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a b s t r a c t

In engineering systems, noise is a curse, obscuring important signals and increasing the uncertainty
associated with measurement. However, the negative effects of noise are not universal. In this paper, we
examine how people learn sequential control strategies given different sources and amounts of feedback
variability. In particular, we consider people’s behavior in a task where short- and long-term rewards
are placed in conflict (i.e., the best option in the short-term is worst in the long-term). Consistent with a
model based on reinforcement learning principles [Gureckis, T., & Love, B.C. Short term gains, long term
pains: How cues about state aid learning in dynamic environments. Cognition (in press)], we find that
learners differentially weight information predictive of the current task state. In particular, when cues
that signal state are noisy, we find that participants’ ability to identify an optimal strategy is strongly
impaired relative to equivalent amounts of noise that obscure the rewards/valuations of those states. In
other situations, we find that noise and noise in reward signals may paradoxically improve performance
by encouraging exploration. Our results demonstrate how experimentally-manipulated task variability
can be used to test predictions about the mechanisms that learners engage in dynamic decision making
tasks.

© 2009 Elsevier Inc. All rights reserved.
Millions of Americans suffer fromchronic illnesses such as heart
disease and diabetes, and must carefully monitor their diet and
exercise. However,makinghealthy lifestyle choices canbedifficult.
Due to the intrinsic variability in outcomes and observations,
decision makers face uncertainty about both the actual state of
their health and the costs and benefits associated with various
dietary options, complicating the management of illness. For
example, daily fluctuations in blood pressure and glucose levels
can obscure estimates of actual health. This difficulty in separating
signal from noise extends beyond understanding our physical
state to the external environment. For example, it is difficult to
obtain reliable information on the sodium, fat, and calorie content
of foods. Under these circumstances, making effective decisions
requires one to manage uncertainty from many sources.
In this paper, we explore how people learn effective decision-

making strategies given similar kinds of uncertainty about what is
signal and what is noise. Decision-making under uncertainty has
played a central role in judgement and decision-making research.
However, empirical attempts to understand this ability have often
focused on decisions made in static, one-off situations based on
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verbal descriptions of choice alternatives, as in gambles (Barron
& Erev, 2003). More recently, researchers have adopted decision-
theoretic approaches to understanding choice behavior in more
realistic, online, and dynamic situations (Edwards, 1962, see
Busemeyer, 2002 for a recent review). Like the real-world example
of managing a chronic illness, participants in these tasks are
asked to achieve a particular goal by making a sequence of
decisions from one moment to the next based on their ongoing
experience (Gureckis & Love, in press; Stanley, Mathew, Russ, &
Kotler-Cope, 1989).
In our experiments, we examine human learning in a dynamic

decision-making task, called the ‘‘Farming on Mars’’ task, where
the experienced reward structure continually evolves in response
to the actions of the individual (Gureckis & Love, in press). A key
feature of our task is that the strategy that returns themost reward
over the course of the experiment requires participants to forego
immediately attractive short-term options in favor of a long-term
beneficial strategy (Herrnstein, 1991; Herrnstein & Prelec, 1991).
Just like the dilemma between deciding whether to eat a healthy
meal or indulge in a higher calorie dessert, participants who seek
to maximize their long-term well-being must forego immediately
attractive alternatives. The extension presented here is to consider
how decision maker’s ability to uncover a non-obvious reward-
maximizing strategy is impacted when relevant outcomes in the
task are obscured by variability or noise (i.e., decisions are made
with increasing uncertainty about the value of the mean).
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The problem of learning an effective response strategy in our
task is one of adaptive control – participants interact with a system
and are asked to make a continuous sequence of decisions which
guide the dynamics of the system (Brehmer, 1992). We model
human behavior in the task using a framework based on Markov
Decision Processes (MDPs) and an approximate solution method
known as Reinforcement Learning (RL). RL is an agent-based
approach to learning through interaction with the environment
in pursuit of reward-maximizing behavior (Sutton & Barto, 1998).
The focus of RL research is to understand how a situated agent
interacting with a responsive environment can arrive at effective
strategies,makingRL an excellent tool for studyinghuman learning
and decision-making in dynamic tasks (Busemeyer & Pleskac, in
this issue; Fu & Anderson, 2006; Sun, Slusarz, & Terry, 2005).
Interestingly, the RL model that we develop in the later section
makes specific predictions about the effects that different sources
of noise may have on learning performance, which we then test in
our experiments.

0.1. Noise as a Curse and Noise as a Tool

Anyone who has tried talking on a bad telephone connection
would likely view noise as a curse that obscures important signals
and increases the uncertainty associated with measurement. In
most systems, decreasing signal-to-noise ratios results in lower
performance (Green & Swets, 1966). Likewise, noise or variability,
when interpreted by learners as signal, can guide behavior
in surprising (and potentially maladaptive) ways. For example,
Skinner (1948) showed how pigeons in an operant conditioning
experiment, which were given reinforcement at random intervals,
enacted a number of repetitive but ‘‘superstitious’’ behavioral
patterns. Similarly, failures of statistical reasoning such as the
regression to themean and the gambler’s fallacy, reflect the human
tendency to inappropriately view normal variation (i.e., noise)
as signal (Kahneman & Tversky, 1973; Tversky & Kahneman,
1971). However, the negative effects of noise are not universal.
For example, noise can help overcome local minima such as
in systems based on simulated annealing (Kirkpatrick, Gelatt, &
Vecchi, 1983). In addition, in some environments, the inability to
effectively separate signal and noise may, paradoxically, lead to
improvements in behavior by encouraging alternative strategies
or by focusing learners on alternative information sources (Burns,
2004). In this paper, we examine situations where variability or
noise actually help people make decisions that maximize their
long-term benefit.
In the laboratory, experimenter-manipulated noise is used as a

tool to illuminate the structure of human perceptual and cognitive
systems, since the way the performance degrades in noise can
reveal aspects of system architecture (Gold, Sekuler, & Bennett,
2004; Green& Swets, 1966; Lu&Dosher, 1999; Pelli & Farell, 1999).
For example, techniques such as equivalent input noise (Pelli &
Farell, 1999) estimate an observer’s internal perceptual noise level
by systematically degrading external stimuli. We adopt a similar
perspective of ‘‘noise as a tool’’ in the experiments that follow.
In particular, we parametrically degraded the signal-to-noise
characteristics of feedback given to participants in the Farming
on Mars task in order to estimate how such variability impacts
performance. Before describing our experimental manipulations
in more detail, we begin by describing the basic version of the
Farming onMars task and briefly review some previously reported
findings using this paradigm.

0.2. The farming on mars task

In the ‘‘Farming on Mars’’ task utilized in our experiments,
participants interact with a repeated, two-choice decision-making
Fig. 1. The payout function for the Farming onMars task. The horizontal axis is the
number of choices out of the last ten in which the Long-Term robot was selected.
The vertical axis is the number of oxygen units generated as a result of choosing one
of the robots on a trial. The two diagnonal lines show the reward associated with
each robot for each state. By design the Short-Term robot is better for every state
(i.e., trial), but the best long-term strategy is to exclusively choose the Long-Term
robot because the selection of the Short-Term robot transitions the state to the left,
whereas selection of the Long-Term robot transitions the state to the right.

task presented as a simple video game. The cover story for the
game is that two agricultural robots have been sent to the planet
Mars in order to establish a farming system capable of generating
oxygen for later human inhabitants. Participants are informed that
each robot specializes in a different set of farming practices, but
that only one robot can be active at a given moment. Participants’
job as controller is to select, on each trial, which robot should be
employed in order to maximize the total oxygen generated over
the entire experiment. Participants indicate which robot should do
the farming, and are given feedback about how much oxygen was
generated on that trial as a result of their choice.
Unknown to participants at the start of the task, there is

a contingency between recent robot selections and the oxygen
points received on the next trial. In particular, the current payoff
depends on the relative allocation of responses to one of the two
choice options presented on each trial. For expository purposes we
will refer to one of the choice options as the ‘‘Short-term robot’’
and the other as the ‘‘Long-Term robot’’ although these labels were
not provided to participants in the experiment. Fig. 1A shows an
example of the payoff structure used in the task. The horizontal
axis in Fig. 1 measures the participant’s current allocation to the
Long-Term robot over the last ten trials (ranging from 0 to 10). The
two diagonal lines describe the function relating the current choice
history to the reward at any point in time. The upper diagonal
line illustrates the reward received from selecting the Short-Term
robot as a function of recent choice history, and the lower diagonal
line shows the reward from selecting the Long-Term robot.
Note that the Short-Term robot always generates more oxygen

than the Long-term robot on any given trial (i.e., the reward
function for the Short-Term robot reward function is larger than for
the Long-Term robot in every situation). However, each time the
Short-Term robot is selected, the output of both robots is lowered
on the following trial (i.e., the state of the system shifts to the
left along the horizontal axies in Fig. 1). Selections of the Long-
Term robot behave in the opposite fashion. Each time this robot
is selected, the output of both robots is increased on the next trial
(shifted to the right in Fig. 1A). Critically, over the window of the
last ten trials, the reward received from repeatedly selecting the
Long-Term robot exceeds that from always selecting the Short-
Term robot (i.e., the highest point of the Long-Term robot curve is
above the lowest point for the Short-Term robot curve in Fig. 1A).
As a result, the optimal strategy is to select the Long-Term robot
on every trial, even though selecting the Short-Term robot would
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earn more on any single trial. In the experiment, participants are
not given any relevant information about the differences between
the robots, and thus can only arrive at the optimal strategy by
interactively exploring the behavior of the system (cf. Berry and
Broadbent (1988) and Stanley et al. (1989)).
The structure of the Farming on Mars task borrows from

a growing literature looking at choice behavior in situations
where actions that lead to long-term rewards conflict with those
that yield immediate rewards (Herrnstein, 1991; Herrnstein &
Prelec, 1991; Neth, Sims, & Gray, 2006; Tunney & Shanks, 2002).
Interestingly, the conclusion from much of this work has been
that both humans and other animals often fail to inhibit the
tendency to select an initially attractive option evenwhen doing so
leads to lower rates of reinforcement relative to other strategies,
a phenomena referred to as melioration. While melioration is
sometimes taken as evidence that people fail to maximize their
long-term expected utility (see Tunney and Shanks (2002) for
a similar discussion), in practice, it is a significant challenge
for learners to discover the optimal strategy in an unknown
environment.

0.3. Why is the ‘‘Farming on Mars’’ task so difficult? Effective
exploration and the problem of perceptual aliasing

The Farming on Mars task is a challenging task for a number
of reasons. First, from the outset of the task, participants may
have little sense of how their own actions are influencing the
behavior of the system. Effective learning requires exploration
of hidden contingencies between the agent’s past actions and
future prospects. For example, work with a similar task found
that manipulations that encourage subjects to ‘‘explore’’ the
system by lowering the costs of making early choices can lead
to improvements in later performance (Tunney & Shanks, 2002).
Similarly, recent work has shown that motivational manipulations
can influence the degree to which participants are willing to adopt
exploratory strategies in sequential choice tasks, which can in turn
translate into improvements in performance in tasks with non-
obvious solutions (Worthy, Maddox, & Markman, 2007).
In light of these findings, one hypothesis is that, under certain

conditions, performance may actually improve when outcomes in
the task are more variable. Imagine trying to find the ‘‘globally’’
best restaurant out of a large set. If you have an enjoyable meal at
the first place you visit, you may be less willing to sample other
places. However, if each time you visit this restaurant, the quality
varies due to random noise, it may coincidently help encourage
more extensive sampling of other options (Denrell, 2005). A bad
experience one day might lead you someplace else for your next
meal. In Experiment 1, we set up an analogous situation in the
Farming on Mars task by parametrically varying the amount of
variability associated with the reward signal in the task and
assessing its impact on participants’ ability to discover the reward-
maximizing strategy.
Effective exploration is one of multiple challenges facing

learners in the Farming on Mars task. A second, but related
challenge arises from participants’ mental representation of the
task. Each time a participant makes a choice in the task, the
system changes so that the reward received on the next trial is
different than it was on the previous trial. Recognizing how the
current situation or ‘‘state’’ of the world is changing as a result
of the one’s actions is essentially a categorization problem. The
learner must identify when the current situation is different, and
how to generalize their experience from one situation to the
next (Redish, Jensen, Johnson, &Kurth-Nelson, 2007; Veksler, Gray,
& Schoelles, 2007). In the standard version of the task, identifying
these changes is difficult given that there are few direct cues
available indicating to subjects that the world is changing on
each trial. As a result, participants must overcome the problem
of perceptual aliasing in which relevant states in the world are
poorly differentiated (Whitehead & Ballard, 1991). Returning to
the restaurant example, imagine trying to find the best restaurant
when not only the average quality of the food is obscured by
randomly distributed noise, but there is also uncertainty about
which restaurant one is dining at because all restaurants are
identical inside. Failing to differentiate situations associated with
different rewards makes learning the true reward structure a
difficult task.
The issue of how human learners use cues in the environment

to disambiguate distinct states or ‘‘situations’’ remains an active
question in reinforcement learning research (Daw, 2003; Gureckis
& Love, in press; Redish et al., 2007; Veksler et al., 2007). However,
in a recent set of studies (Gureckis & Love, in press), we evaluated
how simple visual cues can impact participants’ performance in
the Farming on Mars task. In one experiment (Gureckis & Love,
in press, Experiment 2), displays were augmented with a row
of indicator lights. The position of the active light in the display
served as a cue about the current state of the system. Participants
given cues which correlated with the underlying system state
performed better than participants attempting to learn without
these cues. In addition, cues which allowed generalization from
one situation (i.e., state) to other states performed best. These
studies demonstrate the importance of state representation in
dynamic and complex task environments. The state representation
that the learner adopts may act as a ‘‘framework’’ for effectively
structuring, integrating, and generalizing experience. However,
to the degree to which participants use information about the
current state to structure and integrate their learning experiences,
variability on such cues should have a dramatic influence on
performance. Variability in the cues that signal the current task
state effectively increase the degree of perceptual aliasing by
making one unclear at any point in time how state knowledge
should be updated given current rewards. In the restaurant
example, a diner may know the meal is enjoyable, but be confused
about which restaurant served the meal.

0.4. Overview and summary

Previous studies establish that two somewhat similar sources
of information may jointly influence performance in sequential
decision-making tasks. The first is the structure of the rewards
in the task (i.e., the payoff function). The second is information
about functionally distinct task states (any cue which can help
distinguish or categorize different states or situations). These two
sources of information are both functionally and psychologically
distinct. State information indicates the agent’s place in the
overall system and can help link future actions, whereas reward
information provides the valuation of those actions. Given that
these two sources of information or signals play a distinct role in
learning, we predicted that learners would respond differently to
noise (i.e, variability) associated with either signal.
The remainder of the paper is structured as follows. We

begin by describing the results of two novel experiments. In
the first study, participants attempted to uncover a reward-
maximizing response strategy given different amounts of noise
that obscured the valuation of particular actions. In contrast
to the conventional view that noise has a uniformly negative
impact on system performance, we find that moderate amounts
of noise actually improves the ability of participants to find
an optimal response strategy by increasing their tendency to
explore alternative strategies. In the second study, we compare
the effect that different sources of noise have on performance
in the task. In particular, we compare participants’ performance
when comparable levels of noise obscure either the reward or state
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signals. We find that variability that impairs participants’ ability
to identify the current task state hurts performance more than
noise that obscures the valuation of those states. This result is
surprising given that attending to information about the current
task state is, in someways, optional for accomplishing the primary
task of maximizing reward. Simulations show that a simple model
based on RL principles, including the balance of exploration
and exploitation, the appreciation of future outcomes, and the
identification of distinct task states, provides an excellent account
of behavior across the two experiments. Our results illuminate how
experimentally-manipulated task variability can be used to test
predictions about themechanisms that learners engage in dynamic
decision making tasks.

1. Experiment 1

Experiment 1 evaluates the impact of variability in the reward
signal on task performance. Using the Farming on Mars task,
participants were assigned to one of four conditions which were
identical with respect to the number of trials and the underlying
payoff function, but which differed in the way in which variability
was added to the experienced rewards. In each condition, the
dependence of current reward on past choices was determined
by the number of choices made to the Long-Term robot over the
last ten trials (as illustrated in Fig. 1). In the no-noise condition,
there were no additional sources of variability. In contrast, in the
low-noise, medium-noise, and high-noise conditions, on each trial,
a normally distributed random noise (with mean equal to zero
and standard deviation σr ) was added to the payoff indicated in
Fig. 1. This variability in the experienced rewards obscured the
underlying structure of the task. One straightforward prediction
is that performance should degrade as the amount of noise
increased (consistent withwork finding a decrease in performance
as the discriminability of two options is lowered, Busemeyer and
Myung (1992)). On the other hand, moderate amounts of noise
might, in some circumstances, actually help participants adopt
appropriate exploration strategies. The inconsistent feedback that
arises in a noisy environment might rule out simple hypotheses
and encourage sampling of alternatives.

1.1. Method

1.1.1. Participants
Ninety-two undergraduates from New York University and the

University of Texas participated for course credit and a small cash
bonus whichwas tied to performance. Participants were randomly
assigned to one of the four conditions: the no-noise (NN) condition,
a low noise (LN) condition, a medium noise (MN) condition,
and a high noise (HN) condition. Twenty-three participants were
included in each condition.

1.1.2. Materials
The experiment was run on standard desktop computers us-

ing an in-house data collection system written in Python. Stimuli
and instructions were displayed on a 17-inch color LCD positioned
approximately 47 centimeters away from the participant. Partici-
pants were tested individually in a single session. Extraneous dis-
play variables, such as which robot corresponds to the left or right
choice option, were counterbalanced across participants. In addi-
tion, no other relevant information distinguished between the two
options other than the rewards that the participant received for
their choices.
Table 1
Summary of the Conditions in Experiment 1. The column titled d’ Between Reward
Curves measures the discriminability of the two reward curves as a function of the
increasing variability. Similarly, the column titled d’ Between States measures the
discriminability of two adjacent states (i.e, between two adjacent points in the same
reward curve).

Condition Noise level d’ Between Reward
Curves

d’ Between
States

No noise (NN) ∼N(0, σr = 0) – –
Low noise (LN) ∼N(0, σr = 70) 7.14 1.43
Medium noise (MN) ∼N(0, σr = 100) 5.0 1.0
High noise (HN) ∼N(0, σr = 300) 1.67 0.33

1.1.3. Design
Participants were given a simple two-choice decision-making

task (the Farming on Mars task described above) presented as
a simple video game (see Fig. 4 for an example display). At
the start of the experiment, participants were presented with
instructions on the screen that described the basic cover story and
task. Participants were informed that their goal was to maximize
the total output from the Mars Farming system over the entire
experiment by selecting of one of two robot systems on each trial.
Unknown to participants, the number of oxygen units generated
at any point in time was a function of their choice history over the
previous ten trials. In addition, the payoffs associated with each
robot systemweremanipulated so that one optionwas better than
the other in the long-term, despite appearing worse in the short-
term. A graphical depiction of the rewards in the tasks is shown in
Fig. 2. If h represents the number of trials in the last 10 which were
allocated to the Long-Term robot, then the payoff for any selection
of the Long-Term Robot was 400 + 1000 ∗ h

10 + N(µ = 0, σr).
Alternatively, the payoff for the Short-Term robotwas 900+1000∗
h
10 + N(µ = 0, σr). At the start of the experiment, we initialized h
to 5 (so as to not favor either option). In these rewards equations,
N(µ, σr) indicates a normally distributed random number with
mean µ and standard deviation σr . The parameter σr varied
between conditions. In the NN condition σr = 0, in the LN
condition σr = 70, in the MN condition σr = 100, and in the HN
condition σr = 300. The effect of the random trial-to-trial noise
was to degrade the signal-to-noise characteristics of the reward
signal. Table 1 summarizes the difference between conditions in
the discriminability of different task states and between the two
reward curves while Fig. 2 illustrates the payoff functions in each
condition, including the 95% confidence intervals. As is visible in
the figure, as the variability increases the discriminability of the
two reward curves (i.e., for the Short-term and Long-termoptions),
aswell as the transitions between successive task states is lowered.

1.1.4. Procedure
The 500 trials of the experiment were divided into five blocks

of 100 trials each. At the end of each block, participants were given
a short break and each successive block picked up where the last
block left off. In order to maintain motivation, participants were
told that they could earn a small cash bonus of $2–5 which was
tied to their oxygen generating performance in the task. However,
participants were not told how oxygen points would translate into
cash rewards, only that generating more oxygen would yield a
larger bonus.
On each trial, participants were shown a control panel with

two response buttons labeled either System 1 or System 2. Between
these two buttons was a video display where trial-relevant
feedback and instructionswere presented. Participants clicked one
of the two response buttons using a computer mouse. After a
selection was made, a short animation (lasting approximately 800
ms) indicated that the response was being sent to the Mars base.
Following this animation, the amount of oxygen generated on that
trial was shown in numerical terms (i.e., ‘‘New Oxygen Added:
800.00’’). A short auditory beep was presented when the oxygen
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Fig. 2. The reward functions used in each condition of Experiment 1 as a function of the current task state (i.e., the number of Long-term Robot selections in the last 10
trials). The shaded regions show the 95% confidence intervals for each noise condition. See Table 1 for a summary of the effect this noise has on the ability to discriminate
the rewards from different states and actions.
Fig. 3. Overall results of Experiment 1. Panel A shows the average proportion of long-term (maximizing) responses made throughout the experiment as a function of noise
condition. Panel B presents the average proportion of maximizing responses considered in blocks of 25 trials for all four conditions. In both figures, the horizontal line at 0.5
shows chance performance. In each graph, error bars are standard errors of the mean.
points displaywas updated, indicating that the reward for that trial
had been received. The points display was shown for 800 ms, after
which the screen reset to a ‘‘Choose’’ prompt that indicated the
start of the next trial. No information about the cumulative oxygen
generated across trials was provided.

1.2. Results

1.2.1. Overall performance
Fig. 3A shows the proportion of trials in which the Long-Term

robot (i.e., reward-maximizing response) was chosen in each con-
dition of the experiment. A one-way ANOVA on these propor-
tions revealed a significant effect of condition, F(3, 91) = 10.42,
p < .001. In both the NN and MN conditions, the proportion of
Long-Term choices did not significantly differ from chance (M =
.53, SD = .17, t < 1 and M = .42, SD = .28, t(22) = −1.24,
p = .23, respectively). However, in the LN condition, participants
chose the Long-Term robot more often than the Short-Term robot,
M = .60, SD = .18, t(22) = 2.74, p = .012. In contrast, in the
HN condition, participants chose the Short-Term option more of-
ten, M = .26, SD = .21, t(22) = −5.29, p < .001. Planned
comparison revealed that the proportion of maximizing responses
did not differ between the NN and LN conditions, t(44) = 1.32,
p = .19. However, a significantly larger proportion of maximiz-
ing responses was recorded in the LN condition compared to the
MN, t(44) = 2.51, p = .016, and HN conditions, t(44) = 5.79,
p < .001.
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1.2.2. Time-course analysis
Fig. 3B shows the proportion of Long-Term choices calculated

in non-overlapping blocks of 25 trials at a time. On average,
participants in all conditions except the HN condition increased
the number of Long-Term choices theymade over the course of the
experiment. A repeated measures ANOVA on training block (1–5)
and condition revealed a main effect of block (F(4, 352) = 15.66,
p < .001), condition (F(3, 352) = 10.49, p < .001), and a
significant interaction (F(12, 352) = 2.12, p = .016). Planned
comparisons confirmed a significant effect of training block in both
the NN, LN, and MN conditions (F(4, 88) = 10.76, p < .001,
F(4, 88) = 9.18, p < .001, and F(4, 88) = 2.92, p = 0.03,
respectively). However, there was no evidence of learning over
blocks in the HN condition (F < 1). Comparing the proportion
of selections allocated to the Long-Term option in the first block
of 100 trials compared to the last block of 100 trials revealed
a significant increase in both the NN (mean difference = .26,
t(22) = 3.72, p = .001), LN (mean difference = .29, t(22) =
5.11, p < .001), and MN (mean difference = .20, t(22) = 3.08,
p = .005) conditions,with nodifference in theHNcondition (mean
difference= .01, t < 1).

1.3. Discussion

In Experiment 1, we assessed the impact that reward variability
had on participants’ performance in the Farming on Mars task.
Overall, we found that as the ratio of signal-to-noise dropped (as
in the medium-noise or high-noise condition), participants made
fewer selections of the Long-term (reward maximizing) option. In
fact, we found little evidence of learning over blocks in the high-
noise condition, suggesting that the reward structure of the task
was all but eliminated by the task variability. These results are
consistent with the view that noise is harmful. However, we found
that moderate amounts of noise (as in the low-noise condition)
may actually improve performance. Indeed, participants in the
low-noise condition were unique in consistently choosing the
Long-term option.
Introducing variability in the rewards influenced the way

participants allocated their responses with moderate variability
in reward outcomes leading to more effective decision making
(indeed, participants earned more points on average in the LN
condition than in the NN conditionM = 577085 vs.M = 593840,
t(44) = 2.51, p < .02). In contrast to the view that noise
always has negative consequences for performance, we found that
moderate amounts of variability actually helped participants to
adopt more effective response strategies. One hypothesis, that we
address in simulations to follow, is that the inconsistent trial-to-
trial feedback with noise may have helped to encourage more
effective exploration in the task.

2. Experiment 2: Comparing the effects of variability on
rewards and states

Experiment 1 evaluated how just one kind of task variability
(noise on the reward signal) impacts performance in the Farming
on Mars task. The choice to focus on reward variability in
Experiment 1 was natural since rewards are primary to the task
(the goal of the task is to make points). In Experiment 2, we
extend this analysis to consider the impact that variability on
task cues (i.e., state cues) has on performance. In this experiment,
we provided participants with two pieces of information which
could help them discover the best strategy. The first was the
magnitude of the reward signal, and the second was an additional
‘‘soil indicator’’ that provided information about the current task
state. In this case, the position of the soil indicator correlated with
the current task state which is determined by the number of Long-
term choices made over the last ten trials. By adding equivalent
amounts of trial-to-trial noise to either the reward signal or to the
soil indicator, we assessed the differential effect that each signal
had on participants’ performance.
In previous work (Gureckis & Love, in press), we found that

cues which indicated the current task state facilitated the ability of
participants to learn the optimal response strategy. According to
our account, disambiguating state information aided participants
by reducing aliasing of distinct task states. In these previously
reported experiments, we also tested a condition where the
trial-to-trial dynamics of the state cue information was highly
irregular (shuffled-cue condition of Experiment 2, (Gureckis &
Love, in press)) but still correlated perfectly with each task state
(i.e., the location of the state cue was shuffled such that adjacent
system states might not have similar state cues). Shuffled cues
helped participants but not to the extent that such cues do when
directly aligned with the task structure. Thus, in Experiment 2,
we predict that highly variable state information should have a
more detrimental impact on performance than would variability
in rewards. To the degree that participants use the state cues
as a way of structuring their learning in the task, inconsistent
information on this signal should severely disrupt updating of the
value of particular state-actionpairings. In effect, treating noise-as-
signal on the state cues can lead to more perceptual aliasing rather
than less.

2.1. Method

2.1.1. Participants
One-hundred and eight undergraduates fromNewYorkUniver-

sity and the University of Texas participated for course credit and a
small cash bonuswhichwas tied to performance. Participantswere
randomly assigned to either a no-noise (NN) condition, a reward-
noise (RN) condition, a state-noise (SN) condition, or a state and
reward noise (SRN) condition. Twenty-seven participants were in-
cluded in each condition.

2.1.2. Materials and design
The materials and general methods in Experiment 2 were

the same as in the no-cue condition of Experiment 1. However,
two feedback signals were displayed on each trial: the reward
(i.e., oxygen point) resulting from the last choice, and the current
system state (i.e., soil indicator).
The reward on each trial was determined as follows. If h

represents the number of trials in the last 10 which were allocated
to the Long-Term robot, then the payoff for any selection of the
Long-Term Robot was 20+100∗ h10 +N(µ = 0, σr). Alternatively,
the payoff for the Short-Term robot was 30 + 100 ∗ h

10 + N(µ =
0, σr). At the start of the experiment, we initialized h to 5 (so as to
not favor either option). As in Experiment 1, N(µ, σr) indicates a
normally distributed random number with mean µ and standard
deviation σr that was added to the reward function on each trial.
In the NN and SN conditions, σr was set to zero (i.e., no noise
on rewards). In the RN and SRN condition σr was set to 12.0. As
before, the effect of the random trial-to-trial noise was to degrade
the signal-to-noise characteristics of the reward signal. Instead of
expressing rewards in numerical terms (i.e.,‘‘800 oxygen points’’),
rewards were displayed as a vertical bar, the height of which
indicated the amount of oxygen generated on a given trial (see
Fig. 4). The maximum height of the reward bar was set to 150.0
units. If, due to noise, the reward for a given trial exceeded that
value it was clipped. Similarly, negative rewards were clipped at
zero. The purpose of this change was to make the nature of the
reward signal and state signal similar.
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Fig. 4. Example displays from Experiment 1 (left) and 2 (right) are shown. In Experiment 2 an additional display element was added labeled as ‘‘soil indicator,’’ which
indicated the current task state. In addition, the left panel shows how rewards (oxygen points) were conveyed in Experiment 2.
An example of the ‘‘soil indicator’’ is shown in Fig. 4, left. This
indicator consisted of a black horizontal bar in which a brightly
colored dot appeared. The position of the dot indicated the current
task state (i.e., the value of h above). The entire scale ranged
from 0 to 150.0 (ensuring that relative variability was comparable
between the reward signal and soil indicator). The position of the
dot in this scale was determined by the following equation on each
trial: h10 ∗ 110 + 20 + N(µ = 0, σs). In the NN and RN condition,
σs was set to zero (no variability), but in the SN and SRN condition
σs was set to 12.0. As for rewards, the state cue value was clipped
at 0 and 150. Thus, the variability introduced in the state cue was
equivalent to that on the reward condition.1 The direction that
the state light moved in response to increasing numbers of Long-
term button presses was counter-balanced between subjects. So
for some subjects the light moved to the left as h increased, and for
others it moved to the left as h decreased.

2.1.3. Procedure
The procedure was identical to Experiment 1.

2.2. Results

2.2.1. Overall performance
Fig. 5A shows the proportion of responses allocated to the

Long-Term option (i.e., maximizing responses) over the entire
experiment for each condition. A two-way ANOVA on these
proportions revealed no effect of noise on rewards (F(1, 107) =
2.18, p = .14), a main effect of noise on states (F(1, 107) =
7.82, p = .006), but no interaction (F(1, 107) = 1.22, p =
.27). In all four conditions the proportion of Long-term selections
exceeded chance (t(26) = 10.7, t(26) = 7.12, t(26) = 8.68, and
t(26) = 4.59, for the NN, RN, SN, and SRN condition respectively,
all p < .001). Planned comparison revealed that the proportion of
maximizing responses was higher in the NN and SRN conditions,
t(52) = 3.12, p = .003, and in the RN and SN condition, t(52) =
2.65, p = .01. However, all other contrasts were not significant.
Identical results obtained considering performance only in the last
block of 50 trials, t(52) = 3.03, p = .004 and t(52) = 2.5, p = .02,
respectively.
Optimal responding in the task required pushing the state cue

either all the way to the left or all the way to the right (depending

1 Note that because the reward was sampled from either of the two response
options, the perceived variability in rewards was likely higher than for states (the
reward fluctuated more as a function of the participant’s response strategy than
did the state cue). However, as we will describe in our later simulations, this likely
higher perceived variability for rewards makes the pattern of results we find even
more persuasive).
on the counterbalancing of this display variable).2 In the function
learning literature this is analogous to learning either a positive
or negative correlation between input–output pairs (where input
here is the state cue and output is the reward). Given that previous
work has shown that learning negative correlations is generally
more difficulty (Busemeyer, Byun, Delosh, & McDaniel, 1997), we
analyzed our data to assess the impact that the direction of the
light had on performance. Collapsing across all four conditions, we
failed to find a significant effect of the left-right directionality of
the light (t < 1). However, there was a trend consistent with this
idea (M = .69 when it was optimal for the light to move to the
left, andM = .75 when it was optimal for the light to move to the
right). Separate analyses conducted on individual conditions also
failed to find a significant effect of the directionality of the light on
responding (all p > .07). In addition, we failed to find an effect of
compatibility between the movement of the light in response to
reward-maximizing choices and the left-right arrangement of the
maximizing response button on the display (t < 1).

2.2.2. Time-course analysis
Fig. 5B shows the proportion of Long-Term choices calculated

in non-overlapping blocks of 25 trials at a time. Participants in
all conditions increased the number of Long-Term choices they
made over the course of the experiment. A 2 × 2 repeated
measures ANOVA on noise on reward, noise on states cues, and
training block (1-5) and condition revealed a main effect of noise
on states (F(1, 104) = 7.88, p = .006), no effect of noise
on reward (F(1, 104) = 2.17, p = .14), and no interaction
(F(1, 104) = 1.22, p = .27). In addition, the interaction between
block and state noise or reward noise failed to reach significance
(F(4, 416) = 2.32, p = .056 and F(4, 416) = 1.33, p = .26,
respectively). Finally, we found no evidence of a three-way way
interaction between training block and noise type (F(4, 416) < 1).
Planned comparisons confirmed that within each condition, there
was a highly significant effect of training block on performance,
demonstrating learning (F(4, 104) = 35.14, F(4, 104) = 17.25,
F(4, 104) = 49.97, and F(4, 104) = 9.59, for the NN, RN,
SN, and SRN conditions respectively, all p < .001). Likewise,
comparing the proportion of selections allocated to the Long-
Term option in the first block of 100 trials compared to the last
block of 100 trials revealed a significant increase in all conditions
(mean difference = .31, t(26) = 8.31 in the NN condition, mean
difference = .30, t(26) = 10.31 in the RN condition, mean
difference = .24, t(26) = 5.33 in the SN condition, and mean
difference= .20, t(26) = 4.41 in the SRN condition, all p < .001).
However, a 2x2 ANOVA on these difference scores found only a
main effect of noise on state cues (F(1, 104) = 4.49, p < .04).

2 Note, however, that this was only possible in the NN and RN conditions due to
the noise on the state cue in the SN and SRN conditions.
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Fig. 5. Overall results of Experiment 2. Panel A shows the average proportion of long-term (maximizing) responses made throughout the experiment as a function of noise
condition. Panel B presents the average proportion of maximizing responses considered in blocks of 50 trials for all three conditions. In panel B, the horizontal line at 0.5
shows chance performance. Error bars are standard errors of the mean.
2.3. Discussion

In Experiment 2, we compared the impact that different sources
of variability had on participant’s performance in the Farming on
Mars task. Unlike Experiment 1, participants in this experiment
were always presented with information in the display that
indicated the current task state. However, we manipulated the
degree of variability associated with the reward signal and state
cue in order to assess the relative contribution of each source
of information. Consistent with previous work (Gureckis & Love,
in press), we found that people appear to use the state information
to support their decision making. In fact, when the reliability
of cues that signaled task state were degraded, performance
dropped off more than it did with equivalent amounts of noise
on the reward signal. This result is somewhat surprising given
that attending to the state cues was, in some sense, optional for
solving the primary task of maximizing reward. However, this
result is consistent with the idea that perceptual cues that signal
the current task state help to resolve perceptual aliasing. When
such signals are obscured by noise, the ability of participants to
differentiate highly similar states is reduced, leading to worse
performance.
One difference between Experiment 1 and 2 is that moderate

amounts of noise/variability on the reward signal did not improve
performance in Experiment 2. One possibility is that the amount
of noise used in Experiment 2was simply insufficient to encourage
additional exploration. However, an important difference between
Experiments 1 and 2 is that participants in the RN condition of
Experiment 2 also had a consistent state cue on the display. One
hypothesis (evaluated in the following simulations) is that state
cues not only limit perceptual aliasing, but can help to effectively
‘‘smooth-out’’ variation in the reward associated with particular
states. For example, recognizing that one is in a familiar restaurant
allows one to recall past experiences and arrive at a better estimate
of the value of particular options than an individual who cannot
benefit from cues that enable recognition.
To summarize, Experiments 1 and 2 provide three key

findings. First, when participants lack explicit perceptual cues
about task state, there is a non-montonic relationship between
reward variability and task performance. In particularly, moderate
amounts of reward noise lead to elevated levels of optimal
responding relative to either no variability, or high variability
situations (Experiment 1). Second, comparing the effects of
matched variability on reward and state cues (Experiment 2)
reveals that noise on state cues has a more detrimental effect
on performance than does noise on rewards. Finally, we find
that when participants have consistent information about task
state, there is no performance advantage for moderate variability
in the rewards signal (i.e., NN vs. RN in Experiment 2). In
the following section, we evaluate these results using a simple
model of sequential choice based on reinforcement learning
principles (Sutton & Barto, 1998). We begin by describing the basic
operation and principles of the model, then turn to the supportive
simulations.

3. Model-based analysis

The goal of the modeling is to better understand the mecha-
nisms supporting learning in Experiments 1 and 2.We assume that
the goal of the agent is to achieve the most reward possible by ex-
ploring the environment and adapting its behavior in a trial-by-
trial fashion. In particular, themodel attempts to estimate the long-
term value of selecting a particular action a in state s, a value we
refer to as Q (s, a). These ‘‘Q-values’’ in the model represent an es-
timate of the future reward the agent can expect to receive given
that it selects action a in state s. Ideally, the agent would choose
the action in each statewhich leads to the higher reward. However,
these values must be learned from experience, and thus some ex-
ploration iswarranted. In our task, there are only two actions avail-
able to the RL agent for each state, which correspond to selections
of either the Short-Termor Long-Term robot. States are not directly
observable, but are estimated given the perceptual cues presented
in the experiment and response history.
The model’s estimate of the Q-value of a particular action on

trial t is calculated as a simple linear function of the current
perceptual inputs:

Q (st , at) = ea +
N∑
j=1

wtja · I
t
j (1)

where N is the number of inputs, I tj is the value of the jth input
cue on trial t , wja is a learned weight from the jth input unit to
action a, and ea is an eligibility trace for action a (described below).
The model maps between input cues and the Q-values associated
with each state using a simple single-layer network (Widrow
& Hoff, 1960). Changing the types of input cues the model is
given modulates the ability of the model to learn the appropriate
representation of the state structure of the task and ultimately
influences its ability to uncover an optimal response strategy.
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Themodel learns the value of state-action pairs (and ultimately
adopts a reward-maximizing strategy) through experience using
a learning algorithm based on average reward reinforcement
learning (Schwartz, 1993; Sutton & Barto, 1998; Tsitsiklis & Van
Roy, 1999). Average reward RL assumes the goal of the learning
agent is to maximize the average reward received per unit time
step. This approach contrasts with models based on temporal-
difference methods (such as Q-learning) which treat the agent’s
goal as optimizing the total discounted reward. In particular,
according to discounted reward approaches, the value of each
state-action pair, Q (s, a) is given as the total expected discounted
future reward:

Q (s, a) = E

[
T∑
k=0

γ krt+k+1

]
(2)

where γ represents a discounting parameter that determines the
weight given the rewards that are delayed into the future (Watkins,
1989). An alternative approach is to assume that the value of each
state is the difference between the total reward available from the
state-action pair and the average reward:

Q (s, a) = E

[
∞∑
k=0

(rt+k+1 − ρ)

]
(3)

where ρ is an estimate of the average reward per time step
encountered so far. The subtraction of the average reward ρ
rescales the total cumulative reward available in each state
as deviation from average and introduces transients that drive
learning. Positive values of Q (s, a) reflect state-action pairs that
result in greater than the currently estimated average reward,
while negative values are given to state-action pairs that result
in lower than average reward. Also note that this approach no
longer assumes the learners discount future rewards (i.e., there is
noγ parameter). For this reason, average-rewardRL algorithms are
considered non-discounted.
Overall, discounted reward methods (such as temporal-

difference learning or Q-learning) have been used more widely in
cognitive psychology. However, there are a number of arguments
for why average-reward RL may be a more realistic model of hu-
man behavior (Daw, 2003; Daw & Touretzky, 2000; Niv, 2007).
For example, a number of authors have argued that the average-
reward RL framework more accurately reflects the way in which
animals and humans deal with delayed rewards (Daw& Touretzky,
2000; Kacelnik, 1995). In particular, traditional discounted meth-
ods assume that reward is exponentially discounted, while con-
siderable work suggests that the discounting function is hyper-
bolic (Myerson & Green, 1995).3 Given certain assumptions about
the nature of discounting, average reward learning can provide
framework similar to the hyperbolic discounting function often
found with humans and animals (Kacelnik, 1995) and appears to
better fit both behavioral and neuro-biological data (Daw&Touret-
zky, 2000). In addition, computational analyses suggest that av-
erage reward RL converges faster than traditional discounted ap-
proaches (Tadepalli & Ok, 1996), a feature which was desirable in
our simulations given how quickly participants learn.
In average reward RL, each time an action is selected, the

model updates its current estimate of the corresponding Q-value
according to the temporal-difference error between the reward
received as a result of that action and a current estimate of

3 See Fu and Anderson (2006) for an approach that explicitly assumes hyperbolic
discounting in a discounted-reward paradigm but which cannot be updated
iteratively.
the future reward available from the following state-action pair
according to
δ = [rt+1 − ρ +max

at+1
Q (st+1, at+1)− Q (st , at)] (4)

where rt+1 is the reward received as a result of taking action at , ρ is
the current estimate of the average reward per unit time step, and
maxat+1 Q (st+1, at+1) is a current estimate of the reward available
in the new state, st+1which results from taking action at . This error
term, δ, is then used to adjust weights in the model according to

wt+1ja = w
t
ja + α · δ · I

t
j (5)

where wt+1ja is the new value of the weight, wtja is the old value of
the weight, α is a learning rate parameter, and I tj is the value of the
jth perceptual input.
As show in Eq. (1) the model also assumes that subjects keep

a simple memory for recent actions, known as an eligibility trace,
and that this memory is used to assist predictions of reward (see
Bogacz, McClure, Li, Cohen, and Montague (2007) and Gureckis
and Love (in press) for a discussion of eligibility traces). The model
stores two eligibility traces, ea, one for each action. The activation
of this additional input to each Q-value was updated on each trial
according to
ea = α · δ · λa. (6)
On each trial, theλa for every action decays according toλa = λa∗ζ
with 0.0 ≤ ζ ≤ 1.0. However, each time a particular action ai is
selected, the trace for only that action is incremented according to
λi = λi + 1 (Bogacz et al., 2007). Eligibility traces simply assert
that participants remember which actions they have selected in
the recent past, and that this information is used to help credit
actionswhich lead to increased reward. Generally, eligibility traces
improve the rate of learning by allowing the error generated on the
current trial to propagate backwards in time across more than one
previous action.
Finally, the model tracks an estimate of the average reward

according to ρ = ρ + αavg · δ when the currently selected state
action pair Q (s, a) is the maximum valued action available from
the current state (i.e., the average reward is only updatedwhen the
best action is selected). The initial value forρwas fit as a parameter
(see below). The parameter αavg is a learning rate controlling the
rate of updating for the average reward.
The probability of selection action ai on each trial is given by

P(ai) =
eQ (st ,ai)·τ

2∑
j=1
eQ (st ,aj)·τ

(7)

where τ is a parameter which determines how closely the choice
probabilities are biased in favor of the underlying Q-values (Luce,
1959). In general, the probability of choosing option ai is an
increasing function of the estimated value of that action in that
state relative to the other action. However, as τ → 0 each
option is chosen randomly (the impact of Q-values is reduced).
Alternatively, as τ →∞ the model will always select the highest
valued option (also known as ‘‘greedy’’ action selection).
In summary, our simple RL model has four parameters: a

learning rate for Q-values, α, a learning rate for the average
rewards,αavg , a parameter controlling exploratory actions, τ , and a
decay parameter, ζ which controls the model’s memory for recent
actions. In addition, in our simulations we fit three additional
parameters: Q0 which is the initial value of each Q-values in
the model, ρ0 the initial estimate of the average reward, and w0
the initial value of the learning weights. The addition of these
parameters improved the quality of the fit while making explicit
our assumptions about prior expectations that participants might
bring to the task (in dynamic models such as our initializing
weights and initial parameters to zero is not assumption-free).
However, additional fits starting these parameters at zero did not
change the qualitative results.
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3.1. Simulation method

In Experiments 1 and 2, we parametrically manipulated the
nature of the task environment that participants experienced
and measured the resulting change in behavior. Our simulations
followed a similar approach. Rather than fit individual choice
sequences using maximum likelihood, we instead investigated the
behavior of the model across a wide range of parameters and task
environments in order to derive both qualitative and quantitative
predictions.4
In order to derive predictions, we applied the model to the

task in a manner analogous to how participants experienced
the task (e.g., the same number of trials). On each simulated
trial, the model selected either the Short- or Long-Term robot
(stochastically, according to the probabilities given in Eq. (7)),
the rewards were delivered, and the current state of the Mars
Farming System was updated. Each simulation consisted of 500
trials in the task. The per-block choice proportions from multiple
simulations were averaged together. A single set of parameters
was fit by minimizing root-mean squared error (RMSE) between
the average model performance and human performance curves
(averaged across subjects) on a per-block basis (i.e., per 100 trials).
The best fit parameters and resulting RMSE for both experiments
are show in Table 2.
In order to account for the role that the state cue played

in Experiment 2 performance, the model was provided with a
representation of the location of the state-cue akin to that given
to participants in the task. In particular, a single input unit to the
model was activated on each trial, Ij (see Eq. (1)). The value of this
input unit coded the position of the ‘‘dot’’ on a scale of 0.0 to 1.0,
where in some simulations 0.0 meant that the dot was all the way
to the left of the screen, and in others this coded positions all the
way to the right (counterbalanced). Noise was added to this cue in
the same way as for human participants (i.e., the scale was divided
into 150 units and updated according to both the current state of
the system and the amount of noise).
In Experiment 1, where these cues were absent, all inputs were

set to zero. As a result, themodel relies entirely on eligibility traces
in order to learn (i.e., since I tj = 0 for all j, the value of Q (st , at) in
Eq. (1) is simple ea, Eq. (5) no longer is needed to update learning
the predictive learningweights, and the look-ahead term in Eq. (4),
maxat+1 Q (st+1, at+1), was set to zero).

5

3.2. Experiment 1 simulations

In Experiment 1, participants interacted with the Farming
on Mars task in the presence of different amounts of noise
on the reward signal. In order to derive model predictions
for the effects of noise, we first found best-fit parameters by
fitting the model to data from all four conditions tested in our
experiment. Using these parameters, we then found the predicted
performance of the models across an entire range of noise levels

4 We conducted competitive maximum likelihood fits of our model against a
number of baseline models. However, we did not find any evidence that the best fit
parameters of the model to individual subjects reliably varied between conditions.
This matches our expectation that the populations tested in our conditions were all
the same, but only the task environment changed.
5 A separate set of simulations found that the model shows no learning in
Experiment 1 without eligibility traces included, but predicts the same qualitative
effect in Experiment 2 where state cues were present. Effectively, eligibility traces
provide the model with a history of recent action selections in Experiment 1 which
proxy the state-disambiguation role that state cues play in Experiment 2 (see
Gureckis and Love (in press) for a further discussion of the trade offs between state
cues and eligibility traces).
(0 <= σr <= 650), a relationship we refer to as the ‘‘noise-
performance’’ function.6 The results of this parametric analysis
are shown in Fig. 6. Panel A compares the fit of the model
to the human data for each condition tested. Panel B shows
the entire response profile of the model across different levels
of reward noise. Interestingly, the model shows near chance
performance in the task when σr = 0, and performance gradually
increases over the range of 0 < σr < 50. After this point,
additional variance in the reward signal begins to negatively
impact performance such that for σr greater 200, performance
hovers around 30% maximizing. Finally, as the noise continues to
increase on the reward signal, performance begins to drift back
to chance (i.e., 50%). Thus, the model, like human participants,
predicts a non-monotonic relationships between variability in
the reward signal and performance, and this relationship closely
matches the one demonstrated by participants.
In order to verify that this relationship was not an artifact

of a particular set of parameters, we conducted a number of
restricted model fits. First, we found parameters in the model that
best fit the data from the no-noise (NN) condition only. Using
this parameter set we once again found the model’s predicted
response proportion across the full parametric range of the reward
noise. These parameters are also reported in Table 2. A similar
qualitative pattern to the one fit to the full data is shown in
Fig. 6B. Finally, we conducted a new parameter fit using only the
data from the low noise (LN) condition. Once again the model
correctly predicts that performance in the NN condition should
be lower than performance in the LN condition, and that a non-
monotonic relationship holds where increasing variability results
in increased performance. Note, however, that across all three
sets of parameters, the qualitative shape of the response functions
change. Thus, the specific advantage for increasing amounts of
noise appears to be scaled by particular model parameters.
In order to understand the role that particular parameters

played in driving model behavior, we conducted a number of
parametric parameter analyses. In these simulations, we took the
best fit parameters to the full data set found above and plotted the
resulting noise-response function as a single parameter was varied
over a wide range.7 As shown in Fig. 7, we considered the effect
that different values of each of the four individual parameters
had on the noise-response function. The top-left panel of Fig. 7
shows that when the learning rate is close to zero (the horizontal
dashed line at 50%), performance is at chance, irrespective of the
level of noise. However, as the learning rate increases, the model
begins to predict an advantage for moderate amounts of noise on
performance. For very large learning rates (α = 1.0, the solid
line in the figure), the effect does not occur. A similar analysis on
the decay rate for eligibility traces (ζ ) shows a similar pattern. In
this case, the model shows the greatest boost in performance for
moderate values of ζ . However, when ζ is set to the upper end of
the sampled range, the model no longer predicts a performance
advantage for increased noise levels. Interestingly, with respect
to this parameter set, the overall shape of the response curves
is not greatly effected by the exploration parameter (τ ) or the
average-reward updating parameter (αavg ), except for the obvious
boundary cases (e.g., τ → 0). The model fits best with relatively
low settings of αavg , suggesting an that average reward should
be incrementally updated. Overall, the results indicate (across a
wide range of model parameters) that the model predicts a non-
monontonic relationship between the variability of the rewards
and task performance.

6 Values of σr were sampled at intervals of 25 units over this range in our figures.
7 In some cases, we used a limited range of parameters that garanteed stable
model performance. In addition, we only manipulate individual parameters rather
than testing the interactions between parameters.
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Table 2
Best-fit parameters and resulting RMSE for Experiments 1 and 2. Parameters are explained in the main text.

RMSE α αavg τ ζ Q0 ρ0 w0

Experiment 1
All .04 .44 7.3e-05 .04 .45 1676 625 –
Fit to NN Only .05 .42 .001 .034 .4 1029 536 –
Fit to LN Only .14 .34 .002 .036 .17 1298 227 –

Experiment 2
All .07 .41 .004 21.9 .12 2.03 .72 3.9
Fig. 6. A comparison of human performance in Experiment 1 with the RL model. Panel A plots the performance for each condition of Experiment 1 along with the predicted
response proportions for the model (using the overall best fit parameters). The model, like human participants, shows a non-monotonic relationship between performance
and reward noise. Panel B plots this noise-performance relationship over an entire range of σr for different parameter fitting procedures. Even though individual parameters
change the shape of the response function, all the fits display a performance advantage for higher noise levels relative to no noise at all.
Fig. 7. Parametric model analysis showing the effect of changing different parameters in themodel on the noise-response function for Experiment 1. The vertical axis shows
predicted performance in the task (i.e., proportion of Long-Termmaximizing responses). The horizontal axis shows the standard deviation of the noise (σr ). The points plotted
with standard error bars are the average performance of human subjects in Experiment 1. In these plots, each parameter was moved independently of the others starting
with the best-fit set to all of the human data.
The performance advantage for intermediate reward noise
levels is a straightforward consequence of the way Q-values
are updated in the model. As the level of noise increases, the
probability of encountering extreme observations of the value of



T.M. Gureckis, B.C. Love / Journal of Mathematical Psychology 53 (2009) 180–193 191
Fig. 8. A comparison of human performance in Experiment 2 with the RL model. Panel A plots the performance for each condition of Experiment 2 along with the predicted
response proportions for the model using the best fit parameters. The model shows a main effect of increasing state-cue variability. Panel B plots this noise-performance
relationship over a sampled range of both σr and σs . Dark areas this figure reflect regions of this ‘‘task-environment’’ space where themodel predicts increased performance,
while white areas show regions closer to chance. The key result is that performance drops off quickly for the σs compared to σr , consistent with the human results.
any action increases. These extreme values can cause a sudden
shift in the estimated value of particular actions. As a result of
the sudden fluctuations, the model may switch preferences from
one action to the other. Thus, the transient dynamics of weight
updates ultimately leads themodel to more effectively explore the
system. With continued learning, these trial-to-trial fluctuations
are eventually ‘‘washed out’’ until the model settles on a effective
strategy.

3.3. Experiment 2 simulations

Fig. 8A compares the model and human performance for each
of the four conditions tested in Experiment 2. Best-fit parameters
were found by fitting the model to the performance curves from
all four conditions (see the bottom row of Table 2). Overall, the
model captures themain effect that additional noise on the reward
signal has little impact on performance, while additional noise
on the state cue does. This is interesting given that the levels
of variability introduced on each signal were matched (and, if
anything, the ‘‘effective’’ variability on reward was higher due
to the fact that changing response options introduced additional
variability due to the two different reward curves for short- and
long-term responses).
In addition, the model no longer shows a non-motonic

relationship between performance and reward noise σr when σs
is set to zero. Essentially, performance remains relatively constant
across a large range of intermediate σr values and declines for
higher values. Themajor difference between these simulations and
those of Experiment 1 were the addition of the state cues. Thus,
having cues which signal the current task state serve to reduce
the impact that moderate amounts of noise have on performance.
When these cues are absent (such as in Experiment 1), the model’s
behavior is predicted to be more sensitive to variations in reward.
Like our simulations for Experiment 1, we characterize the

performance of the model for a wide range of task environments
(i.e., values for σs and σr ). Fig. 8, panel B shows a density
plot that reveals how changing these two task parameters
impact performance. Dark colors in this plot indicate cases in
which the model predicts performance closer to 80% maximizing,
whereas light colors indicate performance closer to chance (50%).
Interestingly, increasing noise on the state cue (σs) has a much
more dramatic effect on performance than does increasing reward
noise (σr ). For example, when σr = 0 for values of σs > 15,
performance is close to chance, whereas when σs = 0, an σr of
almost 80-100 is necessary to show the same level of performance.
In addition, the plot provides scant evidence for strong interactions
between state and reward noise, although it appears that for higher
values of σr performance may drop off more quickly for large σs.
However, these predicted effects occur outside of the range of σs
and σr values tested in Experiment 2.
The prominent role state cues play in the model is quite

intuitive. The model does not explicitly take into account the
uncertainty associated with particular observations. As a result, all
learning is with respect to the data/information that is currently
available in the task display (i.e., the input cues). When the
state cue fluctuates due to random noise, the model effectively
updates the wrong state. This hampers the model’s ability to
learn the true value of each state. Returning to our restaurant
analogy, it is as if the model is mistakenly learning about the
quality of one restaurant while eating at another. Interestingly, the
impact of reward variability is less pronounced. The model uses
a simple linear network to approximate the entire Q-value space.
Thus, noisy observations of reward are integrated across all states
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simultaneously and variability of any one action is reduced. One
key model prediction is that using different kinds of state cues, in
particular cues which limit generalization between states, should
result in performance being more impacted by reward noise.
As in our simulations of Experiment 1, we attempted to find

other parameter sets by fitting the model to a restricted subset of
the data. We found that a wide range of parameter values were
able to capture performance in a single condition and therefore
placed few constraints on the model’s predictions for the other
conditions. However, even in these simulations, we found that the
model generally predicted the same qualitative pattern (i.e., state
noise hurt performance more than equivalent amounts of reward
noise).

4. General discussion

In this article, we used noise as a tool to elucidate the
mechanisms that people use to learn in dynamic decision making
tasks. Our results indicate how, in certain task environments,
noise can have seemingly paradoxically positive effects on
learning and decision-making. In particular, moderate noise can
improve performance in some task environments by encouraging
exploration (Experiment 1). Additionally, we found that different
types of control signals are more or less resistant to the negative
effects of noise. In particular, decision making became much more
difficult when participants were mislead about the current task
state due to noise, but was more robust in the face of similar types
of noise on reward signals (Experiment 2).
In Experiment 1, we found that adding intermediate amounts

of noise actually improved decision making performance. This
finding is interesting given the often times negative relationship
between noise and system performance. However, noise is not a
pancea: the positive or negative effects of noise are highly tied to
the structure of the task. For example, a number of recent studies
have shown how increased exploration can lead to more effective
decision making in tasks with complex, non-obvious solutions or
tasks which require searching a large problem space for a globally
optimal solution in a space of deceptive local minima (Maddox,
Baldwin, & Markman, 2006; Worthy et al., 2007). In contrast,
simpler tasks with more obvious solutions benefit more from
rapid exploitation of early strategies (i.e., when the the optimal
problem solution is not hidden in a space of sub-optimal strategies,
the best outcome would be to exploit this solution early). In
these studies, people’s tendency to explore was manipulated by
changing the motivational framing of the task, however in our
experiments noise added to the task was simply part of the task
environment. Thus, our results and simulations highlight howeven
effectively random, non goal-oriented exploration in response to
contingencies in the environment can improve performance.
The fact that noise was beneficial in Experiment 1 (where only

moderate amounts of noise obscured rewards) and had either
no effect or negative consequences in Experiment 2 reinforces
the idea that noise or variability can have a range of effects
on performance. For example, while we showed that noise
could improve performance, the positive effects of reward noise
disappear when state cues are present in the task. Given that
previous research has shown that state-cues can act to boost
task performance (Gureckis & Love, in press), it appears that the
positive effect of both increased exploration and better integrated
structures do not simply combine. One possible reason is that
these two decision-making aids likely influence different aspects
of performance. Increased reward variability in the absence of a
state cue may encourage exploration which may be critical when
people have little insight into the structure of the task. In contrast,
the addition of state cues likely gives people information about the
structure of the task and encourages exploration in the absence of
reward noise. For example, participants may wonder how to move
the state cue light from one location to another and, in doing so,
gain more information about the reward structure of the task.
The observation that there was no longer a benefit to

increased reward noise when participants were given state cues
is consistent with the idea that such cues help participants adopt
a more robust conceptual ‘‘framework’’ for the task, helping them
become more resistant to variability in any particular observation.
One might draw an analogy to work in social psychology on
the fundamental attribution error (Jones & Harris, 1967) or
correspondence bias (Gilbert & Malone, 1995). According to these
accounts, observers often attribute to an actor’s personality aspects
of their behavior that are largely the results of the particular
situation the actor is in (for example, believing that a criminal
is an intrinsically bad person irrespective of the situation that
led them to commit the crime). However, such effects are likely
diminished for people who we know better and for whomwemay
have developed a better model or representation. For example, if
you know your friend is a nice person, you don’t give up on them
given only one time that they let youdown (pushing the attribution
out to the situation). To the degree that people themselves act
as ‘‘state-cues’’ for integrating observations, it makes sense that
such representations should help reduce the impact that particular
(extreme) observations have on estimates of personality. In effect,
the ability to separate signal and noise improveswhen participants
can actually learn a better estimate of the process generating the
signal.
Overall, this paper represents a first step toward understanding

how task variability can be used as a tool to understand
basic learning mechanisms. As mentioned in the introduction,
experimenter controlled-noise is often used to reveal the nature
of human perceptual and cognitive proceses (Gold et al., 2004;
Green & Swets, 1966; Lu & Dosher, 1999; Pelli & Farell, 1999).
Likewise, we believe there is considerable potential for using
variability to improve our understanding of how people learn
adaptive decisionmaking strategies in complex tasks. For example,
in our simulations, we assumed that people treated the noise
induced in the taskmore or less veridically. In ourmodel, a strongly
deviant outcome was weighted the same as one that fell closer to
the mean (and in fact, this fact allowed the noise to have a positive
effect in Experiment 1). However, other approaches to adaptive
learning explicitly represent and learn the current uncertainty
associatedwith actions, such as the Kalman filter (Daw, O’Doherty,
Seymour, Dayan, & Dolan, 2006; Kalman, 1960; Kruschke, 2008) or
methods based on partially-observable markov decision processes
(POMDPs, Littman, in this issue). The latter approaches suggest that
learners should adjust their learning rate on a trial-by-trial basis
with respect to the experienced variability in outcomes. While
such strategies may be adaptive in certain cases, we show here
that the relationship between noise and performance is potentially
complex and may vary as a function of the task environment.
Manipulations of task variability of the kind considered here are
thus likely to give critical insight into howprior beliefs are updated
in noisy environments and how the cognitive systems remains
robust to such noise.
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