) with blood oxygen level-dependent (BOLD)
contrast. Each volume comprised 36 axial slices (2 mm thick). We used a specific sequence that
improved the signal-noise ratio in orbitofrontal cortex a region that usually suffer from signal drop-
off (Deichmann et al., 2003). To further minimize this problem, we decided to acquire the imaging
data in a 1.5 Tesla MRI scanner, which suffers from less-pronounced dropout in this region, and
therefore can actually have greater BOLD sensitivity than higher field-strength scanners (Weiskopf

5
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et al., 2006). Functional scans were acquired in four sessions, each comprising 228 volumes (~10
min). The first five volumes in each session were discarded to allow for T1 equilibration effects. At
the end of the fourth functional scan, a 5.5 min T1-weighted MPRAGE structural scan was

collected, which comprised 1mm thick axial slices parallel to the AC-PC plane.

fMRI data analysis. Image preprocessing was performed using Statistical Parametric Mapping 12
(SPM 12, Wellcome Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/). Image
analysis was performed using SPM 12. After discarding the first five dummy volumes, images were
realigned to the sixth volume and unwarped using 7th degree B-spline interpolation. Field maps
were reconstructed into a single phase file and used to realign and unwarp EPI functional images.
Structural images were reregistered to mean EPI images and segmented into grey and white
matter. These segmentation parameters were then used to normalize and bias correct the
functional images. Normalization was to a standard EPI template based on the Montreal
Neurological Institute (MNI) reference brain using a nonlinear (7th degree B-spline) interpolation.

Normalized images were smoothed using a Gaussian kernel of 8 mm full-width at half-maximum.

We run two independent general linear models (GLMs). In the GLM1 onset regressors beginning at
the presentation. Events were modelled by convolving a series of delta (stick) functions with the
canonical HRF at the beginning of each item presentation. These onsets were modulated by two
parametric regressors: (i) liking rating (R2); and (ii) post-choice confidence ratings (C2), which
ranged from 0 to 500 on an arbitrary scale. In GLM2 onset regressors beginning at the
presentation of the item was modulated by one parametric regressors: (i) KL trial-by-trial parameter
estimate computed by fitting a descriptive Bayesian model to the behavioral data. Both GLMs
included 6 movement regressors. In the GLM2 two further subjects had to be excluded since the
KL parameter was zero in a number of instance: this resulted in the model not being estimable in
SPM. Note that the parametric regressors both GLMs were not-orthogonalised and regressors
were allowed to compete to allocate the shared variance (Mumford et al., 2015). Contrast images
for each regressor were tested for a significant deviation from 0 using one-sample t-tests.
Activations were reported as significant if they survived family-wise error correction (FWE) for
multiple comparisons across the whole brain at the cluster level. Note that the cluster forming
threshold was set as p<0.001 uncorrected to ensure an a well-behaved family-error control (Eklund
et al., 2016; Flandin and Friston, 2016) . For dmPFC isolated in the GLM2, we employed small-
volume correction using an 8-mm sphere centered on the coordinates ([-3,51,24]) taken from an
independent study (Hampton et al., 2008). The rfxplot toolbox (http://rfxplot. sourceforge.net/)
(Glascher, 2009) was used to extract percentage signal change at each region of interest defined
by 8-mm spheres around and used for the histogram plots. Note the signals are not statistically
independent (Kriegeskorte et al., 2009) and these plots aren’t not used for statistical inference
(which was carried out in the SPM framework) it is shown solely for illustrative purposes (i.e. clarify

the signal pattern in each cluster), this has been explicitly stated in the figure legends.
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Behavioral data analysis.

Hierarchical regression analysis were performed in R using Ime4 package (Bates et al., 2014).
Participants' product (R1 and R2) and confidence (C1 and C2) responses were normalized (z-
scored) separately for each participant for each of the four judgment types to correct for any

potential differences in scale usage.
Model

The model worked with the same z-scored data as used in the behavioral analyses and was fit to
individual participants. First, the prior distribution (shown in blue in Figure 4A) was formalized as a
Gaussian distribution. For each product j, the mean of this distribution for participant i was
determined by the parameter, y; ;. For the prior variance, each participant i had a variance
parameter 7, plus a non-positive offset parameter o/ that was included for higher confidence

trials. Thus, the prior distribution for participant i for product j is
N (uyj,0f + 0{ 1(c1; >median(c;)))

where [ is an indicator function returning 1 when confidence was rated above the median, and
otherwise 0. According to the Bayesian model, higher confidence should correspond to lower
variance (i.e., greater precision). The use of the median split simplifies the model and reduces the
number of assumptions needed to relate the model to the behavioral data.

The distribution of Amazon reviews for a product was also Gaussian (shown in Figure 4A in
yellow). The mean was fixed to m;, the observed mean of the amazon ratings for product j. Each
participant i had a single parameter, 2, for the perceived variance (i.e., reliability) of the Amazon
reviews in general, plus two parameters related to the number of Amazon reviews. Thus, the
Amazon reviews for product j were parameterized to contain v; + vi’l(nj>median(n)) reviews, where
n; was the number of Amazon reviews as presented to participants during the experiment and v;
and v; are non-negative parameters. As with confidence in the prior, this median split of the
parameters by the number of reviews mirrors the behavioral analyses. A posterior distribution
(shown in green in Figure 4A) was then derived using Bayes theorem, and therefore, the model did
not have a parameter specifically for a posterior distribution.

In summary, the model, which characterizes the degree to which participants integrate information,
accounts for 420 ratings (210 initial and 210 second ratings) from each participant with 210
parameters ( y; ; ) for prior means, 2 parameters ( o#; o] ) for prior variance, 2 parameters ( v;; v )
for the perceived number of Amazon reviews, and 1 parameter ( t? ) for the perceived variance in
Amazon reviews. The parameter values were estimated independently for each participant, to
maximize likelihood of both initial and second ratings. Estimated prior mean and derived posterior
mean show strong positive correlations with initial and second ratings: across 18 participants,

7
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correlation coefficients range from .75 to .96 (mean: .90, 95% CI: [.88, .93]) between prior mean
and an initial rating, and from .85 to .96 (mean: .90, 95% CI: [.89, .92]) between posterior mean

and a second rating, which indicates a good fit.

Because the model was not fit to the confidence ratings, one avenue to evaluate the model is to
compare the precision of its posterior to participants’ second confidence ratings. Model precision
should positively correlate with confidence. Correlation coefficients ranged from .14 to .40 (mean:
.18, 95% CI: [.12, .24], t(17) = 5.95, p < .001). The main justification for the basic approach (i.e.,
integrating prior and likelihood information according to their uncertainties) comes from the

behavioral results reported below.

Using the estimates from the model, the degree of resistance to Amazon reviews is computed for

each participant for each product as follows:

Prior precision

Prior precision + Percived precision Amazon Rating

Here, prior precision is the inverse of prior variance, and perceived precision of Amazon rating is
estimated Amazon N divided by estimated Amazon variance. Given Bayes theorem, the above

specification captures how heavily prior mean is weighted toward posterior mean.

Specifically, the degree of resistance to Amazon reviews is 1 when Amazon rating is completely
ignored and prior mean is the same as posterior mean. Also the degree of resistance to Amazon
reviews to is 0 when prior is completely discarded and Amazon mean is the same as posterior
mean. A larger value indicates that Amazon mean is more heavily weighted toward posterior mean

than prior mean is.

This degree of resistance to Amazon reviews is mean-averaged for each participant across 210

product ratings.

Results

To address these questions, we developed a task in which participants were presented with a
series of products from the retail website Amazon (e.g. headphones, USB-pens, mugs).
Participants were required to give their initial liking rating (R7) for each item and their confidence
(C17) in their liking rating (Figure 1A). Both measures were collected before scanning. In the second
part of the experiment we recorded the participants' neural activity (using fMRI) while they were
shown each item again, this time together with reviews from other customers who had bought
those products (nb. these were the real reviews from the Amazon website). This information was

presented as it is shown on the Amazon website: the mean of the reviews (1 to 5 stars), the
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number of reviewers, and a 5-bar histogram showing the distribution of ratings across reviewers
(Figure 1A). At this second stage we elicited another liking rating (R2) again followed by a new

confidence rating (C2).

To foreshadow the results, people followed the basic tenets of Bayesian integration. A descriptive
Bayesian model consistent with these behavioral results made it possible to conduct a trial-by-trial
fMRI analysis to isolate brain regions that tracked the degree to which social information and its
reliability affected participants’ beliefs.

Behavioral results

The central behavioral question was whether participants' initial product rating (R7) was combined
with the Amazon group mean (M) in a Bayesian fashion to yield an updated product rating (R2).
The key property of Bayesian integration is weighting information by its reliability, which here
corresponds to updating more toward the group consensus when initial confidence is low and the
group is large. To evaluate whether people’s judgments were consistent with Bayesian integration,
we conducted a series of hierarchal regression analyses to assess which sources of information

people considered when rating the products.

In particular, we performed a hierarchical regression analysis to isolate the factors that contributed
to the update from the first to second product rating (i.e., R2 - R1). The first analysis considers
whether people conform to the group mean, which in itself does not indicate Bayesian integration.
We found that participants' initial deviation from the group (i.e., M - R7) was a reliable positive
predictor of participants’ update x2(2)=1000.79, p<0.001) meaning that participants systematically
updated their initial liking ratings in the direction of the group consensus (expressed here by the
mean reviews). More complex regression models included additional terms that evaluated whether
participants’ judgments were consistent with aspects of Bayesian integration. In particular,
interactions terms including confidence and the number of reviews were also assessed using
median splits. Median splits were used because the psychological scaling of these quantities is
unlikely to be linear. These scaling issues, which are topics of investigation in their own right
(Siegler and Opfer, 2003; Kvam and Pleskac, 2016) are beyond the scope of this contribution.

Consistent with Bayesian updating, the magnitude of movement towards the group ratings was
modulated by the level of confidence in their first rating, such that when the initial confidence was
low participants were more strongly influenced by the group consensus (negative interaction
between M - R1 and median split on initial confidence C1 x2(2) = 15.62, p <0.001). This result is
consistent with half of the Bayesian integration account, namely that participants’ uncertainty in
their own beliefs guides their judgments. Evaluating the other half of the Bayesian account, the
update toward the group consensus (mean of the Amazon’s reviews) was largest when that
information was more reliable because the number of reviews was higher (positive interaction

between M - R1 and median split of number of reviews; x2(2) =24.33, p<0.001) (Figure 1B).
9
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Finally, we found that the full regression model, which is simultaneously taking into account both
sources of uncertainty, was superior to regressions that were only sensitive to either confidence or
number of reviews, (x2(2) = 17.55, p<0.001 and ( x2(2) = 26.25, p<0.001), respectively. In

summary, the change in rating from R7 to R2 was in line with Bayesian integration.

According to a Bayesian account of integration, confidence should be highest in the second rating
when the initial rating and the group mean align. Indeed, the overall confidence decreased (i.e., C2
- C1) when the absolute difference in a participant's initial product rating and the group consensus
(i.e., |R1 - M|) was high (x2(2) = 36.79, p<0.001) and confidence elicited after the second rating
(C2) was a quadratic function of product rating (R2?), i.e. that confidence was highest for products
at the ends of the rating scale (x2(2) = 547.92, p<0.001).

Taken together, these analyses established that participants integrated their initial impression of a
product and the group consensus by taking into account the uncertainty associated with each
source of information (Figure 1B).

fMRI results

We tested how the brain represents the value assigned to each item and the confidence in that
value. We constructed a general linear model (GLM1) in which each trial was modulated by two
parametric regressors: liking rating R2 and confidence C2 (in the liking rating) both collected during
the scanning (see methods for more details). In line with previous work (for meta-analyses see
(Clithero and Rangel, 2014)) we show that activity in ventromedial prefrontal cortex
(mPFC/vmPFC) responded linearly to increasing levels of subjective liking rate (P < 0.05, FWE
corrected at cluster level — cluster forming threshold p<0.001 see methods for more details)
(Figure. 2A). In the same analysis we show that medial prefrontal cortex also tracked subjective
levels of confidence (P < 0.05, FWE corrected at cluster level - cluster forming threshold p<0.001;)
(Figure. 2B). To test whether liking rating and confidence in the liking rating were encoded in the
same brain region we performed a conjunction analysis between liking rating and confidence. This
analysis isolated a functional cluster in mPFC/vmPFC (peak activation at -12, 59, 4, z = 3.61, P <
0.05, small volume corrected at peak level using at 8-mm centred at [-2 52 -2] from (Lebreton et
al., 2015) - Figure 2C). This result is consistent with the recent finding that response in the same
cluster in mPFC/vmPFC represents both a linear response to pleasantness rating and a quadratic
explanation of pleasantness rating that in that study was used as a proxy for confidence. (Lebreton
et al., 2015).

We then tested whether there existed a medial PFC gradient coding for confidence and value
along the ventral-dorsal axis. We fitted a hierarchical linear regression model to contrast
confidence vs. rating (C2-R2) extracted from 7 different locations (signal extracted by 8-mm sphere
for each location) along the medial prefrontal cortex (Figure 3A). These locations were selected

solely on an anatomical basis as opposed to by peak activity from any preceding analysis. Across
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the group we find a significant gradient along the rating/confidence axis (slope = 0.02, tj20.05= 9.17,
p<0.0001). To confirm that the gradient was driven by both rating and confidence we performed
two more regression analyses which revealed a negative ventromedial gradient in BOLD activity in
response to rating (slope = -0.01, t;27.06) = 4.74, p<0.0001) and a positive ventromedial gradient in
BOLD activity in response to confidence (slope = 0.01, tj17.59 = 7.05, p<0.0001).

In order to quantify how social information shapes the value representation in prefrontal cortex, we
developed a Bayesian model (a model schematic overview of the Bayesian model is shown in
Figure 4A; see Methods for full detail). The Bayesian model aimed to explain the value update with
three steps: (1) an initial rating is drawn from a prior distribution, (2) this prior distribution is
updated in the light of Amazon reviews to form a posterior distribution, and (3) a second rating
drawn from the posterior distribution.

The Bayesian model allowed us to calculate how social information influenced participants’ initial
impressions of value. In the Bayesian framework the Kullback-Leibler (KL) divergence can quantify
the extent to which a prior distribution is updated to form a posterior distribution (Figure 4A). Thus,
a larger KL divergence indicates a greater preference update. KL divergence will be critical in the
fMRI analyses because it provides a combined measure of trial-by-trial update that takes into
account both the uncertainty reflected by the participant’s confidence rating and the number of
reviews (i.e., group size). Letting p and g denote prior and posterior density function respectively,

KL divergence is computed as

—J p(0)logq(x)d(x) + [ p(x)logp(x)dx

In our Bayesian model, both prior and posterior distributions were Gaussian distributions.

Therefore, the above equation reduces

2 2
Opost " Oprior T (Mprior - ﬂpost) 1

log
2
Oprior 20'post 2

where pprior and s are the prior and posterior means and ogrwr and o_gost prior and posterior

variances.

The Bayesian model enables a key analysis, namely the identification of brain areas that track the
magnitude of Bayesian value update in the presence of social information. A new general linear
model (GLM2) was constructed using a parametric regressor that tracked the trial-by-trial KL
divergence estimates, using the aforementioned model fits. KL divergence takes into account all
aspects of belief change, such as the initial rating and confidence, and the mean and number of
Amazon reviews. This analysis found a trial-by-trial response in dmPFC (see Figure 4B) to
parametric increases in KL divergence (P<0.05 small volume corrected centred on a priori

hypothesised coordinates [-3,51,24] from (Hampton et al., 2008)). In other words, activity in this
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cluster indexes the size of update of a value judgment after the social information provided by

Amazon review has been presented.

We then tested whether this same region indexed how likely participants were to conform to the
social consensus in general. We constructed a between-subject measure of how resistant subjects
were to the social information carried by the reviews. Specifically, the degree of resistance to
Amazon reviews is 1 when Amazon rating is completely ignored and prior mean is the same as
posterior mean. Also the degree of resistance to Amazon reviews is 0 when prior is completely
discarded and Amazon mean is the same as posterior mean. A larger value indicates that Amazon
mean is more heavily weighted toward posterior mean than prior mean is (see methods for more
details). We then extracted the BOLD signal in this region of interest (8-mm sphere centered at the
peak of the effect isolated from the independent within subject analysis GLM2) and tested whether
the activity in this region showed a positive modulation by the individual ability to resist to the social
information (carried by the reviews showed by Amazon website) while constructing their value
judgments. This analysis showed that activity in this cluster of dmPFC (see Figure 4B) was higher
for those individuals who were less influenced by the information carried by the reviews of other
people (r=0.77, p<.0005). This between-subject analysis and the preceding trial-by-trial within-
subject analysis provide complementary viewpoints on dmPFC’s role in belief updating.

Discussion

In this study, we show that the degree by which value and confidence judgments is influenced by
the opinion of others (expressed through online reviews) is modulated by both the reliability of the
group’s opinions and the individual’s confidence in their own prior belief. We found that people’s
updated judgments were consistent with a Bayesian integration account that updated more toward
the group consensus when initial confidence was low and the group is large. The model was
verified by eliciting liking and confidence judgments twice: the first time when each item was
presented in isolation and a second time when it was presented together with the reviews collected
from the Amazon website. At the behavioral level, we found that the number of reviews significantly
modulated the shift toward the group consensus (i.e. toward the mean of the Amazon’s reviews).
This shift was more substantial when the participants were less sure in their initial ratings (low level
of confidence) and a large shift towards the group consensus was characterized by a drop in the
overall level of confidence. These results showed that uncertainty in both the social information
and participants’ initial estimates (gauged through confidence reports) modulated the participants’

behavioral responses.

To help quantify the impact of the social information on the computation of value and confidence,
we constructed a simple Bayesian model that captured the main aspects of the behavioral results.
Although not fitted to the confidence data, the model correctly predicted confidence as evidenced

by a positive correlation between the precision of its posterior distributions with confidence

12



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

412
413
414

415

416
417
418
419
420
421
422
423
424
425
426
427

428
429
430
431
432
433
434
435
436
437
438
439
440
441

442
443
444
445
446
447
448

collected during the scanning phase. This finding is consistent with the idea that verbal reports of
confidence closely match the formal concept of precision as defined in Bayesian probability
(Meyniel et al., 2015a; 2015b) although see also (Pouget et al., 2016).

Analysis of the fMRI data showed that mPFC/vmPFC tracked both the subjective rating as well as
the confidence level in that estimate. Our work adds to recent studies that have considered the role
these areas play in representing confidence during value-based choice. For example, De Martino
and colleagues have shown that activity in vmPFC correlates with both difference in value and
confidence in a binary choice task (De Martino et al., 2013a). Our study provides a strong test of
this characterization of the vmPFC because participants judged objects in isolation rather than in a
binary choice task, which resulted in rating and confidence sharing a quadratic as opposed to
linear relationship (i.e. confidence is highest for extreme ratings). Nevertheless, we found that
vmPFC tracked both the participants’ confidence and liking ratings. These finding are in line with a
recent study by Lebrton and colleagues that found that activity in mPFC/vmPFC correlates with
both the linear and quadratic expansion of the pleasantness ratings that might reflect an automatic

assessment of confidence (Lebreton et al., 2015).

We helped resolve the relationship between confidence and value representations in the PFC by
finding a smooth gradient along the medial ventral-dorsal axis of PFC with liking ratings manifested
more ventrally and confidence ratings more dorsally. A possible interpretation of this result is that
there are two populations of neurons, distributed along the ventral-dorsal axis of medial prefrontal
cortex, with the more ventral region coding for the mean value estimate and the more dorsal region
coding for the reliability of these estimates (either measured directly by confidence ratings, or
indirectly through the quadratic expansion of liking rating). A similar gradient has been found for
values that are executed (represented more ventrally) and values that are modelled but not
executed (represented more dorsally) (Nicolle et al., 2012). An intriguing possibility is the more
dorsal part of the PFC is implicated in a high-order belief inference (Yoshida and Ishii, 2006) for
monitoring the reliability of the behavioral strategy in which the agent is currently engaged
(Donoso et al., 2014) as in value estimation in our study. Such inferences may tap similar
processes with those used to reason about other people’s states, which is also hypothesized to

involve the more dorsal regions of PFC (Denny et al., 2012).

Our modeling approach quantified the degree of value update resulting from exposure to the social
information carried by the reviews on a trial-by-trial basis. In our model, the Kullback-Leibler (KL)
divergence indexes the shift from the prior to posterior belief when new evidence (i.e. likelihood) is
available. Our model-based fMRI analysis showed that activity in dorsomedial prefrontal cortex
(dmPFC) positively correlated with KL divergence. We found that dmPFC responded at the trial-by-
trial level to the size of update in value judgment from the prior judgments (made in absence of
social information) to posterior judgments after the participants were exposed to other people’s

13
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opinions (expressed at the aggregate level by the reviews). Recent work using a perceptual
decision-making task also found that activity in dmPFC (though slightly more posterior to the peak
of our main activation) co-varied with belief updating in response to new information (O'Reilly et al.,
2013).

Earlier work implicates the dmPFC in theory of mind and in social cognition more generally
(Amodio and Frith, 2006; Behrens et al., 2009), through enabling agents to take into account the
judgments of others during value-based choice (Behrens et al., 2008; Hampton et al., 2008;
Behrens et al., 2009; Coricelli and Nagel, 2009; De Martino et al., 2013b; Suzuki et al., 2015).
Although these studies focused on the dmPFC, related studies have found a role for other brain
regions in the social modulation of learning and hedonic experience. For example, the rostral
cingulate cortex and striatum have been found to track the mismatch between the opinions of an
individual and a group (Klucharev et al., 2009). This basic mismatch is analogous to deviating from
the group in our study absent weighting by the reliability of the individual and group information
sources. A second fMRI study investigated how teenagers were influenced by popularity ratings in
judging song tracks (Berns et al., 2010). Their analyses (using a masking procedure) focused on a
network of regions (including insula) that were activated during hedonic experience (i.e. listening to
the song track), which can be contrasted with the more abstract evaluation processes invoked by
our task.

From a computational perspective, internal models should be updated when new information (or a
change in the task) makes the current model inadequate (Durstewitz et al., 2010; Domenech and
Koechlin, 2015). This shift usually pushes the agent towards more explorative behaviors (Daw et
al., 2006; Hayden et al., 2011; Karlsson et al., 2012; O'Reilly et al., 2013). Other studies have
shown that activity in dmPFC tends to increase in those situations in which an agent has to
abandon the current model (because it has become unreliable) and initiate exploration (Karlsson et
al., 2012; O'Reilly et al., 2013; Tervo et al., 2014). One possibility is that the update is triggered by
noradrenaline (Yu and Dayan, 2005) that signals a mismatch between the predictions of the
current internal model and external feedback (Yu and Dayan, 2005; Payzan-LeNestour et al.,
2013; McGuire et al., 2014). A recent study has provided experimental support for this idea by
showing that noradrenaline mediates this switch by changing the noradrenergic inputs to the

anterior cingulate cortex (Tervo et al., 2014).

Our results suggest that dmPFC involves a higher-order inference similar to that required when
estimating the reliability in one’s own appraisals of value - see also (Nicolle et al., 2012). It is
possible that in most social interactions humans are required to represent others’ preferences (an
ability linked to theory of mind) and that this information is used to update their own preferences.
An intriguing possibility is that the basic computation of dmPFC is to represent and manipulate

multiple beliefs hence its prominent role in theory of mind.
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Finally, while at the within-participants level dmPFC activity and KL-divergence positively
correlated, at the between-participants level we found that activity in dmPFC in response to KL
divergence was more pronounced for people less amendable to conforming to the group
consensus (i.e., adjusting their ratings toward the group’s ratings). This result is consistent with
dmPFC playing a role in monitoring differences between an individual’s opinion and that of the
group. Greater dmPFC involvement overall appears to indicate heightened sensitivity to
divergence with the group, which may facilitate an individual maintaining their original opinion to a
greater extent. In contrast, a person who readily conforms to the group consensus would not
integrate personal beliefs with the group’s as much as wholesale accept the group’s opinion. In
such a case, the dmPFC should not be very active overall, assuming its role is to monitor
differences between belief representations. In reality, people should fall along a continuum of
conformity, such that dmPFC activity tracks both trial-by-trial updates and the overall propensity to
conform. These findings are also in line with two recent TMS studies that found that stimulating
posterior medial frontal cortex modulates social conformity (Klucharev et al., 2011) and choice-

induced preference changes (lzuma et al., 2015)

In conclusion, our work suggests that the update of value and confidence in response to social
information involves an integration mechanism analogous to that used in perceptual decision
making. Belief update follows Bayesian principles in which clear signatures of value, confidence,

and belief update are reflected in prefrontal cortex activity.

Figures

Figure 1

(A)Task: In part 1 (before scanning) the participant is presented with a series of products from the
retail website Amazon (e.g. headphones). The participants enters her liking rating R1 followed by
her confidence rating C1 in her liking rating (not shown the in figure schematic above). In the part 2
(inside the scanner) she sees the same item again, this time together with real reviews from the
Amazon website: the mean of the reviews (1 to 5 stars), the number of reviewers, and a 5-bar
histogram showing the distribution of ratings across reviewers. At this stage she is required to
enter a new liking R2 and confidence rating C2. (B) All effects predicted by the Bayesian account
are significant in the appropriate direction. Shown are fixed effects coefficients from hierarchical
linear regression models predicting rating update (R2-R1), confidence update (C2-C1) and 2™
confidence rating (C2) for the following predictors: initial deviation from the group (M-R1),
interaction between the initial deviation from the group and number of reviews (M-R1 x N.

Reviews), interaction between the initial deviation from the group and 1% confidence rating (M-R1 x
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C1), absolute difference in a participant's initial product rating and the group consensus (|R1 - M|),
quadratic function of product rating (R2?). Error bars show 95% Cls., *** = p <.001 and m.s. =

median split.

Figure 2

(A) BOLD signal in mPFC/vmPFC correlates with monotonic increase in liking ratings (peak= [-9,
38, -11]mm, z = 4.21, P < 0.05, FWE corrected at cluster level). For illustration purposes only,
percentage signal change in vmPFC (8-mm sphere centered at the peak of the main effect -9, 38, -
11) for 3 levels or rating level and confidence (Low, Medium and High) are shown; a linear relation
between % signal changes and rating level and a non-significant (linear or quadratic) relation
between % signal changes and confidence level (B) Activity in mPFC (extending in vmPFC and
dmPFC) tracked monotonically the increases in confidence ratings (peak = [-9, 56, 31], z = 4.55, P
< 0.05, FWE corrected at cluster level). For illustration purposes only, percentage signal change in
mPFC/dmPFC (8-mm sphere centered at the peak of the main effect -9, 56, 31) for 3 levels or
rating and confidence (Low, Medium and High) are shown; a linear relation between % signal
change and confidence levels and a significant quadratic relation between % signal change and
rating levels. The histogram plots are not used for statistical inference (which was carried out in the
SPM framework); it is shown solely to illustrate the dynamic of the BOLD signal. Error bars
represent s.e.m. SPM maps are thresholded at P<0.005 uncorrected for display purposes. (C)
Conjunction analysis for rating and confidence: activity in mPFC/vmPFC (peak activation at -12,
59, 4, z = 3.61, P < 0.05, small volume corrected at peak level using at 8-mm centred at [-2 52 -2]
from (Lebreton et al., 2015))

Figure 3

Spatial gradient analysis along the ventral-dorsal axis of medial prefrontal cortex (see colored dots)
for a contrast between the parametric response to rating and the parametric response to
confidence (R2-C2). Data from seven anatomical locations (A) are mapped onto a line and the
spatial regression slope is computed (B). Across participants there is a robust gradient along the
medial lane of prefrontal cortex with response to rating expressed in the more ventral part and
response to confidence represented in in the more dorsal part.

Figure 4
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(A) Schematic representation of the Bayesian update of liking ratings in response to social
information communicated through reviews. KL divergence parameter index the impact of the
reviews in shifting the liking rate from the first rating (made in the absence of review information)
and the second rating (performed by the participants after seeing the Amazon reviews). (B) BOLD
signal in dmPFC (peak = [-6, 50, 40]) correlates with increase in KL divergence (z = 3.66, P < 0.05,
FWE small volume corrected). Percentage signal change for 3 levels (Low, Medium and High) of
KL divergence. The histogram plot is not used for statistical inference (which was carried out in the
SPM framework), it is shown solely to illustrate the dynamic of the BOLD signal. Error bars
represent s.e.m. (C) Between subject correlation between activity in dmPFC (8-mm ROI centered
at -6, 50, 40 ) and the degree of resistance to social information (r=0.77, p<.0005)This analysis
shows people less influenced by the opinion expressed by others in the reviews have overall more

activity in this area.

References

Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat
Rev Neurosci 7:268-277.

Angelaki DE, Gu Y, DeAngelis GC (2009) Multisensory integration: psychophysics,
neurophysiology, and computation. Current Opinion in Neurobiology 19:452-458.

Barron HC, Garvert MM, Behrens TEJ (2015) Reassessing VMPFC: full of confidence? Nature
Publishing Group 18:1064—1066.

Bates D, Machler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using Ime4.
arXiv.

Behrens TEJ, Hunt LT, RUSHWORTH MFS (2009) The Computation of Social Behavior. Science
324:1160-1164.

Behrens TEJ, Hunt LT, Woolrich MW, Rushworth MFS (2008) Associative learning of social value.
Nature 456:245-249.

Berns GS, Capra CM, Moore S, Noussair C (2010) Neural mechanisms of the influence of
popularity on adolescent ratings of music. Neuroimage 49:2687-2696.

Campbell-Meiklejohn DK, Bach DR, Roepstorff A, Dolan RJ, Frith CD (2010) How the opinion of
others affects our valuation of objects. Curr Biol 20:1165-1170.

Chater N, Tenenbaum JB, Yuille A (2006) Probabilistic models of cognition: Conceptual
foundations. Trends in Cognitive Sciences 10:287-291.

Cialdini RB, Goldstein NJ (2004) Social influence: Compliance and conformity. Annu Rev Psychol

17



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

55:591-621.

Clithero JA, Rangel A (2014) Informatic parcellation of the network involved in the computation of
subjective value. Social Cognitive and Affective Neuroscience 9:1289-1302.

Coricelli G, Nagel R (2009) Neural correlates of depth of strategic reasoning in medial prefrontal
cortex. Proceedings of the National Academy of Sciences 106:9163-9168.

Daw ND, O'Doherty JP, Dayan P, Seymour B, Dolan RJ (2006) Cortical substrates for exploratory
decisions in humans. Nature 441:876-879.

De Martino B, De Martino B, Fleming SM, Fleming SM, Garrett N, Garrett N, Dolan RJ, Dolan RJ
(2013a) Confidence in value-based choice. Nature Neuroscience.

De Martino B, O'Doherty JP, Ray D, Bossaerts P, Camerer C (2013b) In the Mind of the Market:
Theory of MindBiases Value Computation during Financial Bubbles. Neuron 79:1222—-1231.

Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies of the
orbitofrontal cortex. Neuroimage 19:430-441.

Denny BT, Kober H, Wager TD, Ochsner KN (2012) A meta-analysis of functional neuroimaging
studies of self- and other judgments reveals a spatial gradient for mentalizing in medial
prefrontal cortex. Journal of Cognitive Neuroscience 24:1742-1752.

Domenech P, Koechlin E (2015) Executive control and decision-making in the prefrontal cortex.
Current Opinion in Behavioral Sciences 1:101-106.

Donoso M, Collins AGE, Koechlin E (2014) Foundations of human reasoning in the prefrontal
cortex. Science 344:1481-1486.

Durstewitz D, Vittoz NM, Floresco SB, Seamans JK (2010) Abrupt Transitions between Prefrontal
Neural Ensemble States Accompany Behavioral Transitions during Rule Learning. Neuron
66:438-448.

Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: Why fMRI inferences for spatial extent
have inflated false-positive rates. Proc Natl Acad Sci USA 113:201602413-201602439.

Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically
optimal fashion. Nature 415:429-433.

Flandin G, Friston KJ (2016) Analysis of family-wise error rates in statistical parametric mapping
using random field theory. arXiv.

Gallagher HL, Frith CD (2003) Functional imaging of “theory of mind.” Trends in Cognitive
Sciences 7:77-83.

Glascher J (2009) Visualization of group inference data in functional neuroimaging.
Neuroinformatics 7:73-82.

Hampton AN, Bossaerts P, O'Doherty JP (2008) Neural correlates of mentalizing-related
computations during strategic interactions in humans. Proceedings of the National Academy of
Sciences 105:6741-6746.

Hayden BY, Pearson JM, Platt ML (2011) Neuronal basis of sequential foraging decisions in a
patchy environment. Nature Publishing Group 14:933-939.

Izuma K, Adolphs R (2013) Social manipulation of preference in the human brain. Neuron 78:563—
573.

18



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

628
629

630
631

632
633

634
635

636
637

638
639

640
641

642
643

644
645

646

647
648

649
650

651
652

653
654

655
656

657
658
659

660
661

662
663
664

665
666

lzuma K, Akula S, Murayama K, Wu DA, lacoboni M, Adolphs R (2015) A Causal Role for Posterior
Medial Frontal Cortex in Choice-Induced Preference Change. J Neurosci 35:3598-3606.

Karlsson MP, Tervo DGR, Karpova AY (2012) Network Resets in Medial Prefrontal Cortex Mark
the Onset of Behavioral Uncertainty. Science 338:135-139.

Klucharev V, HytOnen K, Rijpkema M, Smidts A, FernAndez G (2009) Reinforcement learning
signal predicts social conformity. Neuron 61:140-151.

Klucharev V, Munneke MAM, Smidts A, FernAndez G (2011) Downregulation of the posterior
medial frontal cortex prevents social conformity. Journal of Neuroscience 31:11934—11940.

Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and
computation. Trends in Neurosciences 27:712—719.

Kérding KP, Wolpert DM (2004) Bayesian integration in sensorimotor learning. Nature 427:244—
247.

Kriegeskorte N, Simmons WK, Bellgowan PSF, Baker CI (2009) Circular analysis in systems
neuroscience: the dangers of double dipping. Nature Neuroscience 12:535-540.

Kvam PD, Pleskac TJ (2016) Strength and weight: The determinants of choice and confidence.
Cognition 152:170-180.

Lebreton M, Abitbol R, Daunizeau J, Pessiglione M (2015) Automatic integration of confidence in
the brain valuation signal. Nature Publishing Group 18:1159-1167.

Lee D (2013) Decision Making: From Neuroscience to Psychiatry. Neuron 78:233-248.

Levy DJ, Glimcher PW (2012) The root of all value: a neural common currency for choice. Current
Opinion in Neurobiology 22:1027-1038.

McGuire JT, Nassar MR, Gold JI, Kable JW (2014) Functionally Dissociable Influences on
Learning Rate in a Dynamic Environment. Neuron 84:870-881.

Meyniel F, (null), Schlunegger D, Dehaene S (2015a) The Sense of Confidence during
Probabilistic Learning: A Normative Account. O'Reilly JX, ed. PLoS Comp Biol 11:e1004305.

Meyniel F, Sigman M, Mainen ZF (2015b) Confidence as Bayesian Probability: From Neural
Origins to Behavior. Neuron 88:78-92.

Mumford JA, Poline J-B, Poldrack RA (2015) Orthogonalization of Regressors in fMRI Models.
PLoS ONE 10:e0126255-11.

Nicolle A, Klein-Fligge MC, Hunt LT, Vlaev |, Dolan RJ, Behrens TEJ (2012) An Agent
Independent Axis for Executed and Modeled Choice in Medial Prefrontal Cortex. Neuron
75:1114-1121.

O'Reilly JX, Jbabdi S, Behrens TEJ (2012) How can a Bayesian approach inform neuroscience?
Eur J Neurosci 35:1169-1179.

O'Reilly JX, Schiffelgen U, Cuell SF, Behrens TEJ, Mars RB, Rushworth MFS (2013) Dissociable
effects of surprise and model update in parietal and anterior cingulate cortex. Proc Natl Acad
Sci USA 110:E3660—E3669.

Payzan-LeNestour E, Dunne S, Bossaerts P, O'Doherty JP (2013) The Neural Representation of
Unexpected Uncertainty during Value-Based Decision Making. Neuron 79:191-201.

19



s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
-

Pouget A, Drugowitsch J, Kepecs A (2016) Confidence and certainty: distinct probabilistic
quantities for different goals. Nature Neuroscience 19:366—-374.

Rolls ET, Grabenhorst F, Deco G (2010) Choice, difficulty, and confidence in the brain.
Neuroimage 53:694-706.

Ruff CC, Fehr E (2014) The neurobiology of rewards and values in social decision making. Nat
Rev Neurosci:1-14.

Siegler RS, Opfer JE (2003) The development of numerical estimation: Evidence for multiple
representations of numerical quantity. Psychological Science 14:237-250.

Summerfield C, Summerfield C, Koechlin E (2008) A neural representation of prior information
during perceptual inference. Neuron 59:336-347.

Suzuki S, Adachi R, Dunne S, Bossaerts P, O'Doherty JP (2015) Neural Mechanisms Underlying
Human Consensus Decision-Making. Neuron 86:591-602.

Tervo DGR, Proskurin M, Manakov M, Kabra M, Vollmer A, Branson K, Karpova AY (2014)
Behavioral Variability through Stochastic Choice and Its Gating by Anterior Cingulate Cortex.
Cell 159:21-32.

Vilares |, Kording K (2011) Bayesian models: the structure of the world, uncertainty, behavior, and
the brain. Annals of the New York Academy of Sciences 1224:22-39.

Weiskopf N, Hutton C, Josephs O, Deichmann R (2006) Optimal EPI parameters for reduction of
susceptibility-induced BOLD sensitivity losses: A whole-brain analysisat3 Tand 1.5 T.
Neuroimage 33:493-504.

Wittmann MK, Kolling N, Faber NS, Scholl J, Nelissen N, Rushworth MFS (2016) Self-Other
Mergence in the Frontal Cortex during Cooperation and Competition. Neuron 91:482-493.

Yoshida W, Ishii S (2006) Resolution of uncertainty in prefrontal cortex. Neuron.

Yu AJ, Dayan P (2005) Uncertainty, Neuromodulation, and Attention. Neuron 46:681-692.

20



= Deep Bass Foldable S‘K; Jofofelofofiic a
X
g @ HD Headphones g 4.2 out of 5 stars
s f
g « Premium HD Sound Quality E sstar [ 1 80
o * Foldable with tangle free cable = 4 star 16
3 }, L kb et | B § il —
a = 2 star 1"
- \ E 1 star U 7
o o
£ 1 5 £ 1 v °
e v =
o
c
=
=
A
Predicting Predicting Predicting
R2 - R1 C2-C1 Cc2
» 0.5
5
2 ok ok
+ :
15 +*n
O
B 0.0 oo
5]
(] ok
i $.. % = interaction
> m.s. = median split
5 *** = p < 0.001
X
- -0.5
M - R1 M -R1 % M - R1 % |R1-M| R22
B1 N.Reviews (m.s.) Cli(ms) B2 B3

s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)




s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)

% signal change mPFC\vmPFC [-9 30 -11]

>

0.08

0.04

-0.04

0.04

- oo
& 4 e
. -
L o
T I | /
0.04

-0.08

NN

Y/ 7

Low | Medium | High Low | Medium | High

A

Low | Medium | High Low | Medium | High

Rating Confidence

-0.12

% signal change mPFC\dmPFC [-9 56 31]

Conjunction
Rating & Confidence
Cc

Rating Confidence



confidence 01
| o
S 0.05 o
[0)
o
@ ke
[$)
T
S 0 @
3 0
R @
” Anatomical location (see A)
rating
ventral du—,, dorsal
B

s
O
p-
@)
7p)
-
-
®
=
O
D
e
O
)
@)
O
<
@)
0p)
O
| -
-
)
Z
=)




N
) -
= O
(7] O =4
A s o wQu $
o) » b =
% ﬁ [te) o o] M mm
2B oo £8
D k= 85
2 X3 pa ® TE
= Aww N P © 2e
< ¢ g
O =
R
S 28
©
Q
(@) [v4
©
o
o fs] o 0 o wn o
[ov 05 9-] e1eyds ww-g o
o © 2ouablIaAIp Ty Juso1e02-g
C
3 3
o A aﬂv
8 o 5,
= > o
% = @ .
o § © o —
o — 0] £
x 2 3
0 8
— = =
\ = —
\ .
\ N
\ z
o
-
(isey j4y) Bunes Bupi g 3 & g g
[0t 0G 9-] O4dwp ebueyo [eubis %
Lo
)}
£
o=
©
o
5]
S <
B i
(y4sey ueos-aid) Bunes BuI < m

1diiosnueN pa1deddy 19SOINBN




