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Abstract: The prominence of Bayesian modeling of cognition has increased recently largely 
because of mathematical advances in specifying and deriving predictions from complex 
probabilistic models. Much of this research aims to demonstrate that cognitive behavior can 
be explained from rational principles alone, without recourse to psychological or neurological 
processes and representations. We note commonalities between this rational approach and 
other movements in psychology – namely, behaviorism and evolutionary psychology – that 
set aside mechanistic explanations or make use of optimality assumptions. Through these 
comparisons, we identify a number of challenges that limit the rational program’s potential 
contribution to psychological theory. Specifically, rational Bayesian models are significantly 
unconstrained, both because they are uninformed by a wide range of process-level data and 
because their assumptions about the environment are generally not grounded in empirical 
measurement. The psychological implications of most Bayesian models are also unclear. 
Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded 
in the hypothesis sets and the approximation algorithms used to derive model predictions, 
without a clear delineation between psychological commitments and implementational 
details. Comparing multiple Bayesian models of the same task is rare, as is the realization 
that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the 
expressive power of current Bayesian models, we argue they must be developed in 
conjunction with mechanistic considerations to offer substantive explanations of cognition. 
We lay out several means for such an integration that take into account the representations on 
which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. 
We argue this unification will better facilitate lasting contributions to psychological theory, 
avoiding the pitfalls that have plagued previous theoretical movements. 
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Advances in science are due not only to empirical discoveries and theoretical progress, 

but also to development of new formal frameworks. Innovations in mathematics or 

related fields can lead to a new class of models that enables researchers to articulate more 

sophisticated theories and to address more complex empirical problems than previously 

possible. This often leads to a rush of new research and a general excitement in the field. 

 For example in physics, the development of tensor calculus on differential 

manifolds (Ricci & Levi-Civita 1900) provided the mathematical foundation for 

formalizing the general theory of relativity (Einstein 1916). This formalism led to 

quantitative predictions that enabled experimental verification of the theory (e.g., Dyson 

et al. 1920). More recent mathematical advances have played key roles in the 

development of string theory (a potential unification of general relativity and quantum 

mechanics), but in this case the mathematical framework, although elegant, has yet to 

make new testable predictions (Smolin 2006; Woit 2006). Therefore, it is difficult to 

evaluate whether string theory represents true theoretical progress. 

 In the behavioral sciences, we are generally in the more fortunate position of 

being able to conduct the key experiments. However, there is still a danger of confusing 

technical advances with theoretical progress, and the allure of the former can lead to the 

neglect of the latter. As the new framework develops, it is critical to keep the research 

tied to certain basic questions such as, What theoretical issues are at stake? What are the 

core assumptions of the approach? What general predictions does it make? What is being 

explained and what is the explanation? How do the explanations it provides relate, 

logically, to those of existing approaches? What is the domain of inquiry, and what 

questions are outside its scope? This grounding is necessary for disciplined growth of the 

field. Otherwise, there is a tendency to focus primarily on generating existence proofs of 

what the computational framework can achieve. This comes at the expense of real 

theoretical progress, in terms of deciding among competing explanations for empirical 

phenomena or relating those explanations to existing proposals. By overemphasizing 

computational power, we run the risk of producing a poorly grounded body of work that 

is prone to collapse under more careful scrutiny. 

 This article explores these issues in connection with Bayesian modeling of 

cognition. Bayesian methods have progressed tremendously in recent years, due largely 
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to mathematical advances in probability and estimation theory (Chater et al. 2006). These 

advances have enabled theorists to express and derive predictions from far more 

sophisticated models than previously possible. These models have generated excitement 

for at least three reasons: First, they offer a new interpretation of the goals of cognitive 

systems, in terms of inductive probabilistic inference, which has revived attempts at 

rational explanation of human behavior (Oaksford & Chater 2007). Second, this rational 

framing can make the assumptions of Bayesian models more transparent than in 

mechanistically oriented models. Third, Bayesian models may have the potential to 

explain some of the most complex aspects of human cognition, such as language 

acquisition or reasoning under uncertainty, where structured information and incomplete 

knowledge combine in a way that has defied previous approaches (e.g., Kemp & 

Tenenbaum 2008).  

 Despite this promise, there is a danger that much of the research within the 

Bayesian program is getting ahead of itself by placing too much emphasis on 

mathematical and computational power at the expense of theoretical development. In 

particular, the primary goal of much Bayesian cognitive modeling has been to 

demonstrate that human behavior in some task is rational with respect to a particular 

choice of Bayesian model. We refer to this school of thought as Bayesian 

Fundamentalism, because it strictly adheres to the tenet that human behavior can be 

explained through rational analysis – once the correct probabilistic interpretation of the 

task environment has been identified – without recourse to process, representation, 

resource limitations, or physiological or developmental data. Although a strong case has 

been made that probabilistic inference is the appropriate framework for normative 

accounts of cognition (Oaksford & Chater 2007), the fundamentalist approach primarily 

aims to reinforce this position, without moving on to more substantive theoretical 

development or integration with other branches of cognitive science.  

 We see two significant disadvantages to the fundamentalist approach. First, the 

restriction to computation-level accounts (cf. Marr 1982) severely limits contact with 

process-level theory and data. Rational approaches attempt to explain why cognition 

produces the patterns of behavior that is does, but they offer no insight into how 

cognition is carried out. Our argument is not merely that rational theories are limited in 
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what they can explain (this applies to all modes of explanation), but that a complete 

theory of cognition must consider both rational and mechanistic explanations as well as 

their interdependencies, rather than treating them as competitors. Second, the focus on 

existence proofs obfuscates that there are generally multiple rational theories of any given 

task that correspond to different assumptions about the environment and the learner’s 

goals. Consequently, there is insufficient acknowledgement of these assumptions and 

their critical roles in determining model predictions. It is extremely rare to find a 

comparison among alternative Bayesian models of the same task to determine which is 

most consistent with empirical data (for a related analysis of the philosophical literature, 

see Fitelson 1999). Likewise, there is little recognition when the critical assumptions of a 

Bayesian model logically overlap closely with those of other theories, so that the 

Bayesian model is expressing essentially the same explanation, just couched in a different 

framework. 

 The primary aim of this article is to contrast Bayesian Fundamentalism with other 

Bayesian research that explicitly compares competing rational accounts and that 

considers seriously the interplay between rational and mechanistic levels of explanation. 

We call this the Enlightened Bayesian approach because it goes beyond the dogma of 

pure rational analysis and actively attempts to integrate with other avenues of inquiry in 

cognitive science. A critical distinction between Bayesian Fundamentalism and Bayesian 

Enlightenment is that the latter considers the elements of a Bayesian model as claims 

regarding psychological process and representation, rather than mathematical 

conveniences made by the modeler for the purpose of deriving computational-level 

predictions. Bayesian Enlightenment thus treats Bayesian models as making both rational 

and mechanistic commitments, and it takes as a goal the joint evaluation of both. Our aim 

is to initiate a discussion of the distinctions and relative merits of Bayesian 

Fundamentalism and Bayesian Enlightenment so that future research can focus effort in 

the directions most likely to lead to real theoretical progress. 

 Before commencing, we must distinguish a third use of Bayesian methods in the 

cognitive and other sciences, which we refer to as Agnostic Bayes. Agnostic Bayesian 

research is concerned with inferential methods for deciding among scientific models 

based on empirical data (e.g., Pitt et al. 2002; Schwarz 1978). This line of research has 
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developed powerful tools for data analysis, but as with other such tools (e.g., analysis of 

variance, factor analysis), they are not intended as models of cognition itself. Because it 

has no position on whether the Bayesian framework is useful for describing cognition, 

Agnostic Bayes is not a topic of the present article. Likewise, research in pure artificial 

intelligence that uses Bayesian methods without regard for potential correspondence with 

biological systems is beyond the scope of this article. There is no question that the 

Bayesian framework, as a formal system, is a powerful scientific tool. The question is 

how well that framework parallels the workings of human cognition, and how best to 

exploit those parallels to advance cognitive science. 

 The remainder of this article offers what we believe is an overdue assessment of 

the Bayesian approach to cognitive science, including evaluation of its theoretical 

content, explanatory status, scope of inquiry, and relationship to other methods. We begin 

with a discussion of the role that new metaphors play in science, and cognitive science in 

particular, using connectionism as an historical example to illustrate both the potential 

and the danger of rapid technical advances within a theoretical framework. An overview 

of Bayesian modeling of cognition is then presented that attempts to clarify what is and is 

not part of a Bayesian psychological theory. Following this, we offer a critical appraisal 

of the Fundamentalist Bayesian movement. We focus on concerns arising from the 

limitation to strictly computational-level accounts, by noting commonalities between the 

Bayesian program and other movements – namely, Behaviorism and evolutionary 

psychology – that have minimized reliance on mechanistic explanations in favor of 

explaining behavior directly from the environment. Finally, we outline the Enlightened 

Bayesian perspective, give examples of research in this line, and explain how this 

approach leads to a more productive use of the Bayesian framework and better 

integration with other methods in cognitive science. Like many others, we believe that 

Bayes’s mathematical formalism has great potential to aid our understanding of 

cognition. Our aim is not to undermine that potential, but to focus it by directing attention 

to the important questions that will allow disciplined, principled growth and integration 

with existing knowledge. Above all, our hope is that by the time the excitement has faded 

over their newfound expressive power, Bayesian theories will be seen to have something 

important to say. 
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1. Metaphor in science 

Throughout the history of science, metaphor and analogy use has helped researchers gain 

insight into difficult problems and make theoretical progress (Gentner et al. 1997; 

Nersessian 1986; Thagard 1989). In addition to this evidence gleaned from the personal 

journals of prominent scientists, direct field observation of modern molecular biologists 

finds that analogies are commonly used in laboratory discussions (Dunbar 1995). 

Metaphors and analogies provide powerful means for structuring an abstract or poorly 

understood domain in terms of a more familiar domain, such as understanding the atom 

in terms of the solar system (Gentner 1983). Drawing these parallels can lead to insights 

and be a source of new ideas and hypotheses. 

 Daugman (2001) reviews historical use of metaphor for describing brain function 

and concludes that current technology has consistently determined the dominant choice 

of metaphor, from water technology to clocks to engines to computers. Whatever society 

at large views as its most powerful device tends to become our means for thinking about 

the brain, even in formal scientific settings. Despite the recurring tendency to take the 

current metaphor literally, it is important to recognize that any metaphor will eventually 

be supplanted. Thus, researchers should be aware of what the current metaphor 

contributes to their theories, as well as what the theories’ logical content is once the 

metaphor is stripped away. 

 One danger is mistaking metaphors for theories in themselves. In such cases, 

scientific debate shifts focus from comparisons of theories within established frameworks 

to comparisons among metaphors. Such debates are certainly useful in guiding future 

research efforts, but it must be recognized that questions of metaphor are not scientific 

questions (at best, they are metascientific). Metaphors should be viewed as tools or 

languages, not theories in themselves. Conflating debates over scientific metaphors with 

scientific debates per se can impede theoretical progress in a number of ways. By shifting 

focus to the level of competing metaphors, the logical content of specific theories can 

become neglected. Research that emphasizes existence proofs, demonstrating that a given 

set of phenomena can be explained within a given framework, tends to ignore critical 

comparisons among multiple, competing explanations. Likewise, the emphasis on 
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differences in metaphorical frameworks can obscure that theories cast within different 

frameworks can have substantial logical overlap. In both ways, basic theory loses out 

because too much effort is spent debating the best way to analyze or understand the 

scientific subject, at the expense of actually doing the analysis. Only by identifying 

competing explanations, and distilling their differences to logical differences in 

assumptions and empirically testable contrasting predictions, can true theoretical progress 

be made. 

 

1.1. The case of connectionism 

One illustration of this process within cognitive science comes from the history of 

connectionism. Connectionism was originally founded on a metaphor with telegraph 

networks (Daugman 2001) and later on a metaphor between information-processing units 

and physical neurons (in reaction to the dominant computer metaphor of the 1970s and 

1980s). At multiple points in its development, research in connectionism has been 

marked by technical breakthroughs that significantly advanced the computational and 

representational power of existing models. These breakthroughs led to excitement that 

connectionism was the best framework within which to understand the brain. However, 

the initial rushes of research that followed focused primarily on demonstrations of what 

could be accomplished within this framework, with little attention to the theoretical 

commitments behind the models or whether their operation captured something 

fundamental to human or animal cognition. Consequently, when challenges arose to 

connectionism’s computational power, the field suffered major setbacks because there 

was insufficient theoretical or empirical grounding to fall back on. Only after researchers 

began to take connectionism seriously as a mechanistic model, to address what it could 

and could not predict, and to consider what constraints it placed on psychological theory, 

did the field mature to the point that it was able to make a lasting contribution. This shift 

in perspective also helped to clarify the models’ scope, in terms of what questions they 

should be expected to answer, and identified shortcomings that in turn spurred further 

research.  

 There are of course numerous perspectives on the historical and current 

contributions of connectionism, and it is not the purpose of the present article to debate 
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these views. Instead, we merely summarize two points in the history of connectionism 

that illustrate how overemphasis on computational power at the expense of theoretical 

development can delay scientific progress. 

 Early work on artificial neurons by McCulloch and Pitts (1943) and synaptic 

learning rules by Hebb (1949) showed how simple, neuronlike units could automatically 

learn various prediction tasks. This new framework seemed very promising as a source of 

explanations for autonomous, intelligent behavior. A rush of research followed, 

culminated by Rosenblatt’s (1962) perceptron model, for which he boldly claimed, 

“Given an elementary �-perceptron, a stimulus world W, and any classification C(W) for 

which a solution exists, . . . an error correction procedure will always yield a solution to 

C(W) in finite time.” However, Minsky and Papert (1969) pointed out a fatal flaw: 

Perceptrons are provably unable to solve problems requiring nonlinear solutions. This 

straightforward, yet unanticipated, critique devastated the connectionist movement such 

that there was little research under that framework for the ensuing 15 years. 

 Connectionism underwent a revival in the mid-1980s, primarily triggered by the 

development of back-propagation, a learning algorithm that could be used in multilayer 

networks (Rumelhart et al. 1986). This advance dramatically expanded the 

representational capacity of connectionist models to the point where they were capable of 

approximating any function to arbitrary precision, bolstering hopes that paired with 

powerful learning rules any task could be learnable (Hornik et al. 1989). This technical 

advance led to a flood of new work as researchers sought to show that neural networks 

could reproduce the gamut of psychological phenomena, from perception to decision 

making to language processing (e.g., McClelland et al. 1986; Rumelhart et al. 1986). 

Unfortunately, the bubble was to burst, once again, following a series of attacks on 

connectionism’s representational capabilities and lack of grounding. Connectionist 

models were criticized for being incapable of capturing the compositionality and 

productivity characteristic of language processing and other cognitive representations 

(Fodor & Pylyshyn 1988); for being too opaque (e.g., in the distribution and dynamics of 

their weights) to offer insight into their own operation, much less that of the brain 

(Smolensky 1988); and for using learning rules that are biologically implausible and 

amount to little more than a generalized regression (Crick 1989). The theoretical position 
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underlying connectionism was thus reduced to the vague claim that that the brain can 

learn through feedback to predict its environment, without a psychological explanation 

being offered of how it does so. As before, once the excitement over computational 

power was tempered, the shortage of theoretical substance was exposed. 

 One reason that research in connectionism suffered such setbacks is that, although 

there were undeniably important theoretical contributions made during this time, overall 

there was insufficient critical evaluation of the nature and validity of the psychological 

claims underlying the approach. During the initial explosions of connectionist research, 

not enough effort was spent asking what it would mean for the brain to be fundamentally 

governed by distributed representations and tuning of association strengths, or which 

possible specific assumptions within this framework were most consistent with the data. 

Consequently, when the limitations of the metaphor were brought to light, the field was 

not prepared with an adequate answer. On the other hand, pointing out the shortcomings 

of the approach (e.g., Marcus 1998; Pinker & Prince 1988) was productive in the long run 

because it focused research on the hard problems. Over the last two decades, attempts to 

answer these criticisms have led to numerous innovative approaches to computational 

problems such as object binding (Hummel & Biederman 1992), structured representation 

(Pollack 1990), recurrent dynamics (Elman 1990), and executive control (e.g., Miller & 

Cohen 2001; Rougier et al. 2005). At the same time, integration with knowledge of 

anatomy and physiology has led to much more biologically realistic networks capable of 

predicting neurological, pharmacological, and lesion data (e.g., Boucher et al. 2007; 

Frank et al. 2004). As a result, connectionist modeling of cognition has a much firmer 

grounding than before. 

 

1.2. Lessons for the Bayesian program? 

This brief historical review serves to illustrate the dangers that can arise when a new line 

of research is driven primarily by technical advances and is not subjected to the same 

theoretical scrutiny as more mature approaches. We believe such a danger currently 

exists in regard to Bayesian models of cognition. Principles of probabilistic inference 

have been prevalent in cognitive science at least since the advent of signal detection 

theory (Green & Swets 1966). However, Bayesian models have become much more 
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sophisticated in recent years, largely due to mathematical advances in specifying 

hierarchical and structured probability distributions (e.g., Engelfriet & Rozenberg 1997; 

Griffiths & Ghahramani 2006) and in efficient algorithms for approximate inference over 

complex hypothesis spaces (e.g., Doucet et al. 2000; Hastings 1970). Some of the ideas 

developed by psychologists have been sufficiently sophisticated that they have fed back 

to significantly impact computer science and machine learning (e.g., Thibaux & Jordan 

2007). In psychology, these technical developments have enabled application of the 

Bayesian approach to a wide range of complex cognitive tasks, including language 

processing and acquisition (Chater & Manning 2006), word learning (Xu & Tenenbaum 

2007), concept learning (Anderson 1991), causal inference (Griffiths & Tenenbaum 

2009), and deductive reasoning (Chater & Oaksford 1999a). There is a growing belief in 

the field that the Bayesian framework has the potential to solve many of our most 

important open questions, as evidenced by the rapid increase in the number of articles 

published on Bayesian models and by optimistic assessments such as, “In the [last] 

decade, probabilistic models have flourished . . . [The current wave of researchers] have 

considerably extended both the technical possibilities of probabilistic models and their 

range of applications in cognitive science” (Chater & Oaksford 2008, p. 25). 

 One attraction of the Bayesian framework is that it is part of a larger class of 

models that make inferences in terms of probabilities. Like connectionist models, 

probabilistic models avoid many of the challenges of symbolic models founded on 

Boolean logic and classical artificial intelligence (e.g., Newell & Simon 1972). For 

example, probabilistic models offer a natural account of non-monotonic reasoning, 

avoiding the technical challenges that arise in the development of nonmonotonic logics 

(see Gabbay et al. 1994). Oaksford and Chater (2007) make a strong case that 

probabilistic models have greater computational power than propositional models, and 

that the Bayesian framework is the more appropriate standard for normative analysis of 

human behavior than is that of classical logic (but, for an important counterargument, see 

Binmore 2009). Unfortunately, most of the literature on Bayesian modeling of cognition 

has not moved past these general observations. Much current research falls into what we 

have labeled Bayesian Fundamentalism, which emphasizes promotion of the Bayesian 

metaphor over tackling genuine theoretical questions. As with early incarnations of 
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connectionism, the Bayesian Fundamentalist movement is primarily driven by the 

expressive power – both computational and representational – of its mathematical 

framework. Most applications to date have been existence proofs, in that they 

demonstrate a Bayesian account is possible without attempting to adjudicate among (or 

even acknowledge) the multiple Bayesian models that are generally possible, or to 

translate the models into psychological assumptions that can be compared with existing 

approaches. Furthermore, amidst the proliferation of Bayesian models for various 

psychological phenomena, there has been surprisingly little critical examination of the 

theoretical tenets of the Bayesian program as a whole.  

 Taken as a psychological theory, the Bayesian framework does not have much to 

say. Its most unambiguous claim is that much of human behavior can be explained by 

appeal to what is rational or optimal. This is an old idea that has been debated for 

centuries (e.g., Kant 1787/1961). More importantly, rational explanations for behavior 

offer no guidance as to how that behavior is accomplished. As already mentioned, early 

connectionist learning rules were subject to the same criticism, but connectionism is 

naturally suited for grounding in physical brain mechanisms. The Bayesian framework is 

more radical in that, unlike previous brain metaphors grounded in technology and 

machines, the Bayesian metaphor is tied to a mathematical ideal and thus eschews 

mechanism altogether. This makes Bayesian models more difficult to evaluate. By 

locating explanations firmly at the computational level, the Bayesian Fundamentalist 

program renders irrelevant many major modes of scientific inquiry, including physiology, 

neuroimaging, reaction time, heuristics and biases, and much of cognitive development 

(although, as we show in sect. 5, this is not a necessary consequence of the Bayesian 

framework itself). All of these considerations suggest it is critical to pin Bayes down, to 

bring the Bayesian movement past the demonstration phase and get to the real work of 

using Bayesian models in integration with other approaches, to understand the detailed 

workings of the mind and brain. 

 

2. Bayesian inference as a psychological model 

Bayesian modeling can seem complex to the outsider. The basic claims of Bayesian 

modeling can be completely opaque to the non–mathematically inclined. In reality, the 
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presuppositions of Bayesian modeling are fairly simple. In fact, one might wonder what 

all the excitement is about once the mystery is removed. Here, by way of toy example, 

we shed light on the basic components at the heart of every Bayesian model. The hope is 

that this illustration will clarify what the basic claims of the Bayesian program are. 

 Constructing a Bayesian model involves two steps. The first step is to specify the 

set of possibilities for the state of the world, which is referred to as the hypothesis space. 

Each hypothesis can be thought of as a candidate prediction by the subject about what 

future sensory information will be encountered. However, the term hypothesis should not 

be confused with its more traditional use in psychology, connoting explicit testing of 

rules or other symbolically represented propositions. In the context of Bayesian 

modeling, hypotheses need have nothing to do with explicit reasoning, and indeed the 

Bayesian framework makes no commitment whatsoever on this issue. For example, in 

Bayesian models of visual processing, hypotheses can correspond to extremely low-level 

information, such as the presence of elementary visual features (contours, etc.) at various 

locations in the visual field (Geisler et al. 2001). There is also no commitment regarding 

where the hypotheses come from. Hypotheses could represent innate biases or 

knowledge, or they could have been learned previously by the individual. Thus the 

framework has no position on nativist-empiricist debates. Furthermore, hypotheses 

representing very different types of information (e.g., a contour in a particular location, 

whether or not the image reminds you of your mother, whether the image is symmetrical, 

whether it spells a particular word, etc.) are all lumped together in a common hypothesis 

space and treated equally by the model. Thus there is no distinction between different 

types of representations or knowledge systems within the brain. In general, a hypothesis 

is nothing more than a probability distribution. This distribution, referred to as the 

likelihood function, simply specifies how likely each possible pattern of observations is 

according to the hypothesis in question.  

 The second step in constructing a Bayesian model is to specify how strongly the 

subject believes in each hypothesis before observing data. This initial belief is expressed 

as a probability distribution over the hypothesis space and is referred to as the prior 

distribution (or prior). The prior can be thought of as an initial bias in favor of some 

hypotheses over others, in that it contributes extra votes (as elaborated below) that are 
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independent of any actual data. This decisional bias allows the model’s predictions to be 

shifted in any direction the modeler chooses regardless of the subject’s observations. As 

we discuss in section 4, the prior can be a strong point of the model if it is derived from 

empirical statistics of real environments. However, more commonly the prior is chosen 

ad hoc, providing substantial unconstrained flexibility to models that are advocated as 

rational and assumption-free. 

 Together, the hypotheses and the prior fully determine a Bayesian model. The 

model’s goal is to decide how strongly to believe in each hypothesis after data have been 

observed. This final belief is again expressed as a probability distribution over the 

hypothesis space and is referred to as the posterior distribution (or posterior). The 

mathematical identity known as Bayes’s Rule is used to combine the prior with the 

observed data to compute the posterior. Bayes’s Rule can be expressed in many ways, but 

here we explain how it can be viewed as a simple vote-counting model. Specifically, 

Bayesian inference is equivalent to tracking evidence for each hypothesis, or votes for 

how strongly to believe in each hypothesis. The prior provides the initial evidence counts, 

Eprior, which are essentially made-up votes that give some hypotheses a head start over 

others before any actual data are observed. When data are observed, each observation 

adds to the existing evidence according to how consistent it is with each hypothesis. The 

evidence contributed for a hypothesis that predicted the observation will be greater than 

the evidence for a hypothesis under which the observation was unlikely. The evidence 

contributed by the ith observation,  is simply added to the existing evidence to 

update each hypothesis’s count. Therefore the final evidence, Eposterior, is nothing more 

than a sum of the votes from all of the observations, plus the initial votes from the prior:1 

 (1) 

This sum is computed for every hypothesis, H, in the hypothesis space. The vote totals 

determine how strongly the model believes in each hypothesis in the end. Thus any 

Bayesian model can be viewed as summing evidence for each hypothesis, with initial 

evidence coming from the prior and with additional evidence coming from each new 

observation. The final evidence counts are then used in whatever decision procedure is 

appropriate for the task, such as determining the most likely hypothesis, predicting the 
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value of some unobserved variable (by weighting each hypothesis by its posterior 

probability and averaging their predictions), or choosing an action that maximizes the 

expected value of some outcome (again by weighted average over hypotheses). At its 

core, this is all there is to Bayesian modeling. 

 To illustrate these two steps and how inference proceeds in a Bayesian model, 

consider the problem of determining whether a fan entering a football stadium is rooting 

for the University of Southern California (USC) Trojans or the University of Texas (UT) 

Longhorns, based on three simple questions: (1) Do you live by the ocean? (2) Do you 

own a cowboy hat? (3) Do you like Mexican food? The first step is to specify the space 

of possibilities (i.e., hypothesis space). In this case the hypothesis space consists of two 

possibilities: being a fan of either USC or UT. Both of these hypotheses entail 

probabilities for the data we could observe, for example, P(ocean | USC) = .8 and 

P(ocean | UT) = .3. Once these probabilities are given, the two hypotheses are fully 

specified. The second step is to specify the prior. In many applications, there is no 

principled way of doing this, but in this example the prior corresponds to the probability 

that a randomly selected person will be a USC fan or a UT fan; that is, one’s best guess as 

to the overall proportion of USC and UT fans in attendance.  

 With the model now specified, inference proceeds by starting with the prior and 

accumulating evidence as new data are observed. For example, if the football game is 

being played in Los Angeles, one might expect that most people are USC fans, and hence 

the prior would provide an initial evidence count in favor of USC. If our target person 

responded that he lives near the ocean, this observation would add further evidence for 

USC relative to UT. The magnitudes of these evidence values will depend on the specific 

numbers assumed for the prior and for the likelihood function for each hypothesis, but all 

that the model does is take the evidence values and add them up. Each new observation 

adds to the balance of evidence among the hypotheses, strengthening those that predicted 

it relative to those under which it was unlikely. 

 There are several ways in which real applications of Bayesian modeling become 

more complex than the foregoing simple example. However, these all have to do with the 

complexity of the hypothesis space rather than the Bayesian framework itself. For 

example, many models have a hierarchical structure in which hypotheses are essentially 
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grouped into higher-level overhypotheses. Overhypotheses are generally more abstract 

and require more observations to discriminate among them; thus hierarchical models are 

useful for modeling learning (e.g., Kemp et al. 2007). However, each overhypothesis is 

just a weighted sum of elementary hypotheses, and inference among overhypotheses 

comes down to exactly the same vote-counting scheme as described earlier. As a second 

example, many models assume special mathematical functions for the prior, such as 

conjugate priors (discussed further in sect. 5), that simplify the computations involved in 

updating evidence. However, such assumptions are generally made solely for the 

convenience of the modeler rather than for any psychological reason related to the likely 

initial beliefs of a human subject. Finally, for models with especially complex hypothesis 

spaces, computing exact predictions often becomes computationally intractable. In these 

cases, sophisticated approximation schemes are used, such as Markov-chain Monte Carlo 

(MCMC) or particle filtering (i.e., sequential Monte Carlo). These algorithms yield good 

estimates of the model’s true predictions while requiring far less computational effort. 

However, once again they are used for the convenience of the modeler and are not meant 

as proposals for how human subjects might solve the same computational problems. As 

we argue in section 5, all three of these issues are points where Bayesian modeling makes 

potential contact with psychological theory in terms of how information is represented 

and processed. Unfortunately, most of the focus to date has been on the Bayesian 

framework itself, setting aside where the hypotheses and priors come from and how the 

computations are performed or approximated. 

 The aim of this section was to clear up confusion about the nature and theoretical 

claims of Bayesian models. To summarize: Hypotheses are merely probability 

distributions and have no necessary connection to explicit reasoning. The model’s 

predictions depend on the initial biases on the hypotheses (i.e., the prior), but the choice 

of the prior does not always have a principled basis. The heart of Bayesian inference – 

combining the prior with observed data to reach a final prediction – is formally 

equivalent to a simple vote-counting scheme. Learning and one-off decision making both 

follow this scheme and are treated identically except for timescale and specificity of 

hypotheses. The elaborate mathematics that often arises in Bayesian models comes from 

the complexity of their hypothesis sets or the tricks used to derive tractable predictions, 
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which generally have little to do with the psychological claims of the researchers. 

Bayesian inference itself, aside from its assumption of optimality and close relation to 

vote-counting models, is surprisingly devoid of psychological substance. It involves no 

representations to be updated; no encoding, storage, retrieval, or search; no attention or 

control; no reasoning or complex decision processes; and actually no mechanism at all, 

except for a simple counting rule. 

 

3. Bayes as the new Behaviorism 

Perhaps the most radical aspect of Bayesian Fundamentalism is its rejection of 

mechanism. The core assumption is that one can predict behavior by calculating what is 

optimal in any given situation. Thus, the theory is cast entirely at the computational level 

(in the sense of Marr 1982), without recourse to mechanistic (i.e., algorithmic or 

implementational) levels of explanation. As a metascientific stance, this is a very strong 

position. It asserts that a wide range of modes of inquiry and explanation are essentially 

irrelevant to understanding cognition. In this regard, the Bayesian program has much in 

common with Behaviorism. This section explores the parallels between these two schools 

of thought in order to draw out some of the limitations of Bayesian Fundamentalism. 

 During much of the first half of the 20th century, American psychology was 

dominated by the Behaviorist belief that one cannot draw conclusions about unobservable 

mental entities (Skinner 1938; Watson 1913). Under this philosophy, theories and 

experiments were limited to examination of the schedule of sensory stimuli directly 

presented to the subject and the patterns of observed responses. This approach conferred 

an important degree of rigor that the field previously lacked, by abolishing Dualism, 

advocating rigorous Empiricism, and eliminating poorly controlled and objectively 

unverifiable methods such as introspection. The strict Empiricist focus also led to 

discovery of important and insightful phenomena, such as shaping (Skinner 1958) and 

generalization (Guttman & Kalish 1956). 

 One consequence of the Behaviorist framework was that researchers limited 

themselves to a very constrained set of explanatory tools, such as conditioning and 

reinforcement. These tools have had an important lasting impact, for example, in 

organizational behavior management (Dickinson 2000) and behavioral therapy for a wide 
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variety of psychiatric disorders (Rachman 1997). However, cognitive constructs, such as 

representation and information processing (e.g., processes associated with inference and 

decision making), were not considered legitimate elements of a psychological theory. 

Consequently, Behaviorism eventually came under heavy criticism for its inability to 

account for many aspects of cognition, especially language and other higher-level 

functions (Chomsky 1959). After the so-called Cognitive Revolution, when researchers 

began to focus on the mechanisms by which the brain stores and processes information, 

the depth and extent of psychological theories were dramatically expanded (Miller 2003). 

Relative to the state of current cognitive psychology, Behaviorist research was extremely 

limited in the scientific questions that it addressed, the range of explanations it could 

offer, and the empirical phenomena it could explain. 

 The comparison of Bayesian modeling to Behaviorism may seem surprising 

considering that Bayesian models appear to contain unobservable cognitive constructs, 

such as hypotheses and their subjective probabilities. However, these constructs rarely 

have the status of actual psychological assumptions. Psychological theories of 

representation concern more than just what information is tracked by the brain; they 

include how that information is encoded, processed, and transformed. The 

Fundamentalist Bayesian view takes no stance on whether or how the brain actually 

computes and represents probabilities of hypotheses. All that matters is whether behavior 

is consistent with optimal action with respect to such probabilities (Anderson 1990; 

1991). This means of sidestepping questions of representation can be viewed as a strength 

of the rational approach, but it also means that Bayesian probabilities are not necessarily 

psychological beliefs. Instead, they are better thought of as tools used by the researcher to 

derive behavioral predictions. The hypotheses themselves are not psychological 

constructs either, but instead reflect characteristics of the environment. The set of 

hypotheses, together with their prior probabilities, constitute a description of the 

environment by specifying the likelihood of all possible patterns of empirical 

observations (e.g., sense data). According to Bayesian Fundamentalism, this description 

is an accurate one, and by virtue of its accuracy it is determined solely by the 

environment. There is no room for psychological theorizing about the nature of the 

hypothesis set, because such theories logically could only take the form of explaining 
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how people’s models of the environment are incorrect. According to Bayesian 

Fundamentalism, by grounding the hypotheses and prior in the environment (Anderson 

1990), Bayesian models make predictions directly from the environment to behavior, 

with no need for psychological assumptions of any sort. 

 In many Bayesian models, the hypotheses are not expressed as an unstructured 

set, but instead emerge from a generative model of the environment. The generative 

model (which is a component of the Bayesian model) often takes the form of a causal 

network in which the probabilities of observable variables depend on the values of 

unobservable, latent variables. Hypotheses about observable variables correspond to 

values of the latent variables. For example, in the topic model of text comprehension, the 

words in a passage (the observables) are assumed to be generated by a stochastic process 

parameterized by the weights of various semantic topics within the passage (Griffiths et 

al. 2007). However, the model makes no claim about the psychological status of the 

latent variables (i.e., the topic weights). These variables serve only to define the joint 

distribution over all possible word sequences, and the model is evaluated only with 

respect to whether human behavior is consistent with that distribution. Whether people 

explicitly represent topic weights (or their posterior distributions) or whether they arrive 

at equivalent inferences based on entirely different representations is outside the scope of 

the model (Griffiths et al. 2007, p. 212). Therefore, generative models and the latent 

variables they posit do not constitute psychological constructs, at least according to the 

fundamentalist viewpoint. Instead, they serve as descriptions of the environment and 

mathematical tools that allow the modeler to make behavioral predictions. Just as in 

Behaviorist theories, the path from environmental input to behavioral prediction bypasses 

any consideration of cognitive processing. 

 To take a simpler example, Figure 1 shows a causal graphical model 

corresponding to a simplified version of Anderson’s (1991) rational model of 

categorization. The subject’s task in this example is to classify animals as birds or 

mammals. The rational model assumes that these two categories are each partitioned into 

subcategories, which are termed clusters. The psychological prediction is that 

classification behavior corresponds (at a computational level) to Bayesian inference over 

this generative model. If a subject were told that a particular animal can fly, the optimal 
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probability that it is a bird would equal the sum of the posterior probabilities of all the 

clusters within the bird category (and likewise for mammal). Critically, however, the 

clusters do not necessarily correspond to actual psychological representations. All that 

matters for predicting behavior is the joint probability distribution over the observable 

variables (i.e., the features and category labels). The clusters help the modeler to 

determine this distribution, but the brain may perfom the computations in a completely 

different manner. In the discussion of Bayesian Enlightenment below (sect. 5), we return 

to the possibility of treating latent variables and generative models as psychological 

assumptions about knowledge representation. However, the important point here is that, 

according to the Fundamentalist Bayesian view, they are not. Generative models, the 

hypotheses they specify, and probability distributions over those hypotheses are all 

merely tools for deriving predictions from a Bayesian model. The model itself exists at a 

computational level, where its predictions are defined only based on optimal inference 

and decision making. The mechanisms by which those decisions are determined are 

outside the model’s scope. 

 

 

Figure 1. 
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3.1. Consequences of the denial of mechanism 

By eschewing mechanism and aiming to explain behavior purely in terms of rational 

analysis, the Fundamentalist Bayesian program raises the danger of pushing the field of 

psychology back toward the sort of restrictive state experienced during the strict 

Behaviorist era. Optimality and probabilistic inference are certainly powerful tools for 

explaining behavior, but taken alone they are insufficient. A complete science of 

cognition must draw on the myriad theoretical frameworks and sources of evidence 

bearing on how cognition is carried out, as opposed to just its end product. These include 

theories of knowledge representation, decision making, mental models, dynamic-system 

approaches, attention, executive control, heuristics and biases, reaction time, 

embodiment, development, and the entire field of cognitive neuroscience, just to name 

some. Many of these lines of research would be considered meaningless within the 

Behaviorist framework, and likewise they are all rendered irrelevant by the strict rational 

view. Importantly, the limitation is not just on what types of explanations are considered 

meaningful, but also on what is considered worthy of explanation – that is, what scientific 

questions are worth pursuing and what types of evidence are viewed as informative. 

 An important argument in favor of rational over mechanistic modeling is that the 

proliferation of mechanistic modeling approaches over the past several decades has led to 

a state of disorganization, wherein models’ substantive theoretical content cannot be 

disentangled from idiosyncrasies of their implementations. Distillation of models down to 

their computational principles would certainly aid in making certain comparisons across 

modeling frameworks. For example, both neural network (Burgess & Hitch 1999) and 

production system (Anderson et al. 1998) models of serial recall have explained primacy 

effects by using the same assumptions about rehearsal strategies, despite the significant 

architectural differences in which this common explanation is implemented. The rational 

approach is useful in this regard in that it eases comparison by emphasizing the 

computational problems that models aim to solve.  

 However, it would be a serious overreaction simply to discard everything below 

the computational level. As in nearly every other science, understanding how the subject 

of study (i.e., the brain) operates is critical to explaining and predicting its behavior. As 

we argue in section 4, mechanistic explanations tend to be better suited for prediction of 
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new phenomena, as opposed to post hoc explanation. Furthermore, algorithmic 

explanations and neural implementations are an important focus of research in their own 

right. Much can be learned from consideration of how the brain handles the 

computational challenge of guiding behavior efficiently and rapidly in a complex world, 

when optimal decision making (to the extent that it is even well defined) is not possible. 

These mechanistic issues are at the heart of most of the questions of theoretical or 

practical importance within cognitive science, including questions of representation, 

timing, capacity, anatomy, and pathology. 

 For example, connectionist models have proven valuable in reconceptualizing 

category-specific deficits in semantic memory as arising from damage to distributed 

representations in the brain (for a review, see Rogers & Plaut 2002), as opposed to being 

indicative of damage to localized representations (e.g., Caramazza & Shelton 1998). 

Although these insights rely on statistical analyses of how semantic features are 

distributed (e.g., Cree & McRae 2003), and, thus, could in principle be characterized by a 

Bayesian model, the connectionist models were tremendously useful in motivating this 

line of inquiry. Additionally, follow-on studies have helped characterize impaired 

populations and have suggested interventions, including studies involving Alzheimer’s 

patients (Devlin et al. 1998) and related work exploring reading difficulties resulting 

from developmental disorders and brain injury (Joanisse & Seidenberg 1999; 2003; Plaut 

et al. 1996). 

 Even when the goal is only to explain inference or choice behavior (setting aside 

reaction time), optimal probabilistic inference is not always sufficient. This is because the 

psychological mechanisms that give rise to behavior often at best only approximate the 

optimal solution. These mechanisms produce signature deviations from optimality that 

rational analysis has no way of anticipating. Importantly, considering how representations 

are updated in these mechanisms can suggest informative experiments. 

 For example, Sakamoto et al. (2008) investigated learning of simple perceptual 

categories that differed in the variation among items within each category. To classify 

new stimuli accurately, subjects had to estimate both the means and variances of the 

categories (stimuli varied along a single continuous dimension). Sakamoto et al. 

considered a Bayesian model that updates its estimates optimally, given all past instances 



 

 22 

of each category, and a mechanistic (cluster) model that learns incrementally in response 

to prediction error. The incremental model naturally produces recency effects, whereby 

more recent observations have a greater influence on its current state of knowledge (Estes 

1957), in line with empirical findings in this type of task (e.g., Jones & Sieck 2003). 

Simple recency effects are no challenge to Bayesian models, because one can assume 

nonstationarity in the environment (e.g., Yu & Cohen 2008). However, the incremental 

model predicts a more complex recency effect whereby, under certain presentation 

sequences, the recency effect in the estimate of a category’s mean induces a bias in the 

estimate of its variance. This bias arises purely as a by-product of the updating algorithm 

and has no connection to rational, computational-level analyses of the task. Human 

subjects exhibited the same estimation bias predicted by the incremental model, 

illustrating the utility of mechanistic models in directing empirical investigations and 

explaining behavior.  

 Departures from strict rational orthodoxy can lead to robust and surprising 

predictions, such as in work considering the forces that mechanistic elements exert on 

one another in learning and decision making (Busemeyer & Johnson 2008; Davis & Love 

2010; Spencer et al. 2009). Such work often serves to identify relevant variables that 

would not be deemed theoretically relevant under a Fundamentalist Bayesian view 

(Clearfield et al. 2009). Even minimal departures from purely environmental 

considerations, such as manipulating whether information plays the role of cue or 

outcome within a learning trial, can yield surprising and robust results (Love 2002; 

Markman & Ross 2003; Ramscar et al. 2010; Yamauchi & Markman 1998). The effects 

of this manipulation can be seen in a common transfer task, implying that it is the 

learners’ knowledge that differs and not just their present goals. 

 Focusing solely on computational explanations also eliminates many of the 

implications of cognitive science for other disciplines. For example, without a theory of 

the functional elements of cognition, little can be said about cognitive factors involved in 

psychological disorders. Likewise, without a theory of the physiology of cognition, little 

can be said about brain disease, trauma, or psychopharmacology. (Here the situation is 

even more restrictive than in Behaviorism, which would accept neurological data as valid 

and useful.) Applications of cognitive theory also tend to depend strongly on mechanistic 
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descriptions of the mind. For example, research in human factors relies on models of 

timing and processing capacity, and applications to real-world decision making depend 

on the heuristics underlying human judgment. Understanding these heuristics can also 

lead to powerful new computational algorithms that improve the performance of 

artificially intelligent systems in complex tasks (even systems built on Bayesian 

architectures). Rational analysis provides essentially no insight into any of these issues. 

 

3.2. Integration and constraints on models 

One advantage of Behaviorism is that its limited range of explanatory principles led to 

strong cohesion among theories of diverse phenomena. For example, Skinner (1957) 

attempted to explain human verbal behavior by using the same principles previously used 

in theories of elementary conditioning. It might be expected that the Bayesian program 

would enjoy similar integration because of its reliance on the common principles of 

rational analysis and probabilistic inference. Unfortunately, this is not the case in practice 

because the process of rational analysis is not sufficiently constrained, especially as 

applied to higher-level cognition. 

 Just as mechanistic modeling allows for alternative assumptions about process 

and representation, rational modeling allows for alternative assumptions about the 

environment in which the cognitive system is situated (Anderson 1990). In both cases, a 

principal scientific goal is to decide which assumptions provide the best explanation. 

With Bayesian models, the natural approach dictated by rational analysis is to make the 

generative model faithful to empirical measurements of the environment. However, as we 

observe in section 4, this empirical grounding is rarely carried out in practice. 

Consequently, the rational program loses much of its principled nature, and models of 

different tasks become fractionated because there is nothing but the math of Bayesian 

inference to bind them together. 

 At the heart of every Bayesian model is a set of assumptions about the task 

environment, embodied by the hypothesis space and prior distribution, or equivalently by 

the generative model and prior distributions for its latent variables. The prior distribution 

is the well-known and oft-criticized lack of constraint in most Bayesian models. As 

explained in section 2, the prior provides the starting points for the vote-counting process 
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of Bayesian inference, thereby allowing the model to be initially biased toward some 

hypotheses over others. Methods have been developed for using uninformative priors that 

minimize influence on model predictions, such as Jeffreys priors (Jeffreys 1946) or 

maximum-entropy priors (Jaynes 1968). However, a much more serious source of 

indeterminacy comes from the choice of the hypothesis set itself or equivalently from the 

choice of the generative model.  

 The choice of generative model often embodies a rich set of assumptions about 

the causal and dynamic structure of the environment. In most interesting cases, many 

alternative assumptions could be made, but only one is considered. For example, the 

CrossCat model of how people learn multiple overlapping systems of categories (Shafto 

et al., in press) assumes that category systems constitute different partitions of a stimulus 

space, that each category belongs to exactly one system, and that each stimulus feature or 

dimension is relevant to exactly one category system and is irrelevant to all others. These 

assumptions are all embodied by the generative model on which CrossCat is based. There 

are clearly alternatives to these assumptions, for which intuitive arguments can be made 

(e.g., for clothing, the color dimension is relevant for manufacturing, laundering, and 

considerations of appearance), but there is no discussion of these alternatives, 

justification of the particular version of the model that was evaluated, or consideration of 

the implications for model predictions. Other than the assumption of optimal inference, 

all there is to a Bayesian model is the choice of generative model (or hypothesis set plus 

prior), so it is a serious shortcoming when a model is developed or presented without 

careful consideration of that choice. The neglected multiplicity of models is especially 

striking considering the rational theorist’s goal of determining the – presumably unique – 

optimal pattern of behavior. 

 Another consequence of insufficient scrutiny of generative models (or hypothesis 

sets more generally) is a failure to recognize the psychological commitments they entail. 

These assumptions often play a central role in the explanation provided by the Bayesian 

model as a whole, although that role often goes unacknowledged. Furthermore, the 

psychological assumptions implicitly built into a generative model can be logically 

equivalent to preexisting theories of the same phenomena. For example, Kemp et al. 

(2007) propose a Bayesian model of the shape bias in early word learning, whereby 
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children come to expect a novel noun to be defined by the shape of the objects it denotes 

rather than other features such as color or texture. The model learns the shape bias 

through observation of many other words with shape-based definitions, which shifts 

evidence to an overhypothesis that most nouns in the language are shape-based. The 

exposition of the model is a mathematically elegant formalization of abstract induction. 

However, it is not Bayes’s Rule or even the notion of overhypotheses that drives the 

prediction; rather it is the particular overhypotheses that were built into the model. In 

other words, the model was endowed with the capability to recognize a particular pattern 

(viz., regularity across words in which perceptual dimensions are relevant to meaning), so 

the fact that it indeed recognizes that pattern when presented with it is not surprising or 

theoretically informative. Furthermore, the inference made by the model is logically the 

same as the notion of second-order generalization proposed previously by Smith et al. 

(2002). Detailed mechanistic modeling has shown how second-order generalization can 

emerge from the interplay between attentional and associative processes (Colunga & 

Smith 2005), in contrast to the more tautological explanation offered by the Bayesian 

model. Therefore, at the level of psychological theory, Kemp et al.’s model merely 

recapitulates a previously established idea in a way that is mathematically more elegant 

but psychologically less informative. 

 In summary, Bayesian Fundamentalism is simultaneously more restrictive and 

less constrained than Behaviorism. In terms of modes of inquiry and explanation, both 

schools of thought shun psychological constructs, in favor of aiming to predict behavior 

directly from environmental inputs. However, under Behaviorism this restriction was 

primarily a technological one. Nothing in the Behaviorist philosophy would invalidate 

relatively recent tools that enable direct measurements of brain function, such as 

neuroimaging, EEG, and single-unit recording (at least as targets of explanation, if not as 

tools through which to develop theories of internal processes). Indeed, these techniques 

would presumably have been embraced because they satisfy the criterion of direct 

observation. Bayesian Fundamentalism, in contrast, rejects all measures of brain 

processing out of principle because only the end product (i.e., behavior) is relevant to 

rational analysis.2 At the same time, whereas Behaviorist theories were built from simple 

mechanisms and minimal assumptions, Bayesian models often depend on complex 



 

 26 

hypothesis spaces based on elaborate and mathematically complex assumptions about 

environmental dynamics. As the emphasis is generally on rational inference (i.e., starting 

with the assumptions of the generative model and deriving optimal behavior from there), 

the assumptions themselves generally receive little scrutiny. The combination of these 

two factors leads to a dangerously underconstrained research program in which the core 

assumptions of a model (i.e., the choice of hypothesis space) can be made at the 

modeler’s discretion without comparison to alternatives and without any requirement to 

fit physiological or other process-level data. 

 

4. Bayes as evolutionary psychology 

In addition to the rejection of mechanistic explanation, a central principle of the 

Fundamentalist Bayesian approach to cognition is that of optimality. The claim that 

human behavior can be explained as adaptation to the environment is also central to 

evolutionary psychology. On the surface, these two approaches to understanding behavior 

seem very different, as their content and methods differ. For example, one core domain of 

inquiry in evolutionary psychology is mating, which is not often studied by cognitive 

psychologists, and theories in evolutionary psychology tend not to be computational in 

nature, whereas rational Bayesian approaches are by definition. Thus, one advantage of 

rational Bayesian accounts is that they formalize notions of optimality, which can clarify 

assumptions and allow for quantitative evaluation. Despite these differences, Bayesian 

Fundamentalism and evolutionary psychology share a number of motivations and 

assumptions. Indeed, Geisler and Diehl (2003) propose a rational Bayesian account of 

Darwin’s theory of natural selection. In this section, we highlight the commonalities and 

important differences between these two approaches to understanding human behavior.  

 We argue below that Bayesian Fundamentalism is vulnerable to many of the 

criticisms that have been leveled at evolutionary psychology. Indeed, we argue that 

notions of optimality in evolutionary psychology are more complete and properly 

constrained than those forwarded by Bayesian Fundamentalists, because evolutionary 

psychology considers other processes than simple adaptation (e.g., Buss et al. 1998). 

Bayesian Fundamentalism appropriates some concepts from evolutionary psychology 

(e.g., adaptation, fitness, and optimality), but leaves behind many other key concepts 
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because of its rejection of mechanism. Because it is mechanisms that evolve, not 

behaviors, Bayesian Fundamentalism’s assertions of optimality provide little theoretical 

grounding and are circular in a number of cases. 

 Basic evolutionary theory holds that animal behavior is adapted by natural 

selection, which increases inclusive fitness. High fitness indicates that an animal’s 

behaviors are well suited to its environment, leading to reproductive success. On the 

assumption that evolutionary pressures tune a species’ genetic code such that the 

observed phenotype gives rise to optimal behaviors, one can predict an animal’s behavior 

by considering the environment in which its ancestors flourished and reproduced. 

According to evolutionary psychologists, this environment, referred to the environment 

of evolutionary adaptedness (EEA), must be understood in order to comprehend the 

functions of the brain (Bowlby 1969). Thus, evolutionary explanations of behavior tend 

to focus on the environment, and this focus can on occasion occur at the expense of 

careful consideration of mechanism. However, as discussed extensively below in section 

4.3 and in contrast to Bayesian Fundamentalism, some key concepts in evolutionary 

psychology do rely on mechanistic considerations, and these concepts are critical for 

grounding notions of adaptation and optimization. These key concepts are neglected in 

Bayesian Fundamentalism. 

 Critically, it is not any function that is optimized by natural selection, but 

functions that are relevant to fitness. To use Oaksford and Chater’s (1998) example, 

animals may be assumed to use optimal foraging strategies because (presumably) 

gathering food efficiently is relevant to the global goal of maximizing inclusive fitness 

(see Hamilton 1964). Thus, in practice, evolutionary arguments, like rational theories of 

cognition, require characterizing the environment and the behaviors that increase fitness. 

For example, Anderson’s (1991) rational model of category learning is intended to 

maximize prediction of unknown information in the environment, which presumably 

increases fitness. 

 Like rational approaches to cognition, evolutionary psychology draws inspiration 

from evolutionary biology and views much of human behavior as resulting from 

adaptations shaped by natural selection (Buss 1994; Pinker 2002; Tooby & Cosmides 

2005). The core idea is that recurring challenges in our ancestral environments (i.e., 
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EEA) shaped our mental capacities and proclivities. This environmental focus is in the 

same spirit as work in ecological psychology (Gibson 1979; Michaels & Carello 1981). 

Following from a focus on specific challenges and adaptations, evolutionary theories 

often propose special-purpose modules. For example, evolutionary psychologists have 

proposed special-purpose modules for cheater detection (Cosmides & Tooby 1992), 

language acquisition (Pinker 1995), incest avoidance (Smith 2007), and snake detection 

(Sperber & Hirschfeld 2003). Much like evolutionary psychology’s proliferation of 

modules, rational models are developed to account for specific behaviors, such as 

children’s ability to give the number of objects requested (Lee & Sarnecka 2010), 

navigation when disoriented in a maze (Stankiewicz et al. 2006), and understanding a 

character’s actions in an animation (Baker et al. 2009), at the expense of identifying 

general mechanisms and architectural characteristics (e.g., working memory) that are 

applicable across a number of tasks (in which the specific behaviors to be optimized 

differ). 

 

4.1. An illustrative example of rational analysis as evolutionary argument 

Perhaps the rational program’s focus on environmental adaptation is best exemplified by 

work in early vision. Early vision is a good candidate for rational investigation because 

the visual environment has likely been stable for millennia and the ability to perceive the 

environment accurately is clearly related to fitness. The focus on environmental statistics 

is clear in Geisler et al.’s (2001) work on contour detection. In this work, Geisler and 

colleagues specify how an ideal classifier detects contours and compare this ideal 

classifier’s performance to human performance. To specify the ideal classifier, the 

researchers gathered natural image statistics that were intended to be representative of the 

environment in which our visual system evolved. Implicit in the choice of images are 

assumptions about what the environment was like. Additionally, the analysis requires 

assuming which measures or image statistics are relevant to the contour classification 

problem. Geisler et al. selected a number of natural images of mountains, forests, 

coastlines, etc., to characterize our ancestral visual environment. From these images, they 

measured certain statistics they deemed relevant to contour detection. Their chosen 

measures described relationships among edge segments belonging to the same contour, 
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such as the distance between the segments and their degree of colinearity. To gather these 

statistics, expert raters determined whether two edge elements belonged to the same 

contour in the natural images. These measures specify the likelihood and prior in the 

Bayesian ideal observer. The prior for the model is simply the probability that two 

randomly selected edge elements belong to the same contour. The likelihood follows 

from a table of co-occurrences of various distances and angles between pairs of edge 

elements indexed by whether each pair belongs to the same contour. Geisler et al. 

compared human performance to the ideal observer in a laboratory task that involved 

determining whether a contour was present in novel, meaningless images composed of 

scattered edge elements. Human performance and the rational model closely 

corresponded, supporting Geisler et al.’s account. 

 Notice that there is no notion of mechanism (i.e., process or representation) in this 

account of contour detection. The assumptions made by the modeler include what our 

ancestral environment was like and which information in this environment is relevant. 

Additionally, it is assumed that the specific behavior modeled (akin to a module in 

evolutionary psychology) is relevant to fitness. These assumptions, along with 

demonstrating a correlation with human performance, are the intellectual contribution of 

the work. Finally, rational theories assume optimal inference as reflected in the Bayesian 

classification model. Specifying the Bayesian model may be technically challenging, but 

is not part of the theoretical contribution (i.e., it is a math problem, not a psychology 

problem). The strength of Geisler et al.’s work rests in its characterization of the 

environment and the statistics of relevance.  

 Unfortunately, the majority of rational analyses do not include any measurements 

from actual environments even though the focus of such theories is on the environment 

(for a similar critique, see Murphy 1993). Instead, the vast majority of rational analysis in 

cognition relies on intuitive arguments to justify key assumptions. In some cases, 

psychological phenomena can be explained from environmental assumptions that are 

simple and transparent enough not to require verification (e.g., McKenzie & Mikkelsen 

2007; Oaksford & Chater 1994). However, more often Bayesian models incorporate 

complex and detailed assumptions about the structure of the environment that are far 

from obvious and are not supported by empirical data (e.g., Anderson 1991; Brown & 
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Steyvers 2009; Goodman et al. 2008; Steyvers et al. 2009; Tenenbaum & Griffiths 2001). 

Cognitive work that does gather environmental measures is exceedingly rare and tends to 

rely on basic statistics to explain general behavioral tendencies and judgments (e.g., 

Anderson & Schooler 1991; Griffiths & Tenenbaum 2006). This departure from true 

environmental grounding can be traced back to John Anderson’s (1990; 1991) seminal 

contributions in which he popularized the rational analysis of cognition. In those works, 

he specified a series of steps for conducting such analyses. Step 6 of the rational method 

(Anderson 1991) is to revisit assumptions about the environment and relevant statistics 

when the model fails to account for human data. In practice, this step involves the 

modeler’s ruminating on what the environment is like and what statistics are relevant 

rather than actual study of the environment. This is not surprising given that most 

cognitive scientists are not trained to characterize ancestral environments. For example, 

at no point in the development of Anderson’s (1991) rational model of category learning 

is anything in the environment actually measured. Although one purported advantage of 

rational analysis is the development of zero-parameter, nonarbitrary models, it would 

seem that the theorist has unbounded freedom to make various assumptions about the 

environment and the relevant statistics (for a similar critique, see Sloman & Fernbach 

2008). As discussed in the next section, similar criticisms have been made of 

evolutionary psychology. 

 

4.2. Too much flexibility in evolutionary and rational explanations? 

When evaluating any theory or model, one must consider its fit to the data and its 

flexibility to account for other patterns of results (Pitt et al. 2002). Models and theories 

are favored that fit the data and have low complexity (i.e., are not overly flexible). One 

concern we raise is whether rational approaches offer unbounded and hidden flexibility to 

account for any observed data. Labeling a known behavior as rational is not theoretically 

significant if it is always possible for some rational explanation to be constructed. 

Likewise, evolutionary psychology is frequently derided as simply offering “just so” 

stories (Buller 2005, but see Machery & Barrett 2006). Adaptationist accounts certainly 

constrain explanation compared to nonadaptationist alternatives, but taken alone they still 

allow significant flexibility in terms of assumptions about the environment and the extent 
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to which adaptation is possible. For example, to return to the foraging example, altering 

one’s assumptions about how food rewards were distributed in ancestral environments 

can determine whether an animal’s search process (i.e., the nature and balance of 

exploitative and exploratory decisions) is optimal. Likewise, the target of optimization 

can be changed. For example, inefficiencies in an animal’s foraging patterns for food-rich 

environments can be explained after the fact as an adaptation to ensure the animal does 

not become morbidly obese. On the other hand, if animals were efficient in abundant 

environments and became obese, one could argue that foraging behaviors were shaped by 

adaptation to environments in which food was not abundant. If, no matter the data, there 

is a rational explanation for a behavior, it is not a contribution to label a behavior as 

rational. Whereas previous work in the heuristics-and-biases tradition (Tversky & 

Kahneman 1974) cast the bulk of cognition as irrational by using a fairly simplistic 

notion of rationality, Bayesian Fundamentalism finds rationality to be ubiquitous based 

on underconstrained notions of rationality. 

 To provide a recent example from the literature, the persistence of negative traits, 

such as anxiety and insecurity, that lower an individual’s fitness has been explained by 

appealing to these traits’ utility to the encompassing group in signaling dangers and 

threats facing the group (Ein-Dor et al. 2010). While this ingenious explanation could be 

correct, it illustrates the incredible flexibility that adaptive accounts can marshal in the 

face of a challenging data point. 

 Similar criticisms have been leveled at work in evolutionary biology. For 

example, Gould and Lewontin (1979) have criticized work that develops hypotheses 

about the known functions of well-studied organs as “backward-looking.” One worry is 

that this form of theorizing can lead to explanations that largely reaffirm what is currently 

believed. Work in evolutionary psychology has been criticized for explaining 

unsurprising behaviors (Horgan 1999), like that men are less selective about who they 

will mate with than are women. Likewise, we see a tendency for rational analyses to 

largely reexpress known findings in the language of Bayesian optimal behavior. The 

work of Geisler et al. (2001) on contour perception is vulnerable to this criticism because 

it largely recapitulates Gestalt principles (e.g., Wertheimer 1923/1938) in the language of 

Bayes. In cognition, the rational rules model (Goodman et al. 2008) of category learning 
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reflects many of the intuitions of previous models, such as the rule-plus-exception 

(RULEX) model (Nosofsky et al. 1994), in a more elegant and expressive Bayesian form 

that does not make processing predictions. In other cases, the intuitions from previous 

work are reexpressed in more general Bayesian terms in which particular choices for the 

priors enable the Bayesian model to mimic the behavior of existing models. For example, 

unsupervised clustering models using simplicity principles based on minimum 

description length (MDL; Pothos & Chater 2002) are recapitulated by more flexible 

approaches phrased in the language of Bayes (Austerweil & Griffiths 2008; Griffiths et 

al. 2008). A similar path of model development has occurred in natural language 

processing (Ravi & Knight 2009). 

 One motivation for rational analysis was to prevent models with radically 

different assumptions from making similar predictions (Anderson 1991). In reality, the 

modeler has tremendous flexibility in characterizing the environment (for similar 

arguments, see Buller 2005). For example, the articles by Dennis and Humphreys (1998) 

and Shiffrin and Steyvers (1998) both offer rational accounts of memory (applicable to 

word-list tasks) that radically differ, but both do a good job with the data and are thought-

provoking. According to the rational program, analysis of the environment and the task 

should provide sufficient grounding to constrain theory development. Cognitive scientists 

(especially those trained in psychology) are not expert in characterizing the environment 

in which humans evolved, and it is not always clear what this environment was like. As 

in experimental sciences, our understanding of past environments is constantly revised 

rather than providing a bedrock from which to build rational accounts of behavior. 

Adding further complexity, humans can change the environment to suit their needs rather 

than adapt to it (Kurz & Tweney 1998).  

 One factor that provides a number of degrees of freedom to the rational modeler is 

that it is not clear which environment (in terms of when and where) is evolutionarily 

relevant (i.e., for which our behavior was optimized). The environment that is relevant 

for determining rational action could be the local environment present in the laboratory 

task, similar situations (however defined) that the person has experienced, all experiences 

over the person’s life, all experiences of our species, all experiences of all ancestral 

organisms traced back to single cell organisms, etc. Furthermore, once the relevant 
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environment is specified and characterized, the rational theorist has considerable 

flexibility in characterizing which relevant measures or statistics from the environment 

should enter into the optimality calculations. When considered in this light, the argument 

that rational approaches are parameter free and follow in a straightforward manner from 

the environment is tenuous at best. 

 

4.3. Optimization occurs over biological mechanisms, not behaviors 

It is noncontroversial that many aspects of our behavior are shaped by evolutionary 

processes. However, evolutionary processes do not directly affect behavior, but instead 

affect the mechanisms that give rise to behavior when coupled with environmental input 

(McNamara & Houston 2009). Assuming one could properly characterize the 

environment, focusing solely on how behavior should be optimized with respect to the 

environment is insufficient because the physical reality of the brain and body is 

neglected. Furthermore, certain aspects of behavior, such as the time to execute some 

operation (e.g., the decision time to determine whether a person is a friend or foe), are 

closely linked to mechanistic considerations.  

 Completely sidestepping mechanistic considerations when considering optimality 

leads to absurd conclusions. To illustrate, it may not be optimal or evolutionarily 

advantageous to ever age, become infertile, and die, but these outcomes are universal and 

follow from biological constraints. It would be absurd to seriously propose an optimal 

biological entity that is not bounded by these biological and physical realities, but this is 

exactly the reasoning Bayesian Fundamentalists follow when formulating theories of 

cognition. Certainly, susceptibility to disease and injury impact inclusive fitness more 

than do many aspects of cognition. Therefore, it would seem strange to assume that 

human cognition is fully optimized while these basic challenges, which all living 

creatures past and present face, are not. Our biological reality, which is ignored by 

Bayesian Fundamentalists, renders optimal solutions, defined solely in terms of choice 

behavior, unrealistic and fanciful for many challenges. 

 Unlike evolutionary approaches, rational approaches to cognition, particularly 

those in the Bayesian Fundamentalist tradition, do not address the importance of 

mechanism in the adaptationist story. Certain physical limitations and realities lead to 
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certain designs prevailing. Which design prevails is determined in part by these physical 

realities and the contemporaneous competing designs in the gene pool. As Marcus (2008) 

reminds us, evolution is survival of the best current design, not survival of the globally 

optimal design. Rather than the globally optimal design winning out, often a locally 

optimal solution (i.e., a design better than similar designs) prevails (Dawkins 1987; Mayr 

1982). Therefore, it is important to consider the trajectory of change of the mechanism 

(i.e., current and past favored designs) rather than to focus exclusively on which design is 

globally optimal. 

 As Marcus (2008) notes, many people are plagued with back pain because the 

human spine is adapted from animals that walk on four paws, not two feet. This is clearly 

not the globally optimal design, indicating that the optimization process occurs over 

constraints not embodied in rational analyses. The search process for the best design is 

hampered by the set of current designs available. These current designs can be adapted by 

descent-with-modification, but there is no purpose or forethought to this process (i.e., 

there is no intelligent designer). It simply might not be possible for our genome to code 

for shock absorbers like those in automobiles, given that the current solution is locally 

optimal and distant from the globally optimal solution. In the case of the human spine, 

the current solution is clearly not globally optimal, but is good enough to get the job 

done. The best solution is not easily reachable and might never be reached. If evolution 

settles on such a bad design for our spine, it seems unlikely that aspects of cognition are 

fully optimized. Many structures in our brains share homologs with other species. 

Structures more prominent in humans, such as the frontal lobes, were not anticipated, but 

like the spine, resulted from descent-with-modification (Wood & Grafman 2003). 

 The spine example makes clear that the history of the mechanism plays a role in 

determining the present solution. Aspects of the mechanism itself are often what is being 

optimized rather than the resulting behavior. For example, selection pressures will 

include factors such as how much energy certain designs require. The human brain 

consumes 25% of a person’s energy, yet accounts for only 2% of a person’s mass (Clark 

& Sokoloff 1999). Such nonbehavioral factors are enormously important to the 

optimization process, but are not reflected in rational analyses, because these factors are 

tied to a notion of mechanism, which is absent in rational analyses. Any discussion of 
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evolution optimizing behavior is incomplete without consideration of the mechanism that 

generates the behavior. To provide an example from the study of cognition, in contrast to 

Anderson’s (1991) rational analysis of concepts solely in terms of environmental 

prediction, concepts might also serve other functions, such as increasing cognitive 

economy in limited-capacity memory systems that would otherwise be swamped with 

details (Murphy 1993; Rosch 1978). 

 The notion of incremental improvement of mechanisms is also important because 

it is not clear that globally optimal solutions are always well defined. The optimality of 

Bayesian inference is well supported in small worlds in which an observer can sensibly 

assign subjective probabilities to all possible contingencies (Savage 1954). However, 

Binmore (2009) argues that proponents of Bayesian rationality overextend this reasoning 

when moving from laboratory tasks to the natural world. Normative support for the 

Bayesian framework breaks down in the latter case because, in an unconstrained 

environment, there is no clear rational basis for generating prior probabilities. 

Evolutionary theory does not face this problem because it relies on incremental 

adjustment rather than global optimization. Furthermore, shifting focus to the level of 

mechanism allows one to study the relative performance of those mechanisms without 

having to explicitly work out the optimal pattern of behavior in a complex environment 

(Gigerenzer & Todd 1999). 

 The preceding discussion assumes that we are optimized in at least a local sense. 

This assumption is likely invalid for many aspects of the mechanisms that give rise to 

behavior. Optimization by natural selection is a slow process that requires consistent 

selective pressure in a relatively stable environment. Many of the behaviors that are 

considered uniquely human are not as evolutionarily old as basic aspects of our visual 

system. It is also not clear how stable the relevant environment has been. To provide one 

example, recent simulations support the notion that many syntactic properties of language 

cannot be encoded in a language module, and that the genetic basis of language use and 

acquisition could not coevolve with human language (Chater et al. 2009). 

 Finally, while rational theorists focus on adaptation in pursuit of optimality, 

evolutionary theorists take a broader view of the products of evolution. Namely, 

evolution yields three products: (1) adaptations, (2) by-products, and (3) noise (Buss et al. 
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1998). An adaptation results from natural selection to solve some problem, whereas a by-

product is the consequence of some adaptation. To use Bjorklund and Pelligrini’s (2000) 

example, the umbilical cord is an adaptation, whereas the belly button is a by-product. 

Noise includes random effects due to mutations, drift, etc. Contrary to the rational 

program, one should not take all behaviors and characteristics of people to be adaptations 

that increase (i.e., optimize) fitness. 

 

4.4. Developmental psychology and notions of capacity limitation: What changes over 

time? 

Although rational Bayesian modeling has a large footprint in developmental psychology 

(Kemp et al. 2007; Sobel et al. 2004; Xu & Tenenbaum 2007), development presents 

basic challenges to the rational approach. One key question for any developmental model 

is what develops. In rational models, the answer is that nothing develops. Rational 

models are mechanism free, leaving only information sampled to change over time. 

Although some aspects of development are driven by acquisition of more observations, 

other aspects of development clearly reflect maturational changes in the mechanism (see 

Xu & Tenenbaum 2007, p. 169). For example, some aspects of children’s performance 

are indexed by prefrontal development (Thompson-Schill et al. 2009) rather than the 

degree of experience within a domain. Likewise, teenage boys’ interest in certain stimuli 

is likely attributable more to hormonal changes than to collecting examples of certain 

stimuli and settling on certain hypotheses. 

 These observations put rational theories of development in a difficult position. 

People’s mental machinery clearly changes over development, but no such change occurs 

in a rational model. One response has been to posit rational theories that are collections of 

discrepant causal models (i.e., hypothesis spaces). Each discrepant model is intended to 

correspond to a different stage of development (Goodman et al. 2006; Lucas et al. 2009). 

In effect, development is viewed as consisting of discrete stages, and a new model is 

proposed for each qualitative developmental change. Model selection is used to 

determine which discrepant model best accounts for an individual’s current behavior. 

Although this approach may be useful in characterizing an individual’s performance and 

current point in development, it does not offer any explanation for the necessity of the 
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stages or why developmental transitions occur. Indeed, rather than accounts of 

developmental processes, these techniques are best viewed as methods to assess a 

person’s conceptual model, akin to user modeling in tutoring systems (Conati et al. 

1997). To the extent that the story of development is the story of mechanism 

development, rational theories have little to say (e.g., Xu & Tenenbaum 2007). 

 Epigenetic approaches ease some of these tensions by addressing how experience 

influences gene expression over development, allowing for bidirectional influences 

between experience and genetic activity (Gottlieb 1992; Johnson 1998). One 

complication for rational theories is the idea that different selection pressures are exerted 

on organisms at different points in development (Oppenheim 1981). For adults, rigorous 

play wastes energy and is an undue risk, but, for children, rigorous play may serve a 

number of adaptive functions (Baldwin & Baldwin 1977). For example, play fighting 

may prepare boys for adult hunting and fighting (Smith 1982). It would seem that 

different rational accounts are needed for different periods of development.  

 Various mental capacities vary across development and individuals. In adult 

cognition, Herbert Simon (1957) introduced the notion of bounded rationality to take into 

account, among other things, limitations in memory and processing capacities. One of the 

proposals that grew out of bounded rationality was optimization under constraints, which 

posits that people may not perform optimally in any general sense, but, if their capacities 

could be well characterized, people might be found to perform optimally, given those 

limitations (e.g., Sargent 1993; Stigler 1961). For instance, objects in the environment 

may be tracked optimally, given sensory and memory limitations (Vul et al. 2009). 

 Although the general research strategy based on bounded rationality can be 

fruitful, it severely limits the meaning of labeling a behavior as rational or optimal. 

Characterizing capacity limitations is essentially an exercise in characterizing the 

mechanism, which represents a departure from rational principles. Once all capacity 

limitations are detailed, notions of rationality lose force. To provide a perverse example, 

each person can be viewed as an optimal version of himself given his own limitations, 

flawed beliefs, motivational limitations, etc. At such a point, it is not clear what work the 

rational analysis is doing. Murphy (1993) makes a similar argument about the circularity 

of rational explanations: Animals are regarded as optimal with respect to their ecological 
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niche, but an animal’s niche is defined by its behaviors and abilities. For example, if one 

assumes that a bat’s niche involves flying at night, then poor eyesight is not a 

counterexample of optimality. 

 Although these comments may appear critical, we do believe that considering 

capacity limitations is a sound approach that can facilitate the unification of rational and 

mechanistic approaches. However, we have doubts as to the efficacy of current 

approaches to exploring capacity limitations. For example, introducing capacity 

limitations by altering sampling processes through techniques like the particle filter 

(Brown & Steyvers 2009) appears to be motivated more by modeling convenience than 

by examination of actual cognitive mechanisms. It would be a curious coincidence if 

existing mathematical estimation techniques just happened to align with human capacity 

limitations. In section 5, we consider the possibility of using (mechanistic) psychological 

characterizations of one or more aspects of the cognitive system to derive bounded-

optimality characterizations of decision processes. Critically, the potential of such 

approaches lies in the mutual constraint of mechanistic and rational considerations, as 

opposed to rational analysis alone. 

 To return to development, one interesting consideration is that reduced capacity at 

certain points in development is actually seen as a benefit by many researchers. For 

example, one proposal is that children’s diminished working-memory capacity may 

facilitate language acquisition by encouraging children to focus on basic regularities 

(Elman 1993; Newport 1990). “Less is more” theories have also been proposed in the 

domain of metacognition. For example, children who overestimate their own abilities 

may be more likely to explore new tasks and be less self-critical in the face of failure 

(Bjorklund & Pellegrini 2000). Such findings seem to speak to the need to consider the 

nature of human learners rather the nature of the environment. Human learners do not 

seem to “turn off” harmful capacity to narrow the hypothesis space when it might be 

prove beneficial to do so. 

 

5. The role of Bayesian modeling in cognitive science 

The observations in the preceding sections suggest that, although Bayesian modeling has 

great potential to advance our understanding of cognition, several conceptual problems 
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with the Fundamentalist Bayesian program limit its potential theoretical contributions. 

One possible reason is that most current work lacks a coherent underlying philosophy 

regarding just what that contribution should be. In this section, we lay out three roles for 

Bayesian modeling in cognitive science that potentially avoid the problems of the 

fundamentalist approach and that better integrate with other modes of inquiry. We make 

no strong commitment that any of the approaches proposed in this section will succeed, 

but we believe these are the viable options if one wants to use Bayes’s Rule or 

probabilistic inference as a component of psychological theory. 

 First, Bayesian inference has proven to be exceedingly valuable as an analysis 

tool for deciding among scientific hypotheses or models based on empirical data. We 

refer to such approaches as Bayesian Agnosticism because they take no stance on 

whether Bayesian inference is itself a useful psychological model. Instead, the focus is on 

using Bayesian inference to develop model-selection techniques that are sensitive to true 

model complexity and that avoid many of the logical inconsistencies of frequentist 

hypothesis testing (e.g., Pitt et al. 2002; Schwarz 1978). 

 Second, Bayesian models can offer computational-level theories of human 

behavior that bypass questions of cognitive process and representation. In this light, 

Bayesian analysis can serve as a useful starting point when investigating a new domain, 

much like how ideal-observer analysis can be a useful starting point in understanding a 

task and thus assist in characterizing human proficiency in the task. This approach is in 

line with the Fundamentalist Bayesian philosophy, but, as the observations of the 

previous sections make clear, several changes to current common practice would greatly 

improve the theoretical impact of this research program. Foremost, rational analysis 

should be grounded in empirical measurement of the environment. Otherwise, the 

endeavor is almost totally unconstrained. Environmental grounding has yielded useful 

results in low-level vision (Geisler et al. 2001) and basic aspects of memory (Anderson & 

Schooler 1991), but the feasibility of this approach with more complex cognitive tasks 

remains an open question. Furthermore, researchers are faced with the questions of what 

is the relevant environment (that behavior is supposedly optimized with respect to) and 

what are the relevant statistics of that environment (that behavior is optimized over). 

There is also the question of the objective function that is being optimized, and how that 
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objective might vary according to developmental trajectory or individual differences 

(e.g., sex or social roles). Finally, it may be impossible in cases to specify what is optimal 

in any general sense without considering the nature of the mechanism. All of these 

questions can have multiple possible answers, and finding which answers lead to the best 

explanation of the data is part of the scientific challenge. Just as with mechanistic models, 

competing alternatives need to be explicitly recognized and compared. Finally, an 

unavoidable limitation of the pure rational approach is that behavior is not always 

optimal, regardless of the choice of assumptions about the environment and objective 

function. Evolution works locally rather than globally, and many aspects of behavior may 

be by-products rather than adaptations in themselves. More importantly, evolution is 

constrained by the physical system (i.e., the body and brain) that is being optimized. By 

excluding the brain from psychological theory, Bayesian Fundamentalism is logically 

unable to account for mechanistic constraints on behavior and unable to take advantage 

of or inform us about the wealth of data from areas such as neurophysiology, 

development, or timing.3 

 Third, rather than putting all the onus on rational analysis by attempting to explain 

behavior directly from the environment, one could treat various elements of Bayesian 

models as psychological assumptions subject to empirical test. This approach, which we 

refer to as Bayesian Enlightenment, seems the most promising because it allows Bayesian 

models to make contact with the majority of psychological research and theory, which 

deals with mechanistic levels of analysis. The remainder of this section explores several 

avenues within Bayesian Enlightenment. We emphasize up front that all of these 

directions represent significant departures from the Fundamentalist Bayesian tenet that 

behavior can be explained and understood without recourse to process or representation. 

 

5.1. Bayesian Enlightenment: taking Bayesian models seriously as psychological 

theories 

The most obvious candidate within the Bayesian framework for status as a psychological 

construct or assumption is the choice of hypothesis space or generative model. According 

to the Fundamentalist Bayesian view, the hypotheses and their prior distribution 

correspond to the true environmental probabilities within the domain of study. However, 
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as far as predicting behavior is concerned, all that should matter is what the subject 

believes (either implicitly or explicitly) are the true probabilities. Decoupling information 

encoded in the brain from ground truth in the environment (which cannot always be 

determined) enables separation of two different tenets of the rationalist program. That is, 

the question of whether people have veridical mental models of their environments can 

be separated from the question of whether people reason and act optimally with respect to 

whatever models they have. A similar perspective has been proposed in game theory, 

whereby distinguishing between an agent’s model of the opponent(s) and rational 

behavior with respect to that model can resolve paradoxes of rationality in that domain 

(Jones & Zhang 2003). Likewise, Baker et al. (2009) present a model of how people 

reason about the intentions of others in which the psychological assumption is made that 

people view others as rational agents (given their current knowledge). 

 Separating Bayesian inference from the mental models it operates over opens up 

those models as a fruitful topic of psychological study (e.g., Sanborn et al. 2010b). 

Unfortunately, this view of Bayesian modeling is at odds with most applications, which 

focus on the inferential side and take the generative model for granted, leaving that 

critical aspect of the theory to be hand-coded by the researcher. Thus, the emphasis on 

rationality marginalizes most of the interesting psychological issues. The choice of the 

generative model or hypothesis space reflects an assumption about how the subject 

imputes structure to the environment and how that structure is represented. There are 

often multiple options here (i.e., there is not a unique Bayesian model of most tasks), and 

these correspond to different psychological theories. Furthermore, even those cases that 

ground the hypothesis space in empirical data from natural environments tend not to 

address how it is learned by individual subjects. One strong potential claim of the 

Bayesian framework is that the most substantial part of learning lies in constructing a 

generative model of one’s environment, and that using that model to make inferences and 

guide behavior is a relatively trivial (albeit computationally intensive) exercise in 

conditional probability. Therefore, treating the generative model as a psychological 

construct enables a shift of emphasis to this more interesting learning problem. Future 

work focusing on how people develop models of their environment (e.g., Griffiths & 

Tenenbaum 2006; Mozer et al. 2008; Steyvers et al. 2003) would greatly increase the 
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theoretical utility of Bayesian modeling by bringing it into closer contact with the hard 

psychological questions of constructive learning, structured representations, and 

induction. 

 Consideration of generative models as psychological constructs also highlights a 

fundamental difference between a process-level interpretation of Bayesian learning and 

other learning architectures such as neural networks or production systems. The Bayesian 

approach suggests that learning involves working backward from sense data to compute 

posterior probabilities over latent variables in the environment and then determining 

optimal action with respect to those probabilities. This can be contrasted with the more 

purely feed-forward nature of most extant models, which learn mappings from stimuli to 

behavior and use feedback from the environment to directly alter the internal parameters 

that determine those mappings (e.g., connection weights or production utilities). A 

similar contrast has been proposed in the literature on reinforcement learning, between 

model-based (planning) and model-free (habit) learning, with behavioral and neurological 

evidence that these exist as separate systems in the brain (Daw et al. 2005). Model-based 

reinforcement learning and Bayesian inference have important computational differences, 

but this parallel does suggest a starting point for addressing the important question of 

how Bayesian learning might fit into a more complete cognitive architecture. 

 Prior distributions offer another opportunity for psychological inquiry within the 

Bayesian framework. In addition to the obvious connections to biases in beliefs and 

expectations, the nature of the prior has potential ties to questions of representation. This 

connection arises from the principle of conjugate priors (Raiffa & Schlaifer 1961). A 

conjugate prior for a Bayesian model is a parametric family of probability distributions 

that is closed under the evidence-updating operation of Bayesian inference, meaning that 

the posterior is guaranteed also to lie in the conjugate family after any number of new 

observations have been made. Conjugate priors can dramatically simplify computational 

and memory demands because the learner needs only to store and update the parameters 

of the conjugate family rather than the full evidence distribution. Conjugate priors are a 

common assumption made by Bayesian modelers, but this assumption is generally made 

solely for mathematical convenience of the modeler rather than for any psychological 

reason. However, considering a conjugate prior as part of the psychological theory leads 
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to the intriguing possibility that the parameters of the conjugate family constitute the 

information that is explicitly represented and updated in the brain. If probabilistic 

distributions over hypotheses are indeed part of the brain’s computational currency, then 

they must be encoded in some way, and it stands to reason that the encoding generally 

converges on one that minimizes the computational effort of updating knowledge states 

(i.e., of inferring the posterior after each new observation). Therefore, an interesting 

mechanistic-level test of Bayesian theory would be to investigate whether the variables 

that parameterize the relevant conjugate priors are consistent with what is known based 

on more established methods about knowledge representation in various psychological 

domains. Of course, it is unlikely that any extant formalism (currently adopted for 

mathematical convenience) will align perfectly with human performance, but empirically 

exploring and evaluating such possibilities might prove a fruitful starting point. 

 A final element of Bayesian models that is traditionally considered as outside the 

psychological theory but that may have valuable process-level implications involves the 

algorithms that are often used for approximating exact Bayesian inference. Except in 

models that admit a simple conjugate prior, deriving the exact posterior from a Bayesian 

model is in most practical cases exceedingly computationally intensive. Consequently, 

even the articles that propose these models often resort to approximation methods such as 

Markov-Chain Monte Carlo (MCMC; Hastings 1970) or specializations such as Gibbs 

sampling (Geman & Geman 1984) to derive approximate predictions. To the extent that 

Bayesian models capture any truth about the workings of the brain, the brain is faced with 

the same estimation problems that Bayesian modelers are, so it too likely must use 

approximate methods for inference and decision making. Many of the algorithms used in 

current Bayesian models correspond to important recent advances in computer science 

and machine learning, but until their psychological predictions and plausibility are 

addressed, they cannot be considered part of cognitive theory. Therefore, instead of being 

relegated to footnotes or appendices, these approximation algorithms should be a focus of 

the research because this is where a significant portion of the psychology lies. Research 

investigating estimation algorithms as candidate psychological models (e.g., Daw & 

Courville 2007; Sanborn et al. 2010a) represents a promising step in this direction. An 

alternative line of work suggests that inference is carried out by a set of simple heuristics 
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that are adapted to statistically different types of environments (Brighton & Gigerenzer 

2008; Gigerenzer & Todd 1999). Deciding between these adaptive heuristics and the 

aforementioned, more complex estimation algorithms is an important empirical question 

for the mechanistic grounding of Bayesian psychological models. 

 A significant aspect of the appeal of Bayesian models is that their assumptions are 

explicitly laid out in a clean and interpretable mathematical language that, in principle, 

affords the researcher a transparent view of their operation. This is in contrast to other 

computational approaches (e.g., connectionism), in which it can be difficult to separate 

theoretically important assumptions from implementational details. Unfortunately, as we 

have argued here, this is not generally the case in practice. Instead, unexamined, yet 

potentially critical, assumptions are routinely built into the hypothesis sets, priors, and 

estimation procedures. Treating these components of Bayesian models as elements of the 

psychological theory rather than as ancillary assumptions is an important prerequisite for 

realizing the transparency of the Bayesian framework. In this sense, the shift from 

Bayesian Fundamentalism to Enlightenment is partly a shift of perspective, but it is one 

we believe could have a significant impact on theoretical progress. 

 

5.2. Integrating Bayesian analysis with mechanistic-level models 

Viewing Bayesian models as genuine psychological theories in the ways outlined here 

also allows for potential integration between rational and mechanistic approaches. The 

most accurate characterization of cognitive functioning is not likely to come from 

isolated considerations of what is rational or of what is a likely mechanism. More 

promising is to look for synergy between the two, in the form of powerful rational 

principles that are well approximated by efficient and robust mechanisms. Such an 

approach would aid understanding not just of the principles behind the mechanisms 

(which is the sole focus of Bayesian Fundamentalism) but also of how the mechanisms 

achieve and approximate those principles and how constraints at both levels combine to 

shape behavior (for one thorough example, see Oaksford & Chater 2010). We stress that 

we are not advocating that every model include a complete theory at all levels of 

explanation. The claim is merely that there must be contact between levels. We have 

argued this point here for rational models – that they should be informed by 
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considerations of process and representation – but the same holds for mechanistic 

models, as well, that they should be informed by consideration of the computational 

principles they carry out (Chater et al. 2003). 

 With reference to the problem of model fractionation discussed earlier, one way 

to unite Bayesian models of different phenomena is to consider their rational 

characterizations in conjunction with mechanistic implementations of belief updating and 

knowledge representation, with the parsimony-derived goal of explaining multiple 

computational principles with a common set of processing mechanisms. In this way the 

two levels of analysis serve to constrain each other and to facilitate broader and more 

integrated theories. From the perspective of theories as metaphors, the rationality 

metaphor is unique in that is has no physical target, which makes it compatible with 

essentially any mechanistic metaphor and suggests that synthesis between the two levels 

of explanation will often be natural and straightforward (as compared to the challenge of 

integrating two distinct mechanistic architectures). In the context of conditioning, Daw et 

al. (2008) offer an excellent example of this approach by mapping out the relationships 

between learning algorithms and the rational principles they approximate and by showing 

how one can distinguish behavioral phenomena reflecting rational principles from 

mechanistic signatures of the approximation schemes. 

 Examples of work that integrates across levels of explanation can also be found in 

computational neuroscience. Although the focus is not on explaining behavior, models in 

computational neuroscience relate abstract probabilistic calculations to operations in 

mechanistic neural network models (Denève 2008; Denève et al. 1999). Other work 

directly relates and evaluates aspects of Bayesian models to brain areas proposed to 

perform the computation (Doll et al. 2009; Soltani & Wang 2010). For example, Köver 

and Bao (2010) relate the prior in a Bayesian model to the number of cells devoted to 

representing possible hypotheses. This work makes contact with all three of Marr’s 

(1982) levels of analysis by making representational commitments and relating these 

aspects of the Bayesian model to brain regions. 

 An alternative to the view of mechanisms as approximations comes from the 

research of Gigerenzer and colleagues on adaptive heuristics (e.g., Gigerenzer & Todd 

1999). Numerous studies have found that simple heuristics can actually outperform more 
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complex inference algorithms in naturalistic prediction tasks. For example, with certain 

datasets, linear regression can be outperformed in cross-validation (i.e., transfer to new 

observations) by a simple tallying heuristic that gives all predictors equal weight 

(Czerlinski et al. 1999; Dawes & Corrigan 1974). Brighton and Gigerenzer (2008) 

explain how the advantage of simple heuristics is rooted in the bias-variance dilemma 

from statistical estimation theory, specifically that more constrained inference algorithms 

can perform better on small datasets because they are less prone to overfitting (e.g., 

Geman et al. 1992). Although this conclusion has been used to argue against 

computational-level theories of rationality in favor of ecological rationality based on 

mechanisms adapted to specific environments (Gigerenzer & Brighton 2009), we believe 

the two approaches are highly compatible. The connection lies in that any inference 

algorithm implicitly embodies a prior expectation about the environment, corresponding 

to the limitations in what patterns of data it can fit and hence the classes of environments 

in which it will tend to succeed (cf. Wolpert 1996). For example, the tallying heuristic is 

most successful in environments with little variation in true cue validities and in cases 

where the validities cannot be precisely estimated (Hogarth & Karelaia 2005). This 

suggests that tallying should be matched or even outperformed by Bayesian regression 

with a prior giving more probability to more homogeneous regression weights. The point 

here is that the ecological success of alternative algorithms (tallying versus traditional 

regression) can inform a rational analysis of the task and hence lead to more accurate 

normative theories. This sort of approach could alleviate the insufficient environmental 

grounding and excessive flexibility of Bayesian models discussed in section 4. 

Formalizing the relationship between algorithms and implicit priors – or between 

statistical regularities in particular environments and algorithms that embody those 

regularities – is therefore a potentially powerful route to integrating mechanistic and 

rational approaches to cognition. 

 Another perspective on the relationship between Bayesian and mechanistic 

accounts of cognition comes from the recognition that, at its core, Bayes’s Rule is a 

model of the decision process. This is consistent with (and partly justifies) the 

observation that most work in the Bayesian Fundamentalist line avoids commitments 

regarding representation. However, the thesis that inference and decision making are 
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optimal is meaningful only in the context of the knowledge (i.e., beliefs about the 

environment) with respect to which optimality is being defined. In other words, a 

complete psychological theory must address both how knowledge is acquired and 

represented and how it is acted upon. As argued earlier in section 3.1, questions of the 

structure of people’s models of their environments, and of how those models are learned, 

are better addressed by traditional, mechanistic psychological methods than by rational 

analysis. Taken together, these observations suggest a natural synthesis in which 

psychological mechanisms are used to model the learner’s state of knowledge, and 

rational analysis is used to predict how that knowledge is used to determine behavior.  

 The line between knowledge and decision making, or representation and process, 

is of course not so well defined as this simple proposal suggests, but the general idea is 

that rational analysis can be performed not in the environment but instead within a 

mechanistic model, thus taking into account whatever biases and assumptions the 

mechanisms introduce. This approach allows the modeler to postulate decision rules that 

are optimal with respect to the representations and dynamics of the rest of the model. The 

result is a way of enforcing good design while still making use of what is known about 

mental representations. It can improve a mechanistic model by replacing what might 

otherwise be an arbitrary decision rule with something principled, and it also offers an 

improvement over rational analysis that starts and ends with the environment and is not 

informed by how information is actually represented. This approach has been used 

successfully to explain, for example, aspects of memory as optimal retrieval, given the 

nature of the encoding (Shiffrin & Steyvers 1998), patterns of short-term priming as 

optimal inference with unknown sources of feature activation (Huber et al. 2001), and 

sequential effects in speeded detection tasks as optimal prediction with respect to a 

particular psychological representation of binary sequences (Wilder et al. 2009). A 

similar approach has been applied at the neural level, for example, to model activity of 

lateral intraparietal (LIP) neurons as computing a Bayesian posterior from activity of 

middle temporal (MT) cells (Beck et al. 2008). One advantage of bringing rational 

analysis inside cognitive or neural models is that it facilitates empirical comparison 

among multiple Bayesian models that make different assumptions about knowledge 

representation (e.g., Wilder et al. 2009). These lines of research illustrate that the 
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traditional identification of rational analysis with computational-level theories is an 

artificial one, and that rational analysis is in fact applicable at all levels of explanation 

(Danks 2008). 

 A complementary benefit of moving rational analysis inside psychological models 

is that the assumption of optimal inference can allow the researcher to decide among 

multiple candidate representations, through comparison to empirical data. The 

assumption of optimal inference allows for more unambiguous testing of representation 

because representation becomes the only unknown in the model. This approach has been 

used successfully in the domain of category induction by Tenenbaum et al. (2006). 

However, such conclusions depend on a strong assumption of rational inference. The 

question of rational versus biased or heuristic inference has been a primary focus of much 

of the judgment and decision-making literature for several decades, and a large body of 

work argues for the latter position (e.g., Tversky & Kahneman 1974). On the other hand, 

some of these classic findings have been given rational reinterpretations under new 

assumptions about the learner’s knowledge and goals (e.g., Oaksford & Chater 1994). 

This debate illustrates how the integration of rational and mechanistic approaches brings 

probabilistic inference under the purview of psychological models where it can be more 

readily empirically tested. 

 Ultimately, transcending the distinction between rational and mechanistic 

explanations should enable significant advances of both and for cognitive science as a 

whole. Much of how the brain operates reflects characteristics of the environment to 

which it is adapted, and therefore an organism and its environment can be thought of as a 

joint system, with behavior depending on aspects of both subsystems. There is of course a 

fairly clear line between organism and environment, but that line has no more 

epistemological significance than the distinctions between different sources of 

explanation within either category. In other words, the gap between an explanation rooted 

in some aspect of the environment and one rooted in a mechanism of neural or cognitive 

processing should not be qualitatively wider than the gap between explanations rooted in 

different brain regions, different processing stages or modules, or uncertainty in one 

latent variable versus another. The joint system of organism and environment is a 

complex one, with a large number of constituent processes, and a given empirical 
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phenomenon (of behavior, brain activity, etc.) can potentially be ascribed to any of them. 

Just as in other fields, the scientific challenge is to determine which explanation is best in 

each case, and for most interesting phenomena the answer will most likely involve an 

interaction of multiple, disparate causes. 

 

6. Conclusions 

The recent advances in Bayesian modeling of cognition clearly warrant excitement. 

Nevertheless, many aspects of current research practice act to severely limit the 

contributions to psychological theory. This article traces these concerns to a particular 

philosophy that we have labeled Bayesian Fundamentalism, which is characterized by the 

goal of explaining human behavior solely in terms of optimal probabilistic inference 

without recourse to mechanism. It is motivated by the thesis that, once a given task is 

correctly characterized in terms of environmental statistics and goals of the learner, 

human behavior in that task will be found to be rational. As the numerous citations 

throughout this article demonstrate, Bayesian Fundamentalism constitutes a significant 

portion (arguably the majority) of current research on Bayesian modeling of cognition. 

 Establishing the utility of the Bayesian framework, and the rational metaphor 

more generally, is an important first step, and convincing arguments have been made for 

this position (e.g., Oaksford & Chater 2007). However, excessive focus on this 

metascientific issue severely limits the scope and impact of the research. Focusing on 

existence proofs distracts from the more critical work of deciding among competing 

explanations and identifying the critical assumptions behind models. In the context of 

rational Bayesian modeling, existence proofs hide that there are generally many Bayesian 

models of any task, corresponding to different assumptions about the learner’s goals and 

model of the environment. Comparison among alternative models would potentially 

reveal a great deal about what people’s goals and mental models actually are. Such an 

approach would also facilitate comparison to models within other frameworks by 

separating the critical assumptions of any Bayesian model (e.g., those that specify the 

learner’s generative model) from the contribution of Bayes’s Rule itself. This separation 

should ease recognition of the logical relationships between assumptions of Bayesian 

models and of models cast within other frameworks, so that theoretical development is 
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not duplicated and so that the core differences between competing theories can be 

identified and tested. 

 The total focus on rational inference that characterizes Bayesian Fundamentalism 

is especially unfortunate from a psychological standpoint because the belief updating of 

Bayes’s Rule is psychologically trivial, amounting to nothing more than vote counting. 

Much more interesting are other aspects of Bayesian models, including the algorithms 

and approximations by which inference is carried out, the representations on which those 

algorithms operate (e.g., the parameters of conjugate priors), and the structured beliefs 

(i.e., generative models) that drive them. The Enlightened Bayesian view takes these 

seriously as psychological constructs and evaluates them according to theoretical merit 

rather than mathematical convenience. This important shift away from Bayesian 

Fundamentalism opens up a rich base for psychological theorizing, as well as contact 

with process-level modes of inquiry. 

 It is interesting to note that economics, the field of study with the richest history 

of rational modeling of behavior and the domain in which rational theories might be 

expected to be most accurate, has increasingly questioned the value of rational models of 

human decision making (Krugman 2009). Economics is thus moving away from purely 

rational models toward theories that consider psychological mechanisms and biases 

(Thaler & Sunstein 2008). Therefore it is surprising to observe a segment of the 

psychological community moving in the opposite direction. Bayesian modeling certainly 

has much to contribute, but its potential impact will be much greater if developed in a 

way that does not eliminate the psychology from psychological models. We believe this 

will be best achieved by treating Bayesian methods as a complement to mechanistic 

approaches rather than as an alternative. 
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NOTES 

 1. Formally, Eposterior equals the logarithm of the posterior distribution, Eprior is the 

logarithm of the prior, and Edata(H) is the logarithm of the likelihood of the data under 

hypothesis H. The model’s prediction for the probability that hypothesis H is correct, 

after data have been observed, is proportional to exp[Eposterior(H)] (cf. Luce 1963). 

 2. Bayesian analysis has been used to interpret neural spike recordings (e.g., Gold 

& Shadlen 2001), but this falls outside Bayesian Fundamentalism, which is concerned 

only with behavioral explanations of cognitive phenomena. 

 3. Note that we refer here to Bayesian models that address behavior, not those that 

solely aim to explain brain data without linking to behavior, such as Mortimer et al.’s 

(2009) model of axon wiring. 
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