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Abstract

We evaluate two broad classes of cognitive mechanisms that might support the learning of

sequential patterns. According to the first, learning is based on the gradual accumulation of direct

associations between events based on simple conditioning principles. The other view describes learn-

ing as the process of inducing the transformational structure that defines the material. Each of these

learning mechanisms predicts differences in the rate of acquisition for differently organized

sequences. Across a set of empirical studies, we compare the predictions of each class of model with

the behavior of human subjects. We find that learning mechanisms based on transformations of an

internal state, such as recurrent network architectures (e.g., Elman, 1990), have difficulty accounting

for the pattern of human results relative to a simpler (but more limited) learning mechanism based

on learning direct associations. Our results suggest new constraints on the cognitive mechanisms

supporting sequential learning behavior.

Keywords: Sequence learning; Skill acquisition and learning; Learning constraints; Simple recurrent

networks; Associative learing

The ability to learn about the stream of events we experience allows us to perceive mel-

ody and rhythm in music, to coordinate the movement of our bodies, and to comprehend

and produce utterances; it forms the basis of our ability to predict and anticipate. Despite

the ubiquity of sequential learning in our mental lives, an understanding of the mechanisms

which underlie this ability has proven elusive. Over the last hundred years, the field has

offered at least two major perspectives concerning the mechanisms supporting this ability.

The first (which we will call the ‘‘Associationist’’ or ‘‘Behaviorist’’ view) describes

learning as the process of incrementally acquiring associative relationships between events

(stimuli or responses) that are repeatedly paired. A defining feature of this paradigm is the

claim that behavior can be characterized without reference to internal mental processes or
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representations (Skinner, 1957). For example, consider a student practicing typing at a key-

board by repeatedly entering the words ‘‘we went camping by the water, and we got wet.’’

According to associative chain theory (an influential associationist account of sequential

processing), each action, such as pressing the letter c, is represented as a primitive node.

Sequences of actions or stimuli are captured through unidirectional links that chain these

nodes together (Ebbinghaus, 1964; Wickelgren, 1965). Through the process of learning,

associations are strengthened between elements which often follow one another, so that, in

this example, the link between the letters w and e is made stronger than the link between w
and a because w-e is a more common subsequence. Through this process of incrementally

adjusting weights between units that follow one another, the most activated unit at any point

in time becomes the unit which should follow next in the sequence. Critically, the associa-

tionist perspective directly ties learning to the statistical properties of the environment by

emphasizing the relationship between stimuli and response (Estes, 1954; Myers, 1976).

A second view, offered by work following from the ‘‘cognitive revolution,’’ highlights

the role that the transformations of intermediate representations play in cognitive process-

ing. Broadly speaking, transformational systems refer to general computational systems

whose operation involves the iterative modification of internal representations. By this

account, processes which apply structured transformations to internal mental states interact

with feedback from the environment in order to control sequential behavior. For example, a

cornerstone of contemporary linguistics is the idea that language depends on a set of struc-

tured internal representations (i.e., a universal grammar) which undergo a series of symbolic

transformations (i.e., transformational grammar) before being realized as observable behav-

ior (Chomsky, 1957, 1965; Lashley, 1951). Like the associative chain models just described,

transformational system link together representations or behavior through time through

input and output relationships and provide a solution to the problem of serial ordering. How-

ever, a critical difference is that while the associative chain account simply links together

behavioral primitives, transformations output new, internal representations which can later

serve as input to other transformations.

Transformations are often more flexible than simple associations. For example, systems

that depend on symbolic rewrite rules can apply the same production when certain conditions

are met, irrespective of surrounding context (i.e., a rewrite rule such as xABy fi xBAy,

which simply flips the order of elements A and B, applies equally well to strings like FXAB-
TYU and DTABRRR due to the presence of the common AB pattern). This flexibility allows

generalization between structurally similar inputs and outputs. In addition, while the selection

of which transformation to apply at any given point may be probabilistic, the rules used in

transformations tend to regularize their output since only a single mapping can be applied at

any time. Critically, transformational systems depend on an appropriately structure interme-

diate ‘‘state’’ or representation which is modified through additional processing (in contrast

to the associationist account which learns direct relations between observed behavioral

elements).

The importance of transformations as a general cognitive mechanism extends beyond

strictly linguistic domains such as transformational grammars for which they are most easily

identified. For example, theories of perceptual and conceptual similarity have been proposed
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which assume that the similarity of two entities is inversely proportional to the number of

operations required to transform one entity so as to be identical to the other (Hahn, Chater,

& Richardson, 2003; Imai, 1977). In addition, systems based on production rules (which

also work via transformational processing of an intermediate mental state) have figured

prominently in many general theories of cognitive function (Anderson, 1993; Anderson &

Libiere, 1998; Laird, Newell, & Rosenbloom, 1987; Lebiere & Wallach, 2000). In this

paper, we argue that transformational systems represent a broad class of learning and repre-

sentational mechanisms which are not limited to systems based on symbolic computations.

Indeed, we will later argue that certain recurrent neural networks (Elman, 1990) are better

thought of as general-purpose computational systems for learning transformation of hidden

states. As a result, we use the term transformations throughout this paper to refer to a broad

class of computational systems, including productions, transformations, rewrite rules, or

recurrent computational systems. Each of these systems has slightly different properties. For

example, purely symbolic systems are typically lossless in their operation, while in recurrent

computational systems, representations are more graded. Nevertheless, these systems share

deep similarities, particularly with respect to the way that representation and processing

unfold during learning and performance.

The goal of the present article is to evaluate these two proposals (i.e., simple associative

learning vs. transformational processing) as candidate mechanisms for supporting human

sequence learning. The two perspectives just outlined predict important differences in the

number of training exposures needed to learn various types of sequentially structured infor-

mation. By limiting learning to the experienced correlations between stimuli and responses,

the associationist account predicts that the speed and fluency of learning is a direct function

of the complexity of the statistical relationships that support prediction (such as conditional

transition probabilities). In contrast, the transformational account predicts that learning will

be sensitive to the number and type of transformations needed to represent the underlying

structure of the material. Note that both of these approaches can learn to represent both

probabilistic and deterministic sequences and, as a result, it maybe difficult to distinguish

these accounts on the basis of learnability alone. However, as we will show, the time course

of acquisition provides a powerful window into the nature of such mechanisms that can dif-

ferentiate between competing theories.

To foreshadow, our results show that, at least on shorter time scales, human sequence

learning appears more consistent with a process based on simple, direct associations. This

conclusion is at odds with recent theoretical accounts which have argued for domain-general

sequential learning processes based on transformations of an internal state (such as the

simple recurrent network, Elman, 1990). While it is often tempting to attribute sophisticated

computational properties to human learners, our results are consistent with the idea that

human learning is structured to enable rapid adaptation to changing contingencies in the

environment, and that such adaptation may involve tradeoffs concerning representational

flexibility and power. We begin by introducing two representative models that draw from

these two paradigms. Despite the fact that both are based on incremental error-driven learn-

ing, each model makes different predictions about human learning performance in sequence

learning tasks. Finally, using a popular sequential learning task (the serial reaction task or
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SRT), we explore the factors influencing the speed of sequence learning in human subjects

and compare these findings to the predictions of each model.

1. Associations versus transformations: Two representative models

We begin our analysis by considering two models that are representative of the broad the-

oretical classes just described. The first, called the linear associative shift-register (LASR),

is a simple associative learning system inspired by classic models of error-driven associative

learning from the associationist tradition (Rescorla & Wagner, 1972; Wagner & Rescorla,

1972). The second is the simple recurrent network (SRN) first proposed by Elman (1990)

and extended to statistical learning tasks by Cleeremans and McClelland (1991). Although

related, these modeling accounts greatly differ in the types of internal representational and

learning processes they assume (see Fig. 1), which in turn lead them to predict both qualita-

tive and quantitative differences in the rate of learning for various sequentially structured

materials. In the following sections, we review the key principles and architecture of each

model along with their key differences.

1.1. The LASR model

LASR is a model of sequential processing based on direct stimulus–stimulus or stimulus–

response mappings. The basic architecture of the model is shown in Fig. 1 (left). Like

Fig. 1. The schematic architecture of the LASR (left) and SRN (right) networks. In LASR, memory takes the

form of a shift-register. New events enter the register on the right and all previous register contents are shifted

left by one position. A single layer of detector units learns to predict the next sequence element given the current

contents of the register. Each detector is connected to all outcomes at all memory slots in the register. The model

is composed of N detectors corresponding to the N event outcomes to be predicted (the weights for only two

detectors is shown). In contrast, in the SRN, new inputs are presented on a bank of input units and combine with

input from the context units to activate the hidden layer (here, solid arrows reflect fully connected layers, and

dashed arrows are one-to-one layers). On each trial, the last activation values of the hidden units are copied back

to the context units, giving the model a recurrent memory for recent processing. In both models, learning is

accomplished via incremental error-driven adaptation of learning weights.
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associative chain models, LASR describes sequence learning as the task of appreciating the

associative relationship between past events and future ones. LASR assumes that subjects

maintain a limited memory for the sequential order of past events and that they use a simple

error-driven associative learning rule (Rescorla & Wagner, 1972; Widrow & Hoff, 1960) to

incrementally acquire information about sequential structure. The operation of the model is

much like a variant of Rescorla–Wagner that learns to predict successive cues through time

(see Appendix A for the mathematical details of the model).

The model is organized around two simple principles. First, LASR assumes a simple

shift-register memory for past events (see Elman & Zipser, 1988; Hanson & Kegl,

1987; or Cleeremans’ (1993) buffer network for similar approaches). Individual elements

of the register are referred to as slots. New events encountered in time are inserted at

one end of the register and all past events are accordingly shifted one time slot.1 Thus,

the most recent event is always located in the right-most slot of the register (see

Fig. 1). The activation strength of each register position is attenuated according to how

far back in time the event occurred. As a result, an event which happened at time t ) 1

has more influence on future predictions than events which happened at t ) 5, and

learning is reduced for slots which are positioned further in the past (see Eq. 4 in the

Appendix).

Second, the simple shift-register memory mechanism is directly associated with output

units called detectors without mediation by any internal representations or processing

(see Fig. 1). A detector is a simple, single-layer network or perceptron (Rosenblatt, 1958)

which learns to predict the occurrence of a single future event based on past events. Because

each detector predicts only a single event, a separate detector is needed for each possible

event. Each detector has a weight from each event outcome at each time slot in the memory

register. On each trial, activation from each memory-register slot is passed over a

connection weight and summed to compute the activation of the detector’s prediction unit.

The task of a detector is to adjust the weights from individual memory slots so that it can

successfully predict the future occurrence of its assigned response. Weight updates are

accomplished through a variant of the classic Rescorla–Wagner error-driven learning rule

(Rescorla & Wagner, 1972; Widrow & Hoff, 1960). Each detector learns to strengthen the

connection weights for memory slots which prove predictive of the detector’s response

while weakening those which are not predictive or are counter-predictive. A positive

weight between a particular time slot and a detector’s response unit indicates a positive

cue about the occurrence of the detector’s response, whereas a negative weight acts as an

inhibitory cue.

Note that in LASR, the critical determinants of performance are simply the relationship

between stimulus and response. As a result, LASR is extremely limited in the kind of gener-

alizations it can make. For example, the model cannot learn general mappings such as the

an fi bn language, where any number (n) of type a events are input, and the model pre-

dicts the same number of b events. Even with regard to simple associations, LASR is limited

by the fact that it lacks internal hidden units (Minsky & Papert, 1969, 1998). As a result, the

model is unable to combine information from two or more prior elements of context at once

(which is necessary in order to represent higher-order conditional probabilities). On the
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other hand, this simple, direct connectivity enables the model to learn very quickly. Since

there are no internal representations to adjust and learn about, the model can quickly adapt

to many simple sequence structures.

1.2. The SRN

We compare the predictions of LASR to a mechanism based on learning transforma-
tions of internal states. In particular, we consider Elman’s (1990) SRN. The SRN is a

network architecture that learns via back-propagation to predict successive sequence ele-

ments on the basis of the last known element and a representation of the current context

(see Fig. 1). The general operation of the model is as follows: Input to the SRN is a rep-

resentation of the current sequence element. Activation from these input units passes over

connection weights and is combined with input from the context layer in order to acti-

vate the hidden layer. The hidden layer then passes this activation across a second layer

of connection weights which, in turn, activate each output unit. Error in prediction

between the model’s output element (i.e., prediction of the next sequence) and the actual

successor is used to adjust weights in the model. Critically, on each time step, the model

passes a copy of the current activation values of the hidden layer back to the context

units.

While the operation of the SRN is a simple variation on a standard multilayer back-prop-

agation network, recent theoretical analyses have suggested another way of looking at the

processing of the SRN, namely as a dynamical system which continually transforms patterns

of activation on the recurrent context and hidden layers (Beer, 2000; Rodriguez, Wiles, &

Elman, 1999). In fact, the SRN is a prototypical example of a general class of mathematical

systems called iterated function systems, which compositionally apply functional transfor-

mations to their outputs (Kolen, 1994). For example, on the first time step, the SRN maps

the activation of the context unit state vector, c1, and the input vector, i1, to a new output,

h1, which is the activation pattern on the hidden layer, so that h1 ¼ f(c1,i1). On the next

time-step, the situation is similar except now the model maps h2 ¼ f(h1,i2), which expands

to h2 ¼ f(f(c1,i1),i2). This process continues in a recurrent manner with outputs of one trans-

formation continually feeding back in as an input to the next. As sequences of inputs are

processed (i.e., i1,i2,...), each drives the network along one of several dynamic trajectories

(Beer, 2000). What is unique to the SRN among this class of recurrent systems is the fact

that the model learns (in an online fashion) how to appropriately structure its internal state

space and the mappings between input and output in order to obtain better prediction of

elements through time.

Due to the dynamic internal states in the model (represented by the patterns of activity

on the hidden units), the SRN model is capable of building complex internal descriptions of

the structure of its training material (Botvinick & Plaut, 2004; Cleeremans & McClelland,

1991; Elman, 1990, 1991). For example, dynamical attractors in the model can capture

type/token distinctions (generally items of the same type fall around a single region in the

hidden unit space), with subtle differences capturing context-sensitive token distinctions

(Elman, 2004). Similarly, like the symbolic transformational systems described in the
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Introduction, the SRN is able to generalize over inputs with similar structure, such as

the rule-based patterns studied by Marcus, Vijayan, Rao, and Vishton (1999) (Calvo &

Colunga, 2003; Christiansen, Conway, & Curtin, 2002). Indeed, part of the intense

interest in the model stems from the fact that while it is implemented in a connectionist

framework, the transformational processes in the model make it considerably more

powerful than comparable models from this class (Dominey, Arbib, & Joseph, 1995;

Jordan, 1986; Keele & Jennings, 1992). For example, early work proved that the SRN

is able to universally approximate certain finite state automata (Cleeremans, Servan-

Schreiber, & McClelland, 1989; Servan-Schreiber, Cleeremans, & McClelland, 1991).

More recently, theorists have found that the representational power of the SRN might

extend further to include simple context-free languages (such as the anbn language)

because network states can evolve to represent dynamical counters (Rodriguez, 2001;

Rodriguez et al., 1999).

1.3. How do these accounts differ?

Despite the fact that both models are developed in a connectionist framework with nodes,

activations, and weights, LASR is more easily classified as a simple associationist model.

LASR has no hidden units, and learning in the model is simply a function of the correlations

between past events and future ones. As a result, LASR is considerably more limited in

terms of representational power and flexibility relative to the SRN. In contrast, processing

in the SRN is not limited to the relationship between inputs and outputs, but it includes the

evolution of latent activation patterns on the hidden and context layers. Over the course of

learning, the recurrent patterns of activation in the hidden and context layer self-organize to

capture the structure of the material on which it is trained. The role of inputs to the model

can be seen as simply selecting which of the continually evolving transformations or

functions to apply to the context units on the current time step (Landy, 2004). In addition,

processing in the SRN is a continually generative process where hidden state activations

from one transformation are fed back in as input to the next. As a result, the operation of the

SRN is drawn closer to the transformational systems described in the introduction (Ding,

Dennis, & Mehay, 2009). Another difference is that LASR’s shift register adopts a very

explicit representation of the sequence, while the representation in the SRN evolves through

the dynamics of the recurrent processing.

Of course, our positioning of the SRN closer to symbolic production systems may appear

odd at first given that at least some of the debate surrounding the SRN has attacked it on the

grounds that it is a purely associative device (Marcus, 1999, 2001). However, as we will

show in our simulations and analyses, the SRN is sensitive to sources of sequence structure

that appear to be somewhat nonassociative while our ‘‘properly’’ associationist model

(LASR) appears to be more directly tied to the statistical patterns of the training set. We

believe this divergence warrants a more refined understanding of both the capabilities and

limitations of the SRN. In addition, as we will see in the following sections, these additional

processes lead the SRN to incorrectly predict the relative difficulty of learning different

sequence structures by human subjects.
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2. Statistical versus transformational complexity

Whether human learning is based on a mechanism utilizing direct associations (like

LASR) or is based on learning transformations of internal states (like the SRN) has impor-

tant implications for the types of sequence structures which should be learnable and their

relative rates of acquisition. In the following section, we consider this issue in more detail

by considering two different notions of sequence complexity.

2.1. Statistical complexity

When learning a sequence, there are many types of information available to the learner

which differ in intrinsic complexity (see Fig. 2). For example, one particularly simple type

of information is the overall base rate or frequency of particular elements, denoted P(A).

Learning a more complex statistic, such as the first-order transition probability, P(At|Bt)1)

(defined as the probability of event A at time t given the specific event B at time t ) 1),

requires a memory of what occurred in the previous time step. Each successively higher-

Fig. 2. Dimensions of sequence complexity. Panel A: A hierarchy of statistical complexity. More complex statis-

tical relationships require more memory and training in order to learn. Higher-order statistical relationships are

distinguished by depending on more than one previous element of context. The order of a relationship is defined

as the number of previous elements the prediction depends on. Thus, a pattern like ABC fi D is a third-order

statistical relationship. Also, the elements of an nth order conditional relationship may be separated by any num-

ber of intervening elements (or lag) as the definition only stipulates the number of previous elements required

for current prediction. Panel B (top): A simple grammar with a small number of branches. Panel B (bottom): A

more complex grammar with a large number of highly similar branches. Although the number of paths through

each grammar increases, both are captured with a simple transition probability (shown beneath).
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order transition statistic is more complex in the sense that it requires more resources (the

number of distinct transition probabilities for any order n over k possible elements grows

with kn) and the amount and type of memory needed (see also a similar discussion of statisti-

cal complexity by Hunt & Aslin, 2001). Note that in the example shown in Fig. 2A, a sec-

ond-order relationship of the form P(Ct|Bt)xAt)y) is shown. In general, any combination of

two previous elements may constitute a second-order relationship even when separated by a

set of intervening elements or lag, for example, A*B fi C, where * is a nonpredictive wild

card element.2

LASR is particularly sensitive to the statistical complexity of sequences. For example,

LASR cannot learn sequences composed of higher-order conditional relationships because it

lacks hidden units which would allow ‘‘configural’’ responding (i.e., building a unique asso-

ciation to a combination of two or more stimuli which is necessary to represent higher-order

relationships). If human participants use a learning mechanism akin to LASR to learn about

sequential information, more complex sequences which require abstracting higher-order

conditional probabilities are predicted to be more difficult and learned at a slower rate.3 On

the other hand, models such as the SRN concurrently track a large number of statistics about

the material it is trained on and no specific distinction is made concerning these types of

knowledge.

2.2. Transformational complexity

While the complexity of the statistical relationships between successive sequence ele-

ments may have a strong influence on the learnability of particular sequence structures

by both human and artificial learners, other sources of structure may also play a role in

determining learning performance. For example, Fig. 2B (top) shows a simple artificial

grammar. The sequence of labels output by crossing each path in the grammar defines a

probabilistic sequence. While it is possible to predict each element of the sequence by

learning a set of transition probabilities, transformational systems such as the SRN take a

different approach. For example, at the start of learning, the SRN bases its prediction of

the next stimulus largely on the immediately preceding stimulus (i.e., C fi B) because

the connection weights between the context units and hidden layer are essentially ran-

dom. Later, as the context units evolve to capture a coherent window of the processing

history, the model is able to build more complex mappings such as AC fi B separately

from AD fi B (Boyer, Destrebecqz, & Cleeremans, 2005; Cleeremans & McClelland,

1991).

Our claim is that models that use transformations to represent serial order are particularly

sensitive to the branching factor of the underlying Markov chain or finite-state grammar.

For example, compare the grammar in the top panel of Fig. 2B to the one on the bottom.

The underlying structure of both of these grammars generates sequences of the form A-*-B

where * is a wildcard element. As a result, both sequences are easily represented with the

statistical relationship P(Bt|At)2) ¼ 1.0 (the presence of cue A two trials back is a perfect

predictor for B). However, systems based on transformations require a separate rule or

production for each possible path through the grammar (i.e., AC fi B, AD fi B,
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AE fi B, etc…). Thus, even though a relatively simple statistical description of the

sequence exists, systems based on transformations often require a large amount of training

and memory in order to capture the invariant relationship between the head and the tail of

the sequence.4 Indeed, some authors have noted limitations in SRN learning based on the

number of possible continuation strings that follow from any particular point in the Markov

process (Sang, 1995). In addition, the SRN has difficulty learning sequences in which there

are long-distance sequential contingencies between events (such as T-E*-T or P-E*-P,

where E* represents a number of irrelevant embedded elements). Note that work with

human subjects has shown that they have less difficulty in learning such sequences in an

SRT task (Cleeremans, 1993; Cleeremans & Destrebecqz, 1997).

3. Overview of experiments

In summary, we have laid out two sources of sequence complexity that human or artificial

learners may be sensitive to. In Experiments 1 and 2, we place these two notions of

sequence complexity in contrast in order to identify the mechanisms that participants use to

learn about sequentially presented information. In Experiment 1 we test human learning

with a sequence that has low statistical complexity, but high transformational complexity

(using the definition given above). In Experiment 2, we flip this by testing a sequence with

low transformational complexity but higher statistical complexity (see Fig. 3). Our predic-

tion is that if human learners utilize a sequential learning mechanism based on transforma-

Fig. 3. The finite-state grammar underlying the sequences used in Experiment 1 (left) and 2 (right). The gram-

mer-based representation for Experimen 1 shows only a single branch of the entire sequence space. The

sequence used in Experiment 1 has a large branching factor and a large number of highly similar paths, while

the grammar underlying Experiment 2 is much simpler. In contrast, the sequence tested in Experiment 1 affords

a simple, first-order statistical description, while the sequence tested in Experiment 2 relies entirely on higher-

order conditional probabilities. See the introduction for each experiment for a detailed explanation.
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tions on an internal state (such as the SRN), learning should be faster in Experiment 2 than

Experiment 1. However, if learners rely on a simple associative learning mechanism akin to

LASR, the opposite patterns should obtain.

In order to assess the rate of learning in both experiments, we utilized a popular sequence

learning task known as the serial reaction time (SRT) task (Nissen & Bullemer, 1987;

Willingham, Nissen, & Bullemer, 1989). One advantage of the SRT over other sequence

learning tasks is that responses are recorded on each trial, allowing a fine-grained analysis

of the time course of learning. The basic procedure is as follows: On each trial, participants

are presented with a set of response options spatially arranged on a computer monitor with

a single option visually cued. Participants are simply asked to press a key corresponding to

the cued response as fast as they can while remaining accurate. Learning is measured via

changes in reaction time (RT) to predictable (i.e., pattern-following) stimuli versus unpre-

dictable (i.e., random or non-pattern-following) stimuli (Cleeremans & McClelland, 1991).

The premise of this measure of learning is that differentially faster responses to predictable

sequence elements over the course of training reflect learned anticipation of the next

element.

4. Experiment 1: Low statistical complexity, high transformational complexity

In Experiment 1, we test human learning with a sequence that is transformationally com-

plex (i.e., has a high branching factor), but which has a relatively simple statistical descrip-

tion. The actual sequence used in Experiment 1 is generated probabilistically according to a

simple rule: Each one of six possible response options had to be visited once in a group of

set of six trials, but in random order (with the additional constraint that the last element

of one set could not be the first element of the next to prevent direct repetitions). Examples

of legal six-element sequence sets are 0-2-1-4-3-5, 3-2-1-5-0-4, and 1-3-5-0-4-2 which are

concatenated into a continuously presented series with no cues about when one group begins

or ends (this type of structure was first described by Lee [1997]).

What sources of information might participants utilize to learn this sequence? Note that

by definition, the same event cannot repeat on successive trials and thus repeated events are

separated by a minimum of one trial (Boyer et al., 2005). This might happen if, for example,

the fifth element of one six-element sequence group repeated as the first element of the next

sequence. The longest possible lag separating two repeating events is 10, which occurs when

the first event of one six-element sequence group is repeated as the last event of the follow-

ing six-element group. Fig. 4A shows the probability of an event repeating as a function of

the lag since its last occurrence in the sequence, created by averaging over 1,000 sequences

constructed randomly according to the procedure described above. The probability of

encountering any particular event is an increasing function of how many trials since it was

last encountered (i.e., lag).

From the perspective of statistical computations, using lag as a source of prediction

depends only on first-order statistical information. For example, a participant might learn

about the probability of element A given an A on trial t ) 1, P(At|At)1), which is always zero
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(because events never repeat), or the probability of element A given a B on trial t ) 2,

P(At|Bt)2). Both of these probabilities depend on a single element of context and are thus

sources of first-order information. On the other hand, if the learner tried to track the second-

order conditional probability, P(At|At)1Bt)2), he or she would find it less useful since the

probability of an A at time t only depends on the fact that A was recently experienced (at

t ) 1) and not on the occurrence of B at t ) 2. Thus, successful prediction can be accom-

plished by simply computing transition probabilities of the type P(Xt|Yt)n) (i.e., the probabil-

ity of event X given event Y on trial t ) n, where n is any number of trials in the past).
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Fig. 4. Panel A: The probability of an event repeating as a function of the number of trials since it was last expe-

rienced (lag). Responses become more likely as the number of trials since they were last executed increases.

Panel B: RT as a function of the lag between two repeated stimuli in Experiment 1. RT is faster as lag increases,

suggesting adaptation to the structure of the task. Panel C: The evolution of the lag effect over the course of the

experiment. Each line represents the lag effect for one block of the experiment. In the first block, RT to lag-10

items is very close to the RT for lag-1 items. However, by block VI the speed advantage for lag-10 item has

sharply increased. In panels B and C, error bars show standard errors of the mean. In panel C, for visual clarity,

error bars are shown only for block 1 and 6, which reflect the beginning and endpoint of learning. However, the

nature of variability was similar across all blocks.
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Finally, note that lag is just one way of examining changes in performance task as a function

of experience; however, previous studies used lag as a primary measure of learning, which

guides our analysis here (Boyer et al., 2005).

Despite this simple statistical description, mechanisms based on learning transformations

should have difficulty predicting successive sequence elements. Fig. 3 (left) shows only one

branch of the underlying finite-state grammar of the sequence. The large branching factor

and the fact that the sequence has many similar, but nonidentical sequence paths means that

a large number of transformational rules is necessary to represent the sequence. For exam-

ple, while this transformation 01234 fi 5 captures one path through the grammar, it is of

little use for predicting the next sequence element following the pattern 23401 (which is also

5). In fact, there are 1,956 total unique transformational rules which are needed to predict

the next sequence element based on any set of prior elements (there are 6! ¼ 720 unique

transformations alone that map the previous five sequence elements to enable prediction of

the sixth). Sorting out which of these transformations apply at any given point in time

requires considerable training, even with models such as the SRN that allow for ‘‘graded’’

generalization between similar paths.

4.1. Method

4.1.1. Participants
Forty-five Indiana University undergraduates participated for course credit and were

additionally paid $8 for their participation. Subjects were recruited on a voluntary basis

through an introductory psychology class, where the mean age was approximately 19 years

old, and the general population is approximately 68% female.

4.1.2. Apparatus
The experiment was run on standard desktop computers using an in-house data collection

system written in Python (http://pypsyexp.org/). Stimuli and instructions were displayed on

a 17-inch color LCD positioned about 47 cm way from the subjects. Response time and

accuracy were recorded via a USB keyboard with approximately 5–10 ms accuracy.

4.1.3. Design and procedure
The materials used in Experiment 1 were constructed in accordance with Boyer et al.

(2005), Exp. 1 (and described briefly above). The experiment was organized into a series of

blocks with each block consisting of 180 trials. For each subject, a full set of 720 possible

permutations of six element sequence groups was created. In each block of the experiment,

a randomly selected subset of 30 of these six-element groups was selected without replace-

ment and concatenated into a continuous stream with the constraint that the last element of

one six-element group was different from the first element of the following group in order

to eliminate direct repetitions. Given the previous work suggesting that learning appeared

early in the task (Boyer et al., 2005), we trained subjects in a short session consisting of only

six blocks of training (in contrast to the 24 blocks used by Boyer et al.). As a result, there

were a total of 1,080 trials for the entire experiment and the task took around 40 min to
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complete. At the end of each block, subjects were shown a screen displaying their percent

accuracy for the last block.

On each trial, subjects were presented with a display showing six colored circles arranged

horizontally on the screen. The color of each circle was the same for each subject. From left

to right, the colors were presented as blue, green, brown, red, yellow, and purple. Colored

stickers that matched the color of the circles on the display were placed in a row on the

keyboard that matched the arrangement on the display. At the beginning of each trial, a

black circle appeared surrounding one of the colored circles. Subjects were instructed to

quickly and accurately press the corresponding colored key. After subjects made their

response, the display and keyboard became inactive for a response–stimuli interval (RSI) of

150 ms. During the RSI all further responses were ignored by the computer. If the subject

responded incorrectly (i.e., their respond did not match the cued stimulus) an auditory beep

sounded during the RSI, but otherwise the trial continued normally.

Participants were given instructions that they were in a task investigating the effect of

practice on motor performance and that their goal was to go as fast as possible without

making mistakes. In addition, they were shown a diagram illustrating how to arrange

their fingers on the colored buttons (similar to normal typing position with one finger

mapped to each key from left to right). Subjects used one of three fingers (ring finger,

middle finger, and pointer finger) on each hand to indicate their response. In order to

control for the influence of within- and between-hand responses, the assignment of

sequence elements to particular button positions was random for each subject with the

constraint that each sequence element was assigned to each button an approximately

equal number of times.

Prior to the start of the main experiment, subjects were given two sets of practice trials.

In the first set, subjects were presented with 10 pseudo-random trials (not conforming to the

lag structure of the subsequent task) and were invited to make mistakes in order to experi-

ence the interface. This was followed by a second phase where subjects were asked to com-

plete short blocks of 10 pseudo-random trials (again lacking the structure of the training

sequence) with no mistakes in order to emphasize that accuracy was important in the task.

The experiment only began after subjects successfully completed two of these practice

blocks in a row without error. Following these practice trials, subjects completed the six

training blocks during which they were exposed to the six-choice SRT design described

above.

4.2. Results

Learning performance was analyzed by finding the median RT for each subject for each

block of learning as a function of the number of trials since a particular cue was last pre-

sented. Any trial in which subjects responded incorrectly was dropped from the analysis

(mean accuracy was 96.9%). The basic results are shown in Fig. 4. Panel B replicates the

lag effect reported by Boyer et al. averaged over all subjects. Participants were faster to

respond to an item the longer it had been since it was last visited, F(9,396) ¼ 13.477,

MSe ¼ 3,983, p < .001. A trend analysis on lag revealed a significant linear effect
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(t(44) ¼ 4.99, p < .001) and a smaller but significant quadratic effect (t(44) ¼ 3.241,

p < .003). Like the Boyer et al. and Lee’s (1997) study, our subjects showed evidence of

adaptation to the structure of the sequence.

In order to assess if this effect was learned, we considered the evolution of the lag effect

over the course of the experiment. Fig. 4C reveals that the difference in RT between

recently repeated events and events separated by many intervening elements increases con-

sistently over the course of the experiment. Early in learning (blocks 1 and 2), subjects show

less than a 10 ms facilitation for lag-9 or lag-10 items over lag-1 responses (close to the

approximately 5 ms resolution of our data entry device), while by the end of the experiment

(blocks 5 and 6), this facilitation increases to about 45 ms. These changes in RT cannot be

explained by simple practice effects and instead depend on subjects being able to better pre-

dict elements of the sequence structure. These observations were confirmed via a two-way

repeated measures anova with lag (10 levels) and block (6 levels) which revealed a signifi-

cant effect of lag (F(9,395) ¼ 12.07, MSe ¼ 186,104, p < .001), block (F(5,219) ¼ 11.84,

MSe ¼ 54,901, p < .001), and a significant interaction (F(45,1979) ¼ 1.52, MSe ¼ 1,737,

p ¼ .016). Critically, the significant interaction demonstrates that in the later blocks of the

experiment, RT was faster for more predictable sequence elements and provides evidence

for learned adaptation.

The results also replicated at the individual subject level. For each subject, a best-fitting

regression line (between level of lag and RT) was computed, and the resulting b weights

were analyzed. As expected, the distribution of best-fitting b weights for each subject

was significantly below zero (M ¼ –2.87, t(44) ¼ 4.989, p < .001). Similarly, a repeated

measures anova on regression weights fit to each subject for each block of the experiment

also revealed a significant effect of block (F(5,220) ¼ 3.4673, MSe ¼ 75, p < .005) and a

significant linear trend (t(44) ¼ 3.19, p < .003) with the mean value of the b for each block

decreasing monotonically over the course of the experiment.

4.3. Discussion

Subjects were able to quickly learn to anticipate sequences defined by a set of first-order

relationships, despite the fact that the underlying transformational structure of the material

was complex. Analysis of the early blocks of learning revealed a steady increase in the

magnitude of the lag effect over the course of the experiment, suggesting that subjects were

learning to anticipate cued responses which had not recently been presented. Overall, this

result appears to support the associationist view (i.e., LASR) described above, a point we

return to in the simulations.

Our results largely replicate previous reports of learning in a similar task. For example,

Boyer et al. (2005) found evidence of rapid adaptation to the Lee (1997) sequence.

However, in this study, it was suggested that performance in the task might be driven by a

preexisting bias towards inhibiting recent responses (Gilovich, Vallone, & Tversky, 1985;

Jarvik, 1951; Nicks, 1959; Tversky & Kahneman, 1971). Because successful prediction of

the next sequence element in this structure can be facilitated by simply inhibiting recent

responses, the presence of this type of bias calls into question the necessity of a learning
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account. However, our analysis of the early block of learning appears to somewhat contradict

this view. One way to reconcile our results is that we focused our analysis more directly on

the early training blocks. Note, however, that the influence of preexisting task biases

remains a possibility and is something we return to in the later simulations.

5. Experiment 2: Higher statistical complexity, low transformational complexity

In Experiment 1, we tested participant’s ability to learn a sequence which was transfor-

mationally complex but which had a simple statistical description that depended only on

first-order statistical relationships. The speed with which subjects learned to predict this

highly irregular sequence is interesting in light of the distinction between transformational

and associative theories of sequential processing. In order to further evaluate our hypothesis,

in Experiment 2 we examine the ability of human participants to learn about sequences

defined by more complex, higher-order statistical relationships, but which can alternatively

be represented by a small number of simple transformational rules.

In particular, Experiment 2 tests learning in a task where the only statistical structure of

predictive value is higher-order transitions (i.e., P(At|Bt)1Ct)2)). In the original paper on the

SRN, Elman (1990) demonstrated how the network can learn to predict elements of a binary

sequence defined by the following rule: Every first and second element of the sequence was

generated at random, while every third element was a logical XOR of the previous two. The

abstract structure of this sequence is shown as a simple grammar in Fig. 3 (right). The only

predictable component of this sequence requires learners to integrate information from both

time step t ) 2 and t ) 1 simultaneously to represent the following rule (or higher-order

conditional probability): ‘‘if the last two events are the same, the next response will be 0,

otherwise it will be 1.’’ Thus, unlike Experiment 1, no predictive information can be

obtained using first-order transition probabilities alone. In terms of the hierarchy of statisti-

cal complexity described in the previous section, prediction or anticipation of the sequence

elements in Experiment 2 depends on more complex statistical relationships than those used

in Experiment 1. However, in a transformational sense, the sequence tested in Experiment 2

has a rather simple description made up of four simple transformational mappings

(00 fi 0, 11 fi 0, 10 fi 1, 01 fi 1).

Subjects were assigned to one of three conditions which each tested a slightly different

aspect of learning. In the first condition, referred to as the 2-Choice Second-Order or 2C-SO

condition, participants were given a binary (two choice) SRT task. This condition faithfully

replicates the classic Elman (1990) simulation results with human participants (this is the

first study to our knowledge to directly assess this). The second condition, the 6-Choice Sec-

ond-Order or 6C-SO condition, extends the first condition by testing learning in a task with

six response options (similar to the six-choice task used in Experiment 1). In addition, this

condition helps to alleviate some of the issues with response repetition that arise in binary

SRT task (see Gureckis, 2005 for an extensive discussion). However, this sequence structure

also introduces partial predictability in the form of first-order statistical relationships

(similar to the graded prediction across lags available in Experiment 1). The third and final
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condition (6-Choice First-Order or 6C-FO condition) offers an additional source of control

for the 6C-SO condition by testing learning of the first-order (linear) component of that

sequence.

LASR’s prediction is that when both first-order and second-order sources of structure are

available (such as in both the 6C-SO and 6C-FO conditions), participants will learn the first-

order information and not the more complex, second-order information. In contrast, the

SRN predicts that learning will be robust since it depends on a small number of simple

transformations (matching the four separate paths through the grammar in Fig. 3B).

Learning in all three conditions was assessed in two ways. First, because every third

element of the sequence was fully predictable on the basis of the previous two (as in the

original XOR sequence), we were able to measure changes in RT between predictable and

unpredictable sequence elements as we did with the lag structure in Experiment 1. In addi-

tion, in all three conditions we introduced transfer blocks near the end of the experiment

which allowed us to measure RT changes to novel sequence patterns (Cohen, Ivry, & Keele,

1990; Nissen & Bullemer, 1987), a procedure akin to the logic of habituation. By carefully

controlling the ways in which the transfer sequences differed from the training sequences,

we were able to isolate what sources of structure subjects acquired during training (Reed &

Johnson, 1994).

To foreshadow, in Experiment 2 participants were tested in a single, 1-h session. We

were unable to find any evidence of higher order statistical learning. However, consistent

with the predictions of LASR and the results of Experiment 1, participants in the 6C-FO

condition were significantly slower in responding during the transfer blocks, which violated

the first-order patterns of the training sequence.

5.1. Method

5.1.1. Participants
Seventy-eight University of Texas undergraduates participated for course credit and for a

cash bonus (described above). Subjects were recruited on a voluntary basis through an intro-

ductory psychology class, where the mean age was approximately 19 years old, and the gen-

eral population is approximately 68% female. In addition, eight members of the general

University of Texas community participated in a follow-up study (reported in the discus-

sion) which took place over multiple sessions and they were paid a flat rate of $25 at the end

of the final session.

5.1.2. Apparatus
The apparatus was the same as that used in Experiment 1.

5.1.3. Design and procedure
Subjects were randomly assigned to one of three conditions: 2C-SO, 6C-SO, or 6C-FO.

Twenty-six subjects participated in each condition. Subjects in the 6C-SO and 6C-FO condi-

tions experienced a six-choice SRT task, while in the 2C-SO condition the display from

Experiment 1 was adapted to use two choice options instead of six. As in Experiment 1,
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colored stickers were placed in a row on the keyboard in a way compatible with the display.

However, the mapping from the abstract structure shown in Fig. 5 to response keys varied

between participants. In addition, this mapping was subject to a set of constraints that avoided

spatial assignments which might be obvious to the participant, such as all patterns in the

experiment moving from left to right. Like Experiment 1, subjects were instructed to use both

hands during the experiment and were told how to arrange their fingers on the keyboard.

On the basis of pilot data that failed to find a significant learning effect with this material,

and following a number of other studies (Cleeremans & McClelland, 1991), we attempted

to increase the motivation of our subjects by informing them they would earn a small

amount of money for each fast response they made but that they would lose a larger amount

of money for every incorrect response (so accuracy was overall better than excessive speed).

Subjects earned 0.0004 cents for each RT under 400 ms (2C-SO) or 600 ms (6C-SO and

6C-FO), but they lost 0.05 cents for each incorrect response. At the end of each block of the

experiment, participants were shown how much money they earned so far and their

performance for the last block. Subjects typically earned a $3–4 bonus in all conditions. In

addition, subjects were given three practice blocks consisting of 30 trials each. Like

Experiment 1, the session was divided into a set of blocks each consisting of 90 trials. After

completing 10 training blocks, participants were given two transfer blocks (180 trials total).

After the two transfer blocks in each condition, the sequence returned to the original training

sequence for an additional 3 blocks leading to a total of 15 blocks in the experiment

(or 1,350 trials). The structure of the transfer blocks depended on the condition to which

subjects were assigned:

Fig. 5. The abstract structure of the sequences used in Experiment 2. Each sequence was created by uniformly

sampling triplets (one line at a time) from these tables and presenting each element to subjects one at a time (the

columns of each table reflect possible outcomes on every 1st, 2nd, and 3rd trial).
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5.1.4. Materials
5.1.4.1. 2C-SO condition: The structure of the training materials used in the 2C-SO (two-

choice, second-order) condition conformed to the sequential XOR structure reported in

Elman (1990). Learning was assessed during transfer blocks with sequences that violated this

second-order relationship. The abstract structure of the transfer blocks is shown in Fig. 5

under the column 2C-SO. Notice that the first four rows of this table are identical to the train-

ing sequence, while the final four rows have the identity of the critical, third position flipped.

If subjects have learned the statistical structure of the 2C-SO training sequence, they should

slow down and make more errors to these transfer sequences due to the presence of these

novel patterns which violate the second-order structure of the training sequence. For exam-

ple, in the training sequence P(0t|0t)10t)2) ¼ 1.0, but in the transfer sequence this probability

reduces to .5 (the transfer sequence is effectively a pseudo-random binary sequence).

5.1.4.2. 6C-SO condition: In the 6C-SO (six-choice, second-order) condition, a similar

sequence was constructed where every third element was uniquely predictable based on a

combination of the previous two (a second-order relationship). Like the 2C-SO sequence,

any individual element was equally likely to be followed by two other elements (i.e., a 2
is equally likely to be followed by a 4 or a 5) and cannot be the basis of differential pre-

diction. However, unlike the 2C-SO condition, the 6C-SO sequence utilized six response

options (see the training sequence in Fig. 5 under the column 6C-SO). The motivation

for the 6C-SO condition is that it generalizes the results from the 2C-SO condition to a

sequence structure utilizing the same six-choice SRT paradigm as was tested in Experi-

ment 1. As in the 2C-SO condition, transfer sequences were constructed that violated the

structure of the training material by flipping the identity of the third, predictable element

(see the transfer sequence table in Fig. 5 under the column 6C-SO). Critically, the trans-

fer sequences in both the 2C-SO and 6C-SO conditions preserved all sources of statistical

structure.

5.1.4.3. 6C-FO condition: Note that the 6C-SO sequence has another dimension of struc-

ture, namely that responses 0 and 1 are equally likely to be followed by either a 2 or a 3, but

are never immediately followed by a 4 or a 5. Thus, subjects can learn at least part of the

6C-SO sequence by learning which of the subset of response options are likely to follow

any other subset, thereby improving the odds of successful guess from 1/6 to 2/6. This

partial predictability is similar to the graded probability structure of Experiment 1 and is

captured by simple first-order statistical relationships (i.e., P(5|2) or P(3|0)). Thus, in the

6C-FO (six-choice, first-order) condition, we test for learning of these simpler statistical

relationships by examining subjects’ responses to transfer sequences which break this first-

order relationship (see the transfer sequence in Fig. 5 under the column 6C-FO). Note that

like the other transfer sequences, the first four items of this table are the same patterns pre-

sented during training, but the four new items exchange two of the columns (i.e., positions 2

and 3). Thus, in the transfer blocks of the 6C-FO condition, subjects experience transitions

between cued responses which were not present in the training set (i.e., 2 might be followed

by 0 in transfer while it never appeared in that order during training). It is important to point
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out that the training sequences in the 6C-SO and 6C-FO were identical, with the only differ-

ence being the structure of the transfer blocks.

5.2. Results

For each subject, the median RT was computed for every block of learning. Any trial in

which subjects responded incorrectly was dropped from the analysis. Overall accuracy was

96.9% in condition 2C-SO, 97.8% in condition 6C-SO, and 96.4% in condition 6C-FO.

Fig. 6 shows the mean of median RT for each block of learning. Learning was assessed by

examining RT during the transfer blocks (blocks 11 and 12, where the sequence structure

changes) relative to the surrounding sequence blocks. In order to assess this effect, we com-

puted a pretransfer, transfer, and posttransfer score for each subject by averaging RT over

blocks 9 and 10 (pretransfer), 11 and 12 (transfer), and 13 and 14 (posttransfer). Note that

all analyses presented below are in terms of RT, although similar conclusions are found by

analyzing accuracy scores ruling out speed-accuracy tradeoffs.

In the 2C-SO condition, there were no significant differences between the pretransfer and

posttransfer RT compared with RT during the transfer phase, t(25) ¼ .96, p > .3 or between

the pretransfer and transfer RT, t(25) ¼ .47, p > .6 (M ¼ 356 ms, 354 ms, and 350 ms,

respectively). Similarly, a linear trend test confirmed that RT monotonically decreased

across the three phases of the experiment (t(25) ¼ 2.40, p < .03), while a test for a quadratic

relationship failed to reach significance (t(25) ¼ .96, p > .3). Thus, we did not obtain

Fig. 6. Mean of median RTs for Experiment 2B as a function of training block. Error bars are standard errors of

the mean. Transfer blocks are highlighted by the grey strip covering blocks 11 and 12.
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evidence that subjects slow their responses during the transfer blocks relative to the sur-

rounding blocks.

Likewise, in the 6C-SO condition, we found no significant difference between the

pretransfer and posttransfer RT compared with RT during the transfer phase, t(25) ¼ 1.62,

p > .1. RT values between the pretransfer and transfer block also did not reach significance,

t(25) ¼ 1.26, p > .2 (M ¼ 514 ms, 510 ms, and 499 ms, respectively). As in the 2C-SO

condition, we found a significant linear trend across the three phases, t(25) ¼ 3.60,

p < .002, while the quadratic relationship failed to reach significance, t(25) ¼ 1.62, p > .1.

Thus, like the 2C-SO condition, we failed to find evidence that subjects slow their responses

during the transfer blocks relative to the surrounding blocks.

However, in the 6C-FO we found a highly significant difference between the

pretransfer and posttransfer RT compared with RT during the transfer phase, t(25) ¼
7.16, p < .001, and between the pretransfer and transfer blocks, t(25) ¼ 4.28, p < .001

(M ¼ 510 ms, 532 ms, and 491 ms, respectively). Both the linear and quadratic trends

were significant, t(25) ¼ 4.51, p < .001 and t(25) ¼ 7.16, p < .001, respectively. Unlike

condition 2C-SO or 6C-SO, subjects in this condition did slow down during the transfer

blocks relative to the surrounding blocks (by about 22 ms on average).

Another way to assess learning is to compare RT to predictable versus unpredictable

sequence elements during the transfer blocks themselves. For example, roughly half the

triplets each subject saw during the transfer set corresponded to those they saw during the

training phase, while the others were new subsequences they had not experienced. In both

the 2C-SO and 6C-SO condition we failed to detect a difference between predictable or

unpredictable responses within the transfer blocks, t(25) < 1 and t(25) < 1, respectively. A

similar analysis considering only every third trial (the one that was predictable on the basis

of second-order information) found the same results with no evidence that subjects slowed

their responses during the transfer block in either the 2C-SO or 6C-SO conditions.

5.3. Discussion

The results of Experiment 2 clearly demonstrate that subjects have difficulty learning the

higher-order statistical patterns in the XOR-like sequence. Unlike Experiment 1, subjects in

this experiment were given additional incentive to perform well in the form of cash bonuses

which were directly tied to their performance. Despite this extra motivation to perform at a high

level, learning was less robust while subjects in Experiment 1 seem to learn a similar sequence

within 50–100 trials.5 This result is surprising given previously published results showing that

subjects can learn higher-order sequence structures (Fiser & Aslin, 2002; Remillard & Clark,

2001). However, unlike at least some of these previous reports, the sequential XOR task we

utilized carefully restricts the statistical information available to subjects. Particularly in the

2C-SO condition, the only information available to subjects is the second-order conditional

relationship between every third element and the previous two. In addition, many previous

studies have utilized extensive training regimes which took place over a number of days

(Cleeremans & McClelland, 1991; Remillard & Clark, 2001). On the other hand, in the 6C-FO

condition, we again observed robust first-order learning (like the results of Experiment 1).
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Although a critical contrast between the training materials in Experiment 1 and 2 is the

presence or absence of second-order statistical relationships, these sequence patterns differ

in a number of other ways. However, along most of these measures it would appear that

Experiment 2 should be the easier sequence to learn. For example, the relevant sub-

sequences in Experiment 1 were six elements long (the overall sequence was constructed by

concatenating random permutations of six elements), while in Experiment 2, stable sub-

sequence patterns were only three elements long. In addition, on any given trial subjects had

a 1/2 chance of randomly anticipating the next element in the 2C-FO condition while in

Experiment 1 the odds of guessing were 1/6. Likewise, if subjects perfectly understood the

rules used to create the sequence in Experiment 2, they could perfectly predict every third

element. In contrast, perfect knowledge of the rules used to construct the sequence in Exper-

iment 1 would only allow perfect prediction of every sixth element (i.e., given 12345, the

subject would know with certainty the next element would be 6). Thus, by most intuitive

accounts, the XOR sequence in Experiment 2 should be the easier of the two patterns to

learn.

Despite the fact that few, if any, of our subjects demonstrated any evidence of learning

the higher-order structure of the XOR task within the context of a single session, our conclu-

sion is not that human subjects cannot learn such sequences. Instead, we believe that our

results show that learning these relationships in isolation is considerably slower than learn-

ing for other types of information. While LASR is extreme in its simplicity, the model could

be augmented to include new conjunctive units (i.e., hidden units) which would allow it to

capture higher-order patterns with extensive training (a point we return to in the discussion).

As a test of these ideas, we ran eight additional subjects in the 2C-SO and 6C-SO conditions

for two sessions per day for four days (a total of 9,760 trials) in Experiment 2B. By session

5 (day 3), subjects showed unambiguous evidence of learning in terms of an increasingly

large difference in RT between training versus transfer blocks.

6. Model-based analyses

In the following section, we consider in more detail how our representative models

(LASR and the SRN) account for human performance in each of our experiments. Each

model was tested under conditions similar to those of human subjects, including the same

sequence structure and number of training trials (the details of both models are provided in

Appendices A and B).

6.1. Experiment 1: Simulation results

Each simulation reported here consisted of running each model many times over the same

sequences given to human participants, with a different random initial setting of the weights

employed each time (in order to factor out the influence of any particular setting). Data were

analyzed in the same way as the human data (i.e., the average model response was

calculated as a function of the lag separating two repeated events). Extensive searches were
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conducted over a wide range of parameter values in order to find settings which minimized

the RMSE between the model and human data (the specifics of how the models were applied

to the task are presented in Appendix B).

6.1.1. LASR
Fig. 7 shows LASR’s response at each of the 10 levels of lag (left) along with the evolu-

tion of this lag effect over the learning blocks (right) compared to the human data (middle).

Data in the middle and right panels of Fig. 7 were first recoded in terms of the amount of

RT facilitation over lag-1 responding; thus, RT to stimuli at lag-1 was always scored as

0 ms with increasingly negative values for longer lags. This allows us to measure the

changes in learning to respond to stimuli with greater lag independent of nonspecific prac-

tice effect over the course of learning blocks shown in Fig. 4C. After adjusting these values

relative to lag-1, all human and model responses were converted to average z-scores (around

the individual simulation run or human subject’s mean response) for easier comparison.

Starting from a random initial weight setting, the model very quickly adapts to the lag

structure of the stimuli. Like the human data, within the first block of training, LASR has

already learned a moderate lag effect. Furthermore, the strength of this learning effect

continues to increase until the end of the experiment. Indeed, the model provides a very

close quantitative fit of the data (the average correlation between the model and human data

shown in the left panel of Fig. 7 was M ¼ 0.981, SD ¼ 0.005 and the mean RMSE was

M ¼ 0.181, SD ¼ 0.0026). The best fit parameters were found to be a ¼ 0.1, g ¼ 0.65, and

momentum ¼ 0.9.6

However, the overall pattern of results was not specific to this particular setting of the

parameters. In the right panel of Fig. 9, we show the model’s predicted relationship between

lag-10 and lag-1 responses over a large number of parameter combinations (note that values

of the model’s response which are closer to 1.0 indicate higher prediction error and thus

Fig. 7. Left: The mean RT to stimuli separated by different lags in Experiment 1 compared to the predictions of

LASR. Middle: Human data considered in each block of the experiment. RT values were subtracted from the

lag-1 value for that block so that the differential improvements to stimuli at longer lags are more visible. Right:

A similar plot for the predictions of LASR broken by block. In order to facilitate comparison between the model

and human data, all data are plotted as z-scores.
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slower responding). We considered the factorial combination of the following parameters:

the forgetting rate ($-alpha$) could be 0.001, 0.01, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 5.0, or 10.0,

the learning rate ($-eta$) could be 0.001, 0.01, 0.05, 0.07, 0.09, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0,

1.5, or 2.0, and momentum values could be either 0.50, 0.7, 0.8, 0.85, or 0.9 resulting in a

total of 650 unique parameter combinations. Each point in the plot represents the perfor-

mance of the LASR with a particular setting of the parameters (simulations were averaged

over a smaller set of 90 independent runs of the model due to the size of the parameter

space). Also plotted is the y < x region. If a point appears below the y ¼ x line (the gray

region of the graph), it means the model predicts faster responding to lag-10 events than to

lag-1 (the correct pattern). The right panel of Fig. 9 (left) shows that over the majority of

parameter combinations, LASR predicts faster responding to lag-10 events. Indeed, of the

650 parameter combinations evaluated, 67% captured the correct qualitative pattern (those

parameter sets that did not capture the correct trend were often associated with a forgetting

rate parameter which was too sharp or a learning rate parameter which was too low to

overcome the initial random settings of the weights).

Looking more closely at how the model solves the problem reinforces our interpretation

of the structure of the task. Fig. 8 shows the setting of each of the weights in the model at

the end of learning in a typical run. Each box in the figure represents the 6 · 6 array of

weights from a particular memory slot in the register to each of the six output units (or

detectors) in the model. The key pattern to notice is that the diagonal entries for each past

time slot are strongly negative while all other weights are close to zero. The diagonal of

each weight matrix represents the weight from each event to its own detector or output unit.

Thus, the model attempts to inhibit any response that occurred in the last few trials by

attempting to reduce the activation of that response. Despite the transformational complex-

ity of the sequence, LASR (like human participants) appears to exploit simple first-order sta-

tistical patterns that enable successful prediction.

6.1.2. SRN
Consistent with our predictions concerning systems based on learning transformations,

the SRN describes learning in a much different way. Despite extensive search, under no cir-

cumstances could we find parameters which allowed the SRN to learn the negative recency

t-1t-2t-3t-4t-5t-6t-7t-8t-9t-10t-11t-12

1 2 3 4 5 6
1
2
3
4
5
6

0 +-

Fig. 8. The final LASR weights for Experiment 1. LASR learns negative recency by developing negative

weights between events and the corresponding detector. Negative weights are darker red. Positive weights are

darker blue. The weights leaving each memory slot (t ) 1, t ) 2, etc...) are shown as a separate matrix. Each

matrix shows the weights from each stimulus element to each output unit. For example, the red matrix entry in

the top left corner of t – 1 slot is the weight from event 1 to the output for event 1. Likewise, the white cell to

the immediate right of this cell represents the weight from event 1 to the output unit for event 2.
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effect in the same number of trials as human subjects. A similar exploration of the parameter

space as was conducted for LASR is shown in the left panel of Fig. 9 (right). We considered

the factorial combination of the following parameters: hidden units7 could be 5, 10, 30, 50,

80, 100, 120, or 150, learning rate could be 0.001, 0.01, 0.05, 0.07, 0.09, 0.1, 0.3, 0.5, 0.7,

0.9, 1.0, 1.5, or 2.0, and momentum values could be 0.50, 0.7, 0.8, 0.85, or 0.9 for a total of

520 unique parameter combinations. As shown in the figure, very few of these parameter

combinations predict the correct ordering of lag-1 and lag-10 responses (i.e., very few points

appear below the y ¼ x line). In fact, of the 520 combinations evaluated, only 8% correctly

ordered lag-1 relative to lag-10. However, manual examination of these rare cases revealed

that in these situations the model failed to capture the more general pattern of successively

faster responses across all 10 lags demonstrated by human subjects in Fig. 4B. Given that

the model failed to capture even the qualitative aspects of the human data across an entire

range of reasonable parameters, we settled on the following ‘‘best-fit’’ parameters mostly in

accordance with previous studies: momentum ¼ 0.9, learning rate ¼0.04, and number of

hidden units ¼ 80. The resulting quantitative fit of the model was very poor (the average

correlation between the SRN and human data shown was M ¼ )0.111, SD ¼ 0.019 and the

mean RMSE was M ¼ 1.414, SD ¼ 0.012).

In order to evaluate whether the failure of the model to account for human learning was

particular to some aspect of the SRN’s back-propagation training procedure, we explored

the possibility of making a number of changes to the training procedure. In particular, we

considered changes which might improve the speed of learning in the model, such as chang-

ing the steepness of the sigmoid squashing function (Izui & Pentland, 1990), using a variant

Fig. 9. Explorations of the parameter space for LASR and the SRN in Experiment 1. Each model’s average

response for lag-1 is plotted against the average response for lag-10. The division between the grey and white

regions represents the line y ¼ x. Each point in the plot represents the performance of the respective model with a

particular setting of the parameters. If the point appears below the y ¼ x line in the grey area, it means the model

predicts faster responding to lag-10 events than to lag-1 (the correct qualitative pattern). Note, however, that

accounting for the full pattern of human results requires a monotonically decreasing function of predicted RT

across all 10 event lags, while this figure only illustrates the two end points (lag-1 and lag-10). Thus, the few

instances where the SRN appears to predict the correct pattern are not in general support for the model (see main

text).
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of back-propagation called quick-prop (Fahlman, 1988), changing the range of random val-

ues used to initialize the weights (from 0.001 to 2.0), and related variants of the SRN archi-

tecture such as the AARN (Maskara & Noetzel, 1992, 1993) in which the model predicts

not only the next response but its current input and hidden unit activations. Under none of

these circumstances were we able to find a pattern of learning which approximated human

learning. In addition, we considered if this failure to learn was a function of the fact that the

model has multiple layers of units to train by comparing the ability of other multilayer

sequence learning algorithms such as the Jordan network (Jordan, 1986; Jordan, Flash, &

Arnon, 1994) and Cleereman’s buffer network (Cleeremans, 1993). Despite their hidden

layer, these models all fit the data much better than did the SRN (the average correlation

between the best fit version of the Buffer network and human data was 0.94, while it was

0.97 for the Jordan network), suggesting that the limitation is unique to the type of transfor-

mational processing in the SRN rather than some idiosyncratic aspect of training.

6.1.3. Evaluating the SRN
Following Boyer et al. (2004), when the SRN is given more extensive exposure to the

material, such that training lasts for 30,240 trials (30 times the training that subjects in

Experiment 1 experienced), the model is able to eventually adapt to the lag structure of

the material (as shown in the bottom row of Fig. 10). However, at the end of this exten-

sive training, the model appears to have learned the structure of the material in a more

perfect way than did human subjects in our experiment. For example, Fig. 4A shows the

probability of a sequence element repeating as a function of the number of trials since it

was last experienced. Interestingly, this probability increases sharply only for the first

five lag positions, after which it levels off. Human subjects RT and LASR’s fit (Fig. 7,

left) show a similar plateau (compare to Fig. 10, right). It appears that the SRN regular-

izes the pattern, while human subjects are sensitive to the statistical properties of the

training sequence.

Fig. 10. Comparison of the overall lag effect (left) and separately by blocks (right) when the SRN is given

additional training in the task. In order to facilitate comparison between the model and human data, all data are

plotted as z-scores.

T. M. Gureckis, B. C. Love ⁄ Cognitive Science 34 (2010) 35



Why is the SRN so slow to learn this negative recency pattern? In order to gain some

insight into the operation of the model, we examined changes in the organization of the hid-

den unit space before learning and at various stages during training. Prior to any training,

the hidden space in the model is largely organized around the last input to the model (i.e,

the pattern of hidden unit activations in the model cluster strongly on the basis of the current

input). As a result, the model is limited to simple transformations that map a single input to

a single output (i.e., A fi B). However, as the model receives more training, the organiza-

tion of this hidden space changes. After extensive training, we find that the hidden unit

space in the model has effectively been reorganized such that the current input is no longer

the only factor influencing the model’s representation. Indeed, sequence paths which are

similar, such as 1 ,2, 3 and 2, 1, 3, end up in a similar region of the hidden unit space com-

pared to highly dissimilar sequences like 5, 4, 6 or 6, 3, 5. This analysis explains the process

by which the SRN learns the Lee material. At the start of learning, the model is heavily

biased towards its current input despite the random initialization of the weights. However,

after learning, subsequence paths which lead to similar future predictions are gradually

mapped into similar regions of the hidden unit space. Uncovering this representation of the

sequence takes many trials to properly elaborate.

As mentioned earlier, in order to address the disparity between the readiness with

which subjects learn in the task compared to the difficulty facing the SRN, Boyer et al.

(2005) suggested that subjects may have a preexperiment learned bias towards negative

recency. To evaluate this they pretrained the SRN with a sequence where a weak form

of negative recency was present (by degrading the Experiment 1 sequence with random

noise on 10% of trails). Exposure to negative recency confounds two factors in the

SRN: learning to properly elaborate the hidden unit representations versus learning the

negative recency contingency between the hidden unit representations and the model

outputs. In order to evaluate these separate components, we also pretrained the SRN on

a degraded form of the Experiment 1 sequence (by randomizing the input token on 10%

of trials). However, prior to exposing the model to the actual Experiment 1 task, we

rerandomized the network weights from the hidden units to the output units. This essen-

tially resets the mapping from internal representations in the model to output responses,

while leaving intact the recurrent connections and input weights which build the internal

transformations in the model. This had little impact on the simulations results, and like

Boyer et al. (2005), we found the model showed effective learning in the first few

blocks. In contrast, resetting the value of the weights in the lower level of the network

(between the input and hidden units) severely interfered with the ability of the model to

quickly relearn.

In conclusion, the SRN has difficulty accounting for the speed with which human subjects

adapt to the sequence defined by a negative recency relationship. This difficultly stems from

a representational bias in the model toward building complex transformations of internal

states and is not tied to a specific training procedure or the need to train multiple layers of

network weights. The only way the model is able to account for the speed and efficiency of

human learning is to assume additional training. However, the model appears to regularize

its representation of the sequence in a way not observed by human participants.
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6.2. Experiment 2: Simulation results

Our goal in the following simulations was to evaluate the overall ability of each model to

learn the sequential XOR tasks rather than to precisely fit the results of Experiment 2 which

showed little evidence of learning in two out of the three conditions. Thus, we simulated

both models over a large range of their parameters and considered what each set qualita-

tively predicted. Of particular interest was a comparison between this analysis and the

parameter space analysis reported for Experiment 1. Overall, the simulations closely fol-

lowed the modeling procedures used in Experiment 1. Each model was trained on sequences

constructed in the exact same manner as those given to human subjects and for the same

number of learning trials.

6.2.1. LASR
LASR predicts that subjects will only slow their responses during transfer blocks in the

6C-FO condition. This is because LASR, lacking hidden units, is unable to learn the higher-

order statistical component of the sequence. Instead, it is limited to learning sequences with

first-order relationships. The results of the parameter space analysis with LASR confirm

these intuitions. The model was evaluated on the same ranges of parameters used in Experi-

ment 1 for a total of 650 distinct combinations. To factor out the influence of particular ran-

dom settings of the weights, for each parameter combination the model was run 200 times

and the results were averaged. Fig. 11 plots the average model responses during the transfer

blocks (11 and 12) versus the surrounding training blocks (9, 10, 13, and 14) for each

Fig. 11. Explorations of the parameter space of the LASR in the three conditions (2C-SO, 6C-SO, 6C-FO) of

Experiment 2. The key behavioral pattern from Experiment 2 was that subjects only responded differently during

transfer block in the 6C-FO condition. The model’s average response for the transfer blocks 11 and 12 are plot-

ted against the average response for the surrounding learning block (9, 10, 13, and 14). Also plotted is the line

y ¼ x. Each point in the plot represents the performance of the LASR with a particular setting of the parameters.

If the point appears below the y ¼ x line, it means the model predicts slower responding during the transfer

blocks (and thus evidence of learning). LASR predicts a systematic learning effect only in the 6C-FO condition

(i.e., first-order, linear learning), like human subjects.
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parameter combination. Points which fall below the y ¼ x line (in the shaded region) repre-

sent cases where the model predicts slower responding during the transfer blocks. As is

clearly visible, LASR predicts a strong difference between the transfer and surrounding

block only in the 6C-FO condition. Interestingly, this is exactly the pattern which our

subjects showed.

Of the 650 parameter combinations we evaluated in the 2C-SO condition, 49.8% demon-

strated facilitation for XOR-consistent blocks, a pattern which is consistent with small ran-

dom fluctuations in particular runs of the model. Indeed, the average difference between the

model’s responses to transfer and surrounding blocks was marginal (M ¼ )0.0006, SD ¼
0.005). A similar conclusion characterizes the results of the 6C-SO condition (M ¼ .0003,

SD ¼ .004). In contrast, in the 6C-FO condition, 100% of the parameter combinations

evaluated showed a learning effect, the magnitude of which was significantly different from

zero (M ¼ .159, SD ¼ .055, t(649) ¼ 74.3, p < .001). Thus, under no circumstances could

we find parameters which predicted a change during transfer blocks except in the 6C-FO

condition (similar to the pattern of human results). Of course, these findings are not

surprising given the simple, associative learning mechanism in LASR. In the discussion, we

consider how new knowledge structures and configural units may develop with extensive

training in order to allow LASR to account for the results of Experiment 2, where subjects

eventually learned the higher order relationships. However, in the context of a single

training session, learning appears consistent with the simple, limited process advocated by

LASR. As in human participants, it appears that statistical complexity, not transformational

complexity, is a critical factor influencing learning performance.

6.2.2. SRN
Like our simulations with LASR, our emphasis was on exploring the performance of the

SRN across a wide range of parameter values in order to assess the overall learnability of

the sequence (see Boucher & Dienes, 2003 for a similar approach). In contrast to LASR, the

SRN predicts that subjects will slow their responses during the transfer blocks in all three

experimental conditions. This is confirmed in Fig. 12, which shows the size of the predicted

learning effect in terms of the mean prediction for transfer blocks 11 and 12 compared to

the surrounding blocks: 9, 10, 13, and 14. Like Fig. 9, points below the y ¼ x line represent

cases where the model predicts slower responding during the transfer blocks. We used the

same 520 parameters as in Experiment 1. Due to the computational complexity of these

parameter space analyses, the model was averaged over 30 runs. Overall, 74% of the param-

eter combinations fall below the y ¼ x line in the 2C-SO condition, and the average magni-

tude of the difference between transfer and surrounding blocks was significantly different

from zero (M ¼ .004, SD ¼ .007, t(519) ¼ 13.58, p < .001). In addition, 83% of the

parameter combinations show learning in the 6C-SO condition (again, the magnitude of the

effect was on average significantly different from zero, M ¼ .01, SD ¼ .02, t(649) ¼
20.82, p < .001). Finally, like LASR, the SRN predicts that virtually all parameter combina-

tions (99%) show learning in the 6C-FO condition (M ¼ .2, SD ¼ .07, t(649) ¼ 20.82,

p < .001). In contrast to the SRN simulations of Experiment 1, it was much easier to find

parameters which allowed the SRN to learn in all three conditions of Experiment 2. In
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Experiment 1, the entire sampled parameter space predicted no learning effect, while in

Fig. 12, a much larger proportion of parameters predict learning than the opposite pattern.

Finally, remember that one explanation for the results of Experiment 1 is that subjects

came to the task with a preexperimental bias towards negative recency. However, if this is

the case, then we would expect that this same bias would come into play in Experiment 2.

In order to evaluate the effect of preexisting bias on learning, we pretrained the SRN on the

same material used in Experiment 1 for 24 blocks (180 trials each). After this pretraining we

tested the learning ability of the SRN in the 6C-SO task. Interestingly, we found that rather

than interfering with learning, the existence of a preexisting, learned bias towards negative

recency actually improves the magnitude of the learning effect (a paired t-test shows that

the mean size of the facilitation for sequence blocks actually increased as a result of

pretraining, t(649) ¼ 10.7, p < .001). Similarly, after training, for the same ranges of

parameters, 97% of the parameters now predict the correct qualitative ordering.

7. General discussion

Successful interaction with the world often requires the appreciation of subtle relation-

ships between events arranged in time. What is the nature of the learning mechanisms that

support these abilities? A common assumption in psychological research is that complex

behavior implies the operation of correspondingly complex mental processes. However, this

focus on only the highest forms of human competency may ignore many other, equally vital

aspects of adaptive cognition. Our results show that learners are able to quickly acquire

knowledge about complex sequential patterns in a way consistent with a simple learning

Fig. 12. Explorations of the parameter space of the SRN in the three conditions (2C-SO, 6C-SO, 6C-FO) of

Experiment 2. The model’s average response for the transfer blocks (11 and 12) are plotted against the average

response for the surrounding learning block (9, 10, 13, and 14). Also plotted is the line y ¼ x. Each point in the

plot represents the performance of the SRN with a particular setting of the parameters. If the point appears below

the y ¼ x line, it means the model predicts slower responding during the transfer blocks (and thus a learning

effect). The SRN, unlike human subjects, shows a learning effect in all three conditions.
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mechanism based on direct associations. Rather than learn the complex, latent structures

that define a sequential regularity, it appears that our learning processes may be biased to

exploit simpler types of structure. As we will describe in the following sections, we believe

this observation reflects a vital component of our cognitive toolbox, allowing us to quickly

adapt to our environment in a variety of real-world situations. Limitations in the types of

processing and structural regularities that are learned in the short term may represent a

solution to the computational tradeoff between speed of learning and what can be learned.

7.1. Implications for models of sequential learning

Our findings raise a number of interesting issues concerning models of sequential learn-

ing. First, our results demonstrate potential limitations with popular accounts of sequential

processing (i.e., the SRN). Rather than compare a single setting of ‘‘best-fit’’ parameters,

we evaluated the prediction of the SRN across an entire parameter space. The failure of the

SRN to capture the qualitative pattern of human results across our empirical studies was sur-

prising given the broad success of the model at accounting for sequentially organized behav-

ior. However, the time course of acquisition provides an important theoretical constraint on

learning which is often overlooked.

Also note that a common criticism of the simple associationist account is that it is unable

to generalize beyond the training set to deal with unique constructions (something that even

infants can accomplish, Marcus et al., 1999). However, in Experiment 1, the sequence struc-

ture was characterized by an abstract rule with a large number of valid constructions. Each

subsequence encountered in the experiment was completely unique, yet predictable based

on its underlying shared structure (or similarity) with previous subsequences. However, the

novelty of each path through the sequence grammar is actually what leads the transforma-

tional processing in the SRN to have difficulty. In contrast, the direct associations in LASR

were able to learn the abstract pattern in a rather concrete way by quickly adjusting its

weights to inhibit repetition of recently cued responses. Only with extensive training does

the SRN eventually learn the structure of the material, but it appears to regularize the pattern

beyond the training set (by predicting faster response across all lags instead of matching the

true statistical pattern of the sequence, see Fig. 10 and associated discussion). Thus, the

SRN appears to generalize in ways that people do not.

7.2. Implications for language acquisition

Given the extremely limited architecture of LASR, one might question the generality of

our argument, particularly with respect to language. One possibility is that LASR is more

applicable to perceptual-motor sequence learning as opposed to linguistic processing. How-

ever, there is growing evidence to suggest that relatively simple forms of statistical informa-

tion may go a long way towards disambiguating the sequential structure of language as

well. For example, Karlsson (2007) found in a large corpus analysis, across multiple lan-

guages, that examples of double embedding (the type of patterns LASR is ill-equipped to

handle) are extremely infrequent in spoken language. Thus, some of the arguments in favor
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of a complex processing scheme such as the SRN may rest on written and edited language

rather than online cognitive performance. This observation led Ding, Dennis, and Mehay

(2009) to propose a simple, single layer learning mechanisms akin to LASR that they show

can capture the hierarchical phrase structure of sentences in a natural language corpus. One

implication of these studies is that linguistic processing may be readily accomplished by a

system that attends to a much more limited set of statistical information. Understanding

how far these simple forms of sequential adaptation can go in advancing our understanding

of language and cognition is an important area of continued investigation.

Our view is that any complete account of sequential learning will likely have to recognize

the multiple time scales on which learning takes place. The types of learning which charac-

terize a lifetime of experience with grammar and syntax may not appropriately describe the

learning used in acquiring a simple skill or adapting to the speech patterns of an unfamiliar

accent. For example, the follow-up results of Experiment 2 reveal how different types of

learning may unfold on shorter or longer time scales. In the following sections, we consider

one proposal for how more complex forms of processing may be brought online in an

incremental fashion during learning.

7.3. Learning of higher order conditional relationships

In Experiment 2, we failed to find evidence of higher order statistical learning in the

context of a single 1-h training session. This result was surprising given that (outside of the

dependence on higher order statistical relationships) there is nothing inherently more diffi-

cult about the sequential XOR pattern relative to the sequence used in Experiment 1 (and as

discussed earlier, a number of intuitive reasons to expect that the XOR sequence should be

easier to learn). One possibility is that different types of statistical information might be

acquired by separate learning mechanisms which might operate on different time scales

(Cohen et al., 1990; Gomez, 1997). Such a position would also be consistent with recent

neuropsychological work which has found that different types of statistical information may

be processed in different ways. For example, Curran (1997) found that medial-temporal lobe

(MTL) amnesics are impaired at learning sequences composed of second-order transitions,

but not first-order transitions. This finding was supported by fMRI work showing increased

MTL involvement while learning sequences composed of higher order transitions

(Schendan, Searl, Melrose, & Stern, 2003). Importantly, however, this study found

increased MTL involvement for second-order sequences even when subjects showed little

explicit knowledge of the sequence, suggesting that MTL involvement is a function of

stimulus properties rather than conscious awareness (Chun & Phelps, 1999; Eichenbaum,

1999). Given that the MTL is thought to play a critical role in mediating stimulus associa-

tions to configurations or combinations of experienced stimuli (Love & Gureckis, 2007;

McClelland, McNaughton, & O’Reilly, 1995; Sutherland & Rudy, 1989), one possibility is

that the contribution of the MTL increases when the statistical structure of a sequence

requires responses which depend on particular combinations of previous stimuli (such as

second or higher order conditional probabilities which require learning the association

between two or more distinct sequence elements and a subsequent response). Also, the
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increased role of the MTL in processing higher order statistical relationships would explain

why such sequences are often harder to learn under dual-task conditions (Cohen et al.,

1990).

In fact, one way of integrating the results just reviewed with our findings and simulations

is to suggest that one of the key architectural principals of human learning is the process of

incrementally adding complexity as needed (Carpenter & Grossberg, 1987; Love, Medin &

Gureckis, 2004; Quartz, 1993). On shorter time scales, the simple, more limited processing

of a model like LASR may adequately capture performance. However, with more training

(and depending on the nature of the material), new configural processing elements (i.e., hid-

den units) may be added to enrich the complexity of learning over longer time scales. From

this perspective, our results may reflect an inherent computational trade-off between rate of

acquisition and representational flexibility. LASR’s account suggests that one way to learn

quickly is to focus on a simpler subset of statistical pattern (i.e., first-order statistical pat-

terns) to the exclusion of more complex forms of processing. Even partial or incomplete pre-

diction is likely better than waiting for enough data to enrich a complex, transformational

representation of the task or environment.

Finally, note that our failure to find evidence of learning in Experiment 2 is surprising in

light of the extensive literature on ‘‘second-order conditional’’ learning in SRT task (Reed

& Johnson, 1994; Remillard & Clark, 2001). However, as noted by Remillard and Clark

(2001), previous investigations of SOC learning have sometimes failed to exclude other

sources of first-order information that might aid learning. For instance, the 12-item SOC

sequences tested by Reed and Johnson (1994), Exp. 2) can actually be learned by LASR

because first-order lag information discriminates the training and test sequence. Remillard

and Clark (2001) more directly controlled the influence that first-order information might

have had on learning, but they also introduced short pauses in the task at critical boundaries

which might have helped participant segment the sequence into the higher order units. In

addition, in this study, participants were often trained for multiple training sessions over a

number of days. In contrast, in Experiment 2, we failed to find any evidence of learning in a

single, 1-h session (but did with extensive training). One hypothesis then is that when no

first-order information is available in a sequence (such as Experiment 2), it takes much

longer to learn. Also note that one major difference between these sequences and the XOR

sequences we tested is that our sequences critically depended on participants getting the

‘‘segmentation’’ of the sequence into triplets correct. For example, although 000 was a legal

sequence triplet in the 2C-SO condition, it might also appear as the middle elements of the

110 and 000 (e.g., ...110000...). However, when this subsequence crossed the two triplet

subsequences, there was no actual predictability of the third element. Thus, in order to learn

the 00 fi 0 ‘‘rule’’ one needed to not only learn the configuration but also ‘‘apply’’ it at

the right time. This is less of a problem in previous studies of SOC learning because the

nonpredictive versions of the SOC relationship never appear.

Finally, note that across our studies we find a general bias toward learning simpler first-

order patterns which can be learned with a simple linear network (LASR). Interestingly,

in other domains such as category learning, the distinction between linear and nonlinear

pattern learning has not been found to be a strong constraint on learnability (Medin &
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Schwanenflugel, 1981). One difference between these studies and ours may have to do with

how easy or hard it is to chunk aspects of the stimulus in memory. In typical category learn-

ing context, all the features of a stimulus are presented simultaneously (unlike sequential

tasks where events are arranged in time). In addition, in the nonlinear XOR problem studies

in Experiment 2, each higher-order chunk is highly similar to other task-relevant chunks

which may impede the ability of participants to isolate the relative components of the

sequence. In addition, performance in the SRT is unsupervised in the sense that sequential

structure of the task was incidental to participants’ primary goal of correctly responding to

each cue. Similarly, in unsupervised concept learning, there appears to be a bias towards

linearly separable patterns (Ashby, Queller, & Berretty, 1999; Love, 2002). We conclude

with the suggestion that an important and often overlooked characteristic of human cogni-

tion is the ability to rapidly acquire complex sequential skills, and that this behavior may be

supported by surprisingly simple and limited cognitive processes.

Notes

1. LASR’s buffer-based memory addresses one of the early criticisms of models based

on associative chains. In LASR, repeated elements of the same type are represented

separately with a distinct trace (i.e., repeated elements are given separate memory

slots). As a result, LASR has no difficulty learning a simple sequence based on double

or triple alternation like AABBAABB or AAABBBAAABBB.

2. Formally, a second-order relationship is defined as P(Ct | At)xBt)y), for any two posi-

tive integers x and y with x < y.

3. Interestingly, there is evidence to suggest that human learning may be differentially

sensitive to these different sources of statistical complexity. For example, Stadler

(1992) demonstrated how learning in SL tasks is linked to the degree of statistical

structure and redundancy of the training sequence.

4. While it is possible for symbolic systems to represent productions which have variable

slots that generalize over tokens (i.e., A* fi B), learning such constructs often

requires considerable training or an explicit mechanism which can detect the similari-

ties in other productions and consolidate across them. As a result, systems based on

learning transformations require extensive training in order to predict sequences which

have a large number of highly similar sequence paths or branches.

5. Note that the same results obtained in pilot data, where participants were not paid for

performance.

6. The length of the memory register in the model was set large enough so that there was

no influence of this parameter relative to the steepness of the forgetting function in the

model.

7. This large range of hidden units values was considered so that we covered the space

and were in line with Boyer et al.’s simulations of the same task which required 80

hidden units. In addition, certain combinations of the parameters overlap with com-

monly reported parameters used in previously published results.
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8. A couple of simple notation conventions: uppercase bold letters (M) are used to refer

to matrices, lowercase bold letters (m) refer to vectors, and regular script letters with a

subscript (mi) refer to individual elements of a vector.

9. Note that while this formalism allows for an infinite memory for past events attenu-

ated only by the exponential decay (i.e., P ¼ ¥), in practice, only a limited number of

past event slots will have significant activations (due to the exponential forgetting

curve). In all simulations reported, the length of the register P was set to a large value

(approximately 30 or larger), and it was verified that adding more elements to the

register had little effect on the results.
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Appendix A: LASR model formalism

The following section describes the mathematical formalism of the LASR model.8

A.1. Input representation

The input to the LASR model on each time step is a simple binary vector representing

which of a set of events occurred at the current time step, t. Given N possible events, input

to the model is a N-dimensional vector mt, where each entry mt
i corresponds to the presence
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(mt
i ¼ 1) or absence (mt

i ¼ 0) of event i on the current trial, t. For example, given three pos-

sible events (A, B, and C) an input vector [100] would encode that event A occurred on the

present trial, while input vector [010] would encode that event B occurred, and [011] would

encode that event B and C occurred.

The model maintains a simple shift-register memory of past events which are indexed

based on the current time t. Thus, mt)1 refers to the input vector experienced on the previous

time step, and mt)2 refers to the input experienced two time steps in the past. The complete

history of past events is a N · P matrix, M, where N is the number of possible events, and P
is the number of events so far experienced and stored in memory.9

A.2. Response

Given N possible events or choice options, the model has N detectors. The activation dk

of the detector k at the current time t is computed as the weighted sum of all past events for

all time steps multiplied by an exponential attenuation factor:

dk ¼
XP

i¼1

XN

j¼1
wðt�iÞjk �mt�i

j � e�a�ði�1Þ ð1Þ

where mt�i
j is the outcome of the jth option at time t ) i, w(t)i)jk is the weight from the jth

outcome at time slot t ) i to the kth detector, and e)aÆ(i)1) is the exponential attenuation fac-

tor. The a is a free parameter (constrained to be positive) which controls the forgetting rate

of the model. When a is large, the model has a steep forgetting curve and thus only events

in the very recent past influence future prediction, while small settings of alpha cause a less

steep forgetting function. The general form of Eq. 1 shares much in common with

well-established single-layer feed-forward networks (McCulloch & Pitts, 1943; Minsky &

Papert, 1969, 1998; Rosenblatt, 1958)

As is standard in most connectionist-type models, the final output of each detector, ok, is

a sigmoid transform of the activation, dk, of each detector:

ok ¼
1

1þ e�dk
ð2Þ

This makes the formalism used in LASR identical to other comparable models such as

the SRN (Elman, 1990) and standard back-propagation (Rumelhart, McClelland, & the PDP

Research Group, 1986), helping to highlight the substantive differences in the learning

processes between different models rather than differences in the output function.

Like other models of sequential learning, when comparing the model’s response to

human data, the absolute activations of each detector are converted into response probabili-

ties using the Luce choice rule (Luce, 1959):

pk ¼
okPN
j¼1 oj

ð3Þ
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where pk represents the probability of response k on the current time step. RT is assumed

to be inversely related to pk so that fast RTs correspond to high-response probabilities

(Cleeremans & McClelland, 1991).

A.3. Learning

Learning in the model is implemented using the well-known delta-rule for training

single-layer networks (Rescorla & Wagner, 1972; Sutton & Barto, 1981; Wagner & Rescorla,

1972; Widrow & Hoff, 1960) with a small modification introduced by Rumelhart and

McClelland (1986) which accounts for the sigmoid transform at the output of each detector

(sometimes referred to as the generalized delta-rule for single layer networks). For each

detector, the difference between the actual outcome of the current trial gk and the detector

output ok is computed and used to adjust the weights:

DwijkðtÞ ¼ g � ðgk � okÞ �mi
j � e�a�ði�1Þ � dkð1� dkÞ þ k � Dwijkðt� 1Þ ð4Þ

The Dwijk(t) value is added to the corresponding weight after each learning episode. The g is

a learning rate parameter and e)aÆ(i)1) is the exponential forgetting factor. The dk(1)dk) is a

factor representing the derivative of the sigmoid transfer function with respect to the

weights, and it moves the weights in the direction of gradient descent on the error. In addi-

tion, the kÆDwijk(t ) 1) is a momentum term which adds some fraction of the weight update

from the previous trial, Dwijk(t ) 1), to the current one which is included here for compati-

bility with the SRN. The complete model has only three free parameters: a (forgetting rate),

g (learning rate), and k (momentum).

Appendix B: Simulation details

Each model was initialized with six input units and six output units which corresponded

to the six choice options in the task (in the Experiment 2 simulations, one network was

tested with two inputs and two outputs corresponding to the 2C-SO condition). On each

trial, the activation of one of the six input units was set to 1.0 (corresponding to the cued

response shown to subjects) and the model’s task was to predict the next sequence element.

The resulting pattern of activation across the six output units in response to this input pattern

was converted into a choice probability. The error in the model’s prediction and the actual

next element was used to adjust the learning weights on a trial-by-trial basis. Following

Cleeremans and McClelland (1991), human RT in the experiment was assumed to relate

directly to the value of 1)pk, where pk is the model’s response probability for the correct

response, k, on that trial.

In the Experiment 1 simulations, each model was presented with 46 separate sequence

streams (each consisting of 1080 trials) which matched exactly the sequences presented to

our 46 subjects in Experiment 1. Each simulation consisted of running each model 200 times

over each of these 46 sequences each time with a different, random initial setting of the
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weights (sampled from a uniform distribution between )1.0 and 1.0), resulting in a total of

200 · 46 ¼ 9,200 independent runs of each model. The results were averaged over these

independent runs of the model in order to factor out the influence of any particular setting of

the initial weights. Extensive searches were conducted over a wide range of parameter

values in order to find settings which minimized the RMSE and maximized the correlation

between the model and human data.
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