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Abstract

SUSTAIN (Supervised and Unsupervised STratified
Adaptive Incremental Network) is a network model of
human category learning. This paper extends SUSTAIN
so that it can be used to model unsupervised learning
data. A modified recruitment mechanism is introduced
that creates new conceptual clusters in response tosur-
prising events during learning. Two seemingly contra-
dictory unsupervised learning data sets are modeled us-
ing this new recruitment method. In addition, the fea-
sibility of using a unified recruitment method for both
supervised and unsupervised learning is discussed.

Introduction
The process of learning categories from examples can take
many forms. Sometimes learning is supervised and explicit
feedback directs category formation. Other times learning
is unsupervised and no explicit feedback is available from
the environment. For example, we are commonly asked to
categorize incoming email as belonging to the “junk mail”
category or to the “interesting mail” category. We are not
explicitly taught to identify members of the either category
and we do not receive specific feedback on each example.
Nevertheless, we acquire and use categories to sort our mail
on a daily basis.

Traditionally, researchers interested in categorization
have focused on modeling human performance in supervised
learning tasks. This may be motivated in part by the addi-
tional constraints that feedback can play in the design of an
experiment. However, given the pervasiveness of unsuper-
vised learning in our daily life, there is potentially quite a
bit to gain from expanding our understanding of this type of
learning.

This paper presents a model of human category learning
called SUSTAIN (Supervised and Unsupervised STratified
Adaptive Incremental Network). SUSTAIN has been suc-
cessfully applied to an array of challenging human data sets
spanning a variety of category learning paradigms including
supervised learning and inference learning (Love, Markman,
& Yamauchi 2000; Love & Medin 1998).
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This paper will specifically address how SUSTAIN can
be modified to model human performance in unsupervised
learning tasks. We will begin our discussion with an
overview of SUSTAIN which serves to highlight some of
the important features of the model and introduces the moti-
vation for the later sections. Next, we discuss the challenges
of modeling unsupervised learning and explore how SUS-
TAIN can be modified to use a flexible and intuitive notion
of surpriseas a cluster recruitment method. We fit a version
of SUSTAIN that uses this generalized recruitment method
to a series of unsupervised learning data sets. Finally, we
evaluate the prospect of using this new recruitment rule for
both unsupervised and supervised learning.

An Overview of SUSTAIN
Before discussing the issues involved in modeling unsuper-
vised learning with SUSTAIN, we will present an overview
of the operation of SUSTAIN and discuss some of the major
principles and psychological motivations of the model.

SUSTAIN is a clustering model of human category learn-
ing. The model takes as input a set of perceptual features
that are organized into a series of independent feature di-
mensions. Like other models of category learning (e.g. Kr-
uschke, 1992), SUSTAIN maintains an attentional tuning
mechanism which allows it to selectively weight stimulus
feature dimensions. During the process of learning, SUS-
TAIN updates these attentional weights to place emphasis
on stimulus dimensions that are most useful for categoriza-
tion.

The internal representations in the model consist of a set
of clusters. Categories are represented in the model as one
or more associated clusters. Initially, the network only has
only one cluster that is centered upon the first input pattern.
As new stimulus items are presented, the model attempts to
assign new items to an existing cluster. This assignment is
done through an unsupervised procedure based on the sim-
ilarity of the new item to the stored clusters. When a new
item is assigned to a cluster, this cluster updates its internal
representation to become the average of all items assigned to
the cluster so far. However, if SUSTAIN discovers through
feedback that this similarity based assignment is incorrect, a
new cluster is created to encode the exception. Classification
decisions are ultimately based on the cluster to which an in-
stance is assigned.
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Principles of SUSTAIN
With this general understanding of the operation of the
model, we now examine what we consider to be the five key
principles of SUSTAIN.

Principle 1, SUSTAIN is biased towards simple solutions
SUSTAIN is initially directed towards simple solutions. At
the start of learning, SUSTAIN has only one cluster which
is centered on the first input item. It then adds clusters (i.e.,
complexity) only as needed to accurately describe the cat-
egory structure. Its selective attention mechanism further
serves to bias SUSTAIN towards simple solutions by focus-
ing the model on the stimulus dimensions that provide con-
sistent information.

Principle 2, similar stimulus items tend to cluster to-
gether In learning to classify stimuli as members of two
distinct categories, SUSTAIN will cluster similar items to-
gether. For example, different instances of a bird subtype
(e.g., sparrows) could cluster together and form a sparrow
cluster instead of leaving separate traces in memory for each
instance. Clustering is an unsupervised process because
cluster assignment is done on the basis of similarity, not
feedback.

Principle 3, SUSTAIN learns in both a supervised and
unsupervised fashion In learning to classify the cate-
gories “birds” and “mammals”, SUSTAIN relies on both
unsupervised and supervised learning processes. Consider
a learning trial in which SUSTAIN has formed a cluster
whose members are small birds, and another cluster whose
members are four-legged mammals. If SUSTAIN is subse-
quently asked to classify a bat, it will initially predict that
a bat is a bird on the basis of overall similarity (bats and
birds are both small, have wings, fly, etc.). Upon receiving
feedback from the environment (supervision) indicating that
a bat is a mammal, SUSTAIN will recruit a new cluster to
represent the bat as an exception to the mammal category.
The next time SUSTAIN is exposed to the bat or another
similar bat, SUSTAIN will correctly predict that a bat is a
mammal. This example also illustrates how SUSTAIN can
entertain more complex solutions when necessary through
cluster recruitment (see Principle 1).

Principle 4, the pattern of feedback matters As the ex-
ample used above illustrates, feedback affects the inferred
category structure. Prediction failures result in a cluster be-
ing recruited, thus different patterns of feedback can lead to
different representations being acquired. This principle al-
lows SUSTAIN to predict different acquisition patterns for
different learning modes (e.g., inference versus classifica-
tion learning) that are informationally equivalent but differ
in their pattern of feedback.

Principle 5, cluster competition Clusters can be seen as
competing explanations of the input. The strength of the
response from the winning cluster (the cluster the current
stimulus is most similar to) is attenuated in the presence of
other clusters that are somewhat similar to the current stimu-
lus (see Sloman’s, 1997, account of competing explanations
in reasoning).

SUSTAIN and Unsupervised Learning
In the formulation of SUSTAIN described above, the net-
work adapts its architecture in response to external feedback.
Only when SUSTAIN predicts an incorrect response does it
recruit a new cluster to capture the exception. We might
say that SUSTAIN changes its architecture in response to a
surprisingevent, which in this case is a misclassified item.
Unfortunately, this recruitment rule leaves SUSTAIN unable
to model unsupervised learning data. In unsupervised learn-
ing, there is no feedback and we assume that each stimu-
lus item is a member of the same category (the global cat-
egory). This disables SUSTAIN’s supervised recruitment
process because prediction errors do not occur.

This deficiency necessitates a modification to SUSTAIN
to accommodate unsupervised learning. While it is possible
to model unsupervised and supervised learning with separate
recruitment procedures (Love, Medin, & Gureckis 2002), a
unification of the two procedures provides a more parsimo-
nious account. We propose that a more general notion of
surprise may be sufficient to model both unsupervised and
supervised learning.

A More General Notion of Surprise
What criteria should be used to create a new cluster in an
unsupervised learning task? A reasonable approach might
be to store items in memory that are not sufficiently similar
to existing clusters. This notion of surprise can be extended
to supervised learning situations by creating a new cluster
when the most similar cluster predicting thecorrectresponse
(or category) is not sufficiently activated. The two schemes
for supervised and unsupervised learning are actually one in
the same because we assume that unsupervised learning in-
volves only one nominal category (thus each cluster always
predicts the correct response).

This recruitment strategy has a number of virtues over
the traditional recruitment rule for supervised learning. For
example, with the prediction-error based recruitment rule,
if a novel and unusual stimulus item is encountered that
marginally activates an existing cluster, a new cluster may
not be recruited even when the item is very dissimilar to
the winning cluster (having only weakly activated it). The
winning cluster might then undergo catastrophic change by
shifting too far away from its current position in order to
accommodate the unusual item.

Unified Recruitment Rule
In the cluster recruitment strategy described above, a new
cluster is created when the current input pattern is not suf-
ficiently similar to existing prototypes and exceptions. In
particular, a new unit is recruited when the activation of the
winning cluster is below a fixed threshold. A simple unsu-
pervised recruitment equation displaying the requisite char-
acteristics is:

if (AHj < τ), then recruit a new cluster (1)

whereAHj
is the activation of the most highly activated

cluster that belongs to the same category as the current input
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stimulus andτ is a constant between0 and 1 (a parame-
ter). We would like to stress that in unsupervised learning,
all items belong to the same category, thusAHj refers to the
most activated cluster overall. In supervised learning, the
most activated cluster predicting the correct category may
not in fact be the most activated cluster overall.

Modeling Unsupervised Learning with
SUSTAIN

To evaluate SUSTAIN’s promise in the domain of unsuper-
vised learning, we provide results of SUSTAIN’s application
to Experiments 2 and 3 from Billman and Knutson’s (1996)
unsupervised learning study and to unsupervised category
construction (i.e., sorting) data from Medin, Wattenmaker,
and Hampson (1987).

Modeling Billman and Knutson’s (1996)

Billman and Knutson’s experiments tested the prediction
that category learning is easier when certain stimulus at-
tributes are predictive of other attributes by way of a cor-
relation (e.g., “has wings”, “can fly”, “has feathers” are all
correlated features of birds). Their studies evaluate how re-
lations among stimulus attributes affect learning in an unsu-
pervised task.

Experiment 2 Experiment 2 consisted of an Isolating and
a Structured condition. Stimulus items in both conditions
depicted imaginary animals that were made up of seven at-
tributes: type of head, body, texture, tail, legs, habitat, and
time of day pictured. Each attribute could take on one of
three values. For example, the time of day could be “sun-
rise”, “nighttime”, or “midday”.

Training items in the Isolating condition preserved only
one pairwise correlation between stimulus attributes. All
of the stimulus items thus conformed to one of the follow-
ing patterns: 11XXXXX, 22XXXXX, or 33XXXXX (a ’X’
means that the dimension was free to assume any of the three
possible values). If the first stimulus dimension encoded the
head of the animal and the second stimulus dimension en-
coded the body, then knowledge about the type of head an
animal possessed would allow prediction of what type of
body it had and vice versa. The remaining five dimensions
were not correlated so that they were not useful for predic-
tion.

Data items in the Structured condition had six of these
pairwise correlations. The first four dimensions of these
items were constrained to vary together like the first
two dimensions in the isolating condition (e.g, 1111XXX,
2222XXX, or 3333XXX). Since four dimensions were in-
volved and because the correlations were interrelated, there
were 6 pairwise correlations in the training items for the
Structured condition (e.g., cor(A,B), cor(A,C), cor(A,D),
cor(B,C), cor(B, D), cor(C, D)).

In the learning phase for both conditions, subjects were
told that they were participating in a visual memory exper-
iment and viewed the stimulus items for four blocks (four
passes through all of the training items). Each item appeared
once per block in a random order.

In the test phase of the experiment, subjects viewed a
novel set of 45 stimulus item pairs. Each member of the
pair had two obscured attribute values (e.g., the locations
where the tail and head should have been were blacked out)
so that in the Structured condition information about only
one correlation was available from each test item. The pur-
pose of blocking dimensions was to query learning on only
one correlation at a time.

Subjects were asked to evaluate the remaining five at-
tributes that were visible and to choose the stimulus item
in the pair that seemed most similar to the items studied in
the learning phase (a forced choice procedure). One of the
test items was considered the “correct” test item because it
preserved the correlations present in the items viewed dur-
ing the study phase and the other was considered “incorrect”
because it did not preserve the correlations.

The basic result from Experiment 2 was that the “correct”
item was chosen more often in the Structured condition than
in the Isolating condition (73% vs. 62%). This finding sup-
ports the hypothesis that extracting a category’s structure is
facilitated by intercorrelated dimensions.

Experiment 3 An alternative explanation of the results
from Experiment 2 is that a larger number of pairwise corre-
lations in the Structured condition (relative to the Isolating
condition) facilitated learning. To test this explanation, the
number of pairwise correlations in the Isolating and Struc-
tured conditions were equated in Experiment 3.

In the Isolating condition, the items had three isolated
pairwise correlations. The abstract structure of the items
constrained the first six dimensions into three orthogonal
pairs of correlated dimensions. Example stimulus items had
the following structure: 112233X, 113322X, 111122X, etc...

Items in the Structured condition had three interrelated
correlations. The first three dimensions were correlated
which created three pairwise correlations (e.g. cor(A,B),
cor(B,C), cor(A,C)). Thus, the number of pairwise correla-
tions in the Isolating and Structured condition was equal,
but the relationship between these pairs was varied between
conditions.

Experiment 3 used the same training and test procedure
as Experiment 2. The basic result from Experiment 3 is that
the “correct” item was chosen more often in the Structured
condition than in the Isolating condition (77% vs. 66%).

Modeling Results SUSTAIN was trained in a manner
analogous to how subjects were trained by using four ran-
domly ordered learning blocks. No feedback was provided
and all stimulus items were encoded as being members of
the same category. New clusters were recruited according to
the new recruitment rule. In order for SUSTAIN to mimic
the forced choice nature of the test phase, a response proba-
bility was calculated for each of the two items. The ultimate
response of the network was towards the item in the forced
choice that had the strongest response probability.

SUSTAIN was run numerous times on both conditions
in both experiments and the results were averaged (see Ta-
ble 2). The best fitting parameters for both Experiment 2 and
3 (one set of parameters was used to model both studies) are
shown in Table 1 under the unsupervised column. For both
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Table 1: SUSTAIN’s best fitting parameters for the studies
considered.

function/adjusts symbol unsupervised six types
learning rate η 0.0966 0.0923
cluster competition β 6.40 0.25
decision consistency d 1.98 16.9
attentional focus r 10.0 9.01
threshold τ 0.5 0.7

Table 2: The mean accuracy for humans and SUSTAIN
(shown in parentheses) for Billman and Knutson’s (1996)
Experiment 2 and 3.

Isolating Structured
Experiment 2 .62 (0.67) .73 (0.79)

Experiment 3 .66 (0.60) .77 (0.77)

experiments, SUSTAIN correctly predicts greater accuracy
in the Structured condition than in the Isolating condition
(see Table 2).

In both Experiment 2 and Experiment 3, SUSTAIN’s most
common solution in the Isolating condition was to parti-
tion the studied items into three clusters. However, in Ex-
periment 3, the nature of the three partitions varied across
runs. SUSTAIN tended to focus on one of three correla-
tions present in the Isolated condition and ignored the other
two. For instance, during training SUSTAIN might create
three clusters organized around the first two input dimen-
sions (one cluster for each correlated value across the two
dimensions) and largely ignore the correlation between the
third and fourth dimensions and the fifth and sixth dimen-
sions.

The same dynamics that lead SUSTAIN to focus on only
one correlation in the Isolating condition leads SUSTAIN to
focus on all of the interrelated correlations in the Structured
conditions in Experiments 2 and 3. When SUSTAIN learns
one correlation in the Structured condition, SUSTAIN nec-
essarily learns all of the pairwise correlations because of the
way cluster weights are updated (i.e., a prototype is formed).
This type of learning facilitation is what lead to the higher
accuracy levels.

SUSTAIN’s solution to Experiment 3 suggests some
novel predictions: 1) Learning about a correlation is more
likely to make learning about another correlation more dif-
ficult when the correlations are not interrelated. 2) When
correlations are interrelated, either all of the correlations are
learned or none of the correlations are learned. Both of these
predictions are currently under investigation.

Modeling Sorting Behavior with SUSTAIN

Billman and Knutson’s (1996) studies found that subjects
preferred stimulus organizations in which the perceptual di-
mensions were intercorrelated. Interestingly, category con-
struction studies reveal a contrasting pattern — subjects tend
to sort stimuli along a single dimension. This behavior per-
sists despite the fact that alternate organizations exist that

Table 3: The logical structure of the perceptual dimensions
in Medin et al. (1987) sorted according to family resem-
blance.

Category A Category B
1 1 1 1 2 2 2 2
1 1 1 2 2 2 2 1
1 1 2 1 2 2 1 2
1 2 1 1 2 1 2 2
2 1 1 1 1 2 2 2

respect the intercorrelated nature of the stimuli (Medin, Wat-
tenmaker, & Michalski 1987).

SUSTAIN was applied to the sorting data from Medin et
al.’s (1987) Experiment 1 in hopes of reconciling the appar-
ently contradictory findings. In Experiment 1, subjects were
instructed to sort stimuli into two equal sized piles. Stimuli
were cartoon-like animals that varied on four binary-valued
perceptual dimensions (head shape, number of legs, body
markings, and tail length). The logical structure of the items
is shown in Table 3. The basic finding is that subjects sort
along a single dimension as opposed to sorting stimuli ac-
cording to their intercorrelated structure (i.e., the family re-
semblance structure shown in Table 3).

When SUSTAIN was applied to the stimulus set from Ex-
periment 1 it was constrained to create only two piles (i.e.,
clusters) like Medin et al.’s subjects. This was accomplished
by not allowing SUSTAIN to recruit a third cluster. This
modification proved to be unnecessary as an unmodified ver-
sion of SUSTAIN recruited two clusters in 99% of simula-
tions. SUSTAIN was presented with the items from Table 3
for 10 random training blocks to mirror subjects’ examina-
tion of the stimulus set and their ruminations as to how to
organize the stimuli. To evaluate the performance of the
model, we looked at how SUSTAIN’s two clusters were or-
ganized. Using the same parameters that were used in the
Billman and Knutson (1996) studies listed in Table 1, SUS-
TAIN correctly predicted that the majority of sorts (99%)
will be organized along one stimulus dimension.

SUSTAIN’s natural bias to focus on a subset of stimulus
dimensions (which is further stressed by the selective atten-
tion mechanism) led it to predict the predominance of uni-
dimensional sorts. Attention is directed towards stimulus
dimensions that consistently match at the cluster level. This
leads to certain dimensions becoming more salient over the
course of learning. The dimension that develops the greatest
salience over the course of learning becomes the basis for
the unidimensional sort.

Supervised Learning
An interesting challenge for models of category learning is
to provide a unified account of both unsupervised and su-
pervised data without modification. A model which can ac-
curately account for supervised and unsupervised learning
within a single framework may provide considerable insight
into the subtle relationships between the two types of learn-
ing. Anderson’s rational model (Anderson 1991) is able
to operate in both a unsupervised and supervised fashion
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Table 4: The logical structure of the six classification prob-
lems tested in Shepard et al. (1961) is shown.

Stimulus I II III IV V VI
1 1 1 A A B B B B
1 1 2 A A B B B A
1 2 1 A B B B B A
1 2 2 A B A A A B
2 1 1 B B A B A A
2 1 2 B B B A A B
2 2 1 B A A A A B
2 2 2 B A A A B A

within a unified framework. However, the rational model is
unable to account for some of the human learning data sets
that SUSTAIN has successfully modeled (see Love, Medin,
& Gureckis, 2002). The cluster recruitment rule introduced
in this paper is general enough, in principle, to allow it to
perform in both a supervised and unsupervised context.

To examine the effectiveness of the new recruitment rule
with supervised learning data, we fit SUSTAIN to Shepard et
al.’s (1961) classic experiments on human category learning
as replicated by Nosofsky, et al (1994). Shepard had sub-
jects learn to classify eight items that varied on three per-
ceptual binary dimensions into two categories (four items
per category). On every trial, subjects assigned a stimulus to
a category and feedback was provided. Six different assign-
ments of items to categories were tested with the six prob-
lems varying in difficulty (Type I was the easiest to master,
Type II the next easiest, followed by Types III-V, and Type
VI was the hardest). The abstract structure of the six prob-
lems are shown in Table ref6types.tab.

For reference, the parameters used to fit this study are
shown in Table 1 under the six types heading. While SUS-
TAIN was able to get the correct orderings of problem dif-
ficulty, the overall quality of the fit was degraded due to a
number of subtle difficulties. For certain problems (particu-
larly problems III-V), SUSTAIN could never achieve 100%
accuracy in learning, even with an infinite number of learn-
ing trails. In these cases, SUSTAIN was in principle able
to learn the problem completely before the end of the 32
blocks, but the model continued to make errors. Certain
stimulus items were seen as more similar to a cluster of
another category, but still activated a cluster in their own
category above the threshold. Because the model could not
create a new cluster like the traditional recruitment rule to
handle the exception, it could not ever correctly classify the
item and acheive 100% accuracy.

Discussion
SUSTAIN has been successfully applied to unsupervised
learning sets using a more general notion of surprise as a
method of cluster recruitment. The combined fits of Billman
and Knutson’s (1996) studies and Medin et al. (1987) sug-
gest that the saliency of stimulus dimensions changes as a
result of unsupervised learning and that the correlated struc-
ture of the world is most likely to be respected when there
are numerous intercorrelated dimensions that are strong.

Though not tested, SUSTAIN predicts that the intercorre-
lated structure of a stimulus set can be discovered when the
intercorrelations are imperfect (as in Medin et al., 1987) if
the correlations are numerous. In cases where the total num-
ber of correlations is modest, and the correlations are weak
and not interrelated, SUSTAIN predicts that stimuli will be
organized along a single dimension.

The formulation of a cluster recruitment method that
would, in principle, allow SUSTAIN to fit both supervised
and unsupervised studies did not achieve the desired quality
of fit with Shepard’s (1961) problem set. While the abil-
ity of SUSTAIN to master the correct problem difficulty or-
derings is encouraging, the results of our preliminary work
suggest that our unified recruitment rule is insufficient for
modeling both unsupervised learning problems and super-
vised data sets like the six Shepard problems. These results
may suggest that while a unified model of human category
learning may be a desired simplification it may, in fact, be
necessary to provide separate accounts of supervised and un-
supervised learning.
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