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  Abstract 

 Judging a person as a friend or foe, a mushroom as edible or poisonous, or a sound as an  l  or  r  are 

examples of categorization problems. This chapter considers the relative merits of four basic types 

of category learning models: rule-, prototype-, exemplar-, and cluster-based models. The history of 

model progression is marked by descendant models displaying increasingly sophisticated processing 

mechanisms that can manifest the behaviors of ancestral models. These four basic model types 

are related to the computations performed by four candidate learning systems in the human brain, 

which rely on prefrontal cortex, posterior occipital cortex, the striatum, and the medial temporal 

lobes. One issue raised is whether the prefrontal cortex and posterior occipital cortex support true 

learning systems or are better viewed as supporting general cognitive and perceptual abilities. Use of 

well-specified cognitive models can help answer related theoretical questions, such as how multiple 

learning systems contribute to categorization behavior. 
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     22 

    Introduction 
 Th e act of categorization is ubiquitous in human 

behavior. Judging a person as a friend or a foe, a 
mushroom as edible or poisonous, or a sound as 
an  l  or  r  are examples of categorization problems. 
Because people never encounter the same exact 
stimulus twice, they must develop categorization 
schemes that capture the useful regularities in their 
environment. One key research challenge is to 
determine how humans acquire and represent cate-
gories. Th e focus of this chapter will be on proposed 
category learning mechanisms and their brain basis. 
While there are a number of other valuable topics 
in categorization research, such as how semantic 
information is organized (Cree & McRae, 2003), 
the nature of category-specifi c defi cits (Caramazza 
& Shelton, 1998), and how prior knowledge guides 
category acquisition (Rehder & Murphy, 2003), 
this chapter will focus on models and studies that 

address how people acquire novel categories from 
observed examples. For a review of how well-learn-
ing categories are represented in the brain, see work 
by Martin (2007). 

 Category learning is a theory- and model-rich 
area within cognitive psychology. Models have 
played a prominent role in shaping our under-
standing of human category learning. Accordingly, 
proposed mechanisms are diverse, including rule-, 
prototype-, and exemplar-based models, as well as 
clustering models and models that contain multiple 
systems. One general trend is toward models with 
increasingly sophisticated processing mechanisms 
that can mimic the behaviors of existing models, as 
well as address behaviors outside the scope of previ-
ous models. 

 Cognitive models are beginning to play an 
important role in cognitive neuroscience research as 
well, particularly in the area of category learning. 
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decision processes (a component process in catego-
rization) have been useful for understanding how 
choice is implemented in the brain (Purcell et al., 
2010). Although not naive accounts of mental func-
tion, cognitive models are typically idealized and 
relatively simple. Th is clarity provides a good start-
ing point for localizing function. Given that debates 
persist over the basic function of areas as well stud-
ied as the hippocampus (Eichenbaum, 1999; Stark, 
Bayley, & Squire, 2002), starting simple makes 
sense. 

 In the course of reviewing a variety of category 
learning models, I will emphasize what the rela-
tive merits of each model reveal about the nature 
of human learning. After reviewing the basic model 
types, the relationship between models of category 
learning and candidate learning systems in the brain 
will be considered. Finally, a number of challenges 
for understanding the brain basis of categorization 
will be discussed.  

  Models of Category Learning 
 In this section, I will briefl y review several mod-

els of human category learning. Presentation order is 
organized chronologically, from oldest to most recent 
accounts of category learning. Although more recent 
models off er some advantages over their ancestors, 
it would be a mistake to view ancestral models as 
being supplanted by their descendants. Each model 
class addresses some key aspects of human category 
learning and serves an important theoretical role. In 
fact, many older models have taken on new life as 
components in recently proposed multiple systems 
models. One common component in these multiple 
systems models is a rule-based system, which is the 
fi rst model class considered here. 

  Rule-Based Models 
 Th e classical view of categories holds that catego-

ries are defi ned by logical rules. Th is view has a long 
history, dating back to Aristotle. In  Figure 22.1 , 
any item that is a square is a member of category A. 
Th is simple rule determines category membership. 
According to the rule view, our category of category 
A can be represented by this simple rule. Discovering 
this rule would involve a rational hypothesis-testing 
procedure. Th rough this procedure one attempts to 
discover a rule that is satisfi ed by all of the posi-
tive examples of a category, but none of the nega-
tive examples of the category (i.e., items that are 
members of other categories). In trying to come up 
with such a rule for category A, one might fi rst try 
the rule  if dark, then in category A . After rejecting 

Cognitive models are distinguished from other use-
ful analysis tools, such as multivoxel pattern recog-
nition (see Pereira, Mitchell, & Botvinick, 2009), 
in that cognitive models are theories of the men-
tal operations that support behavior, rather than 
simply analysis tools. Operations and components 
in cognitive models can be linked to brain mea-
sures (such as the BOLD signal in fMRI studies; 
see Daw, O’Doherty, Dayan, Seymour, & Dolan, 
2006) to understand the brain basis of interesting 
behaviors, such as the operations that support cat-
egorization (Davis, Love, & Preston, 2012). Model-
based analysis can help us understand how human 
behavior arises from the interaction of numerous 
brain regions. In addition to aiding data analysis, 
formal cognitive models make clear predictions that 
can be evaluated analytically or through simulation. 
Successful models are formal characterizations of 
the fi eld’s best theories, and unlike verbal theories, 
formal models can be evaluated quantitatively. 

 Cognitive models may help overcome common 
century-old criticisms of cognitive neuroscience 
research. Franz remarked in his 1912 essay “New 
Phrenology” that “the individual parts of the brain 
do not work independently; they work interdepen-
dently, and it is because of the possible functional 
and anatomical connections that certain types or 
kinds of mental states are more in evidence than 
others.” To Franz, the allure of localizing mental 
activities in the brain begot overly simplistic and 
crude theories of mental processes and brain func-
tion. Cognitive models may off er a solution to these 
diffi  culties (see Love & Gureckis, 2007). Localizing 
mental function need not be problematic. Th e issue 
is what to localize. Th e value of a theory that local-
izes mental function lies in both the characteriza-
tion of the mental process and the bridge theory 
that links this characterization to the brain. Starting 
with an ill-specifi ed or folk psychological theory of 
mental function ultimately limits the value of the 
overall enterprise and invites comparison to Franz’s 
new phrenology. 

 For these reasons, this chapter places an empha-
sis on model mechanisms and their linkage to the 
brain. One claim is that well-specifi ed, process 
models of cognitive functions are the appropriate 
targets for localization. Successful cognitive models, 
which are quantitatively validated on a broad range 
of data sets, off er a number of advantages over folk 
psychological, ad hoc, or traditional psychological 
theories. In addition to being predictive, behavioral 
models have mechanisms and dynamics that can be 
related to brain measures. For example, models of 
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classifying objects we encounter. For instance, we 
often use categories to support inference (e.g., a 
child infers that members of the category stove can 
be dangerously hot). Using categories to make infer-
ences is a very important use of categories (Markman 
& Ross, 2003). Knowing something is an example 
of a category tells us a great deal about the item. 
For example, after classifying a politician from the 
United States as a Republican, one can readily infer 
the politician’s position on a number of issues. Th e 
point is that our representations of categories must 
include information beyond what is needed to clas-
sify items as examples of the category. For example, 
the rule  if square, then in   category A  correctly classi-
fi es all members of category A in Figure 22.1, but 
it doesn’t capture the knowledge that all category 
A members are  dark . One problem with rule rep-
resentations of categories is that potentially useful 
information is discarded. In fact, even when people 
explicitly use rules to classify item, performance 
is heavily infl uenced by rule-irrelevant informa-
tion (Allen & Brooks, 1991; Lacroix, Giguere, & 
Larochelle, 2005; Sakamoto & Love, 2004), which 
is inconsistent with rules serving as the sole basis for 
category representations. 

 Perhaps the biggest problem with the rule 
approach to categories is that most of our everyday 
categories do not seem to be describable by a trac-
table rule. To demonstrate this point, Wittgenstein 
(1953) noted that the category game lacks a defi ning 
property. Most games are fun, but Russian roulette 
is not fun. Most games are competitive, but ring 
around the roses is not competitive. While most 
games have characteristics in common, there is not 
a rule that unifi es them all. Rather, we can think of 

this rule (because there are counterexamples), other 
rules would be tested (starting with simple rules and 
progressing toward more complex rules) until the 
correct rule is eventually discovered. For example, 
in learning about birds, one might fi rst try the rule 
 if it fl ies, then it is a bird . Th is rule works pretty well, 
but not perfectly (penguins do not fl y and bats do). 
Another simple rule like  if it has feathers, then it is 
a bird  would not work either because a pillow fi lled 
with feathers is not a bird. Eventually, a more com-
plex rule might be discovered, such as  if it has feath-
ers and wings, then it is a   bird .       

 For decades psychologists have conducted exper-
iments to characterize the relative diffi  culty people 
have in learning various types of rules (Bruner, 
Goodnow, & Austin, 1956; Shepard, Hovland, & 
Jenkins, 1961). Th ese studies have provided the pri-
mary data used to develop and validate models of 
hypothesis testing. Some models, such as RULEX 
(Nosofsky, Palmeri, & McKinley, 1994), embody 
the hypothesis testing procedure described above. 
RULEX starts with simple hypotheses and pro-
gresses toward more complex hypotheses until a set 
of rules and exceptions is discovered that properly 
discriminates between the categories. 

 Th e term  rule  has various, somewhat confl icting, 
interpretations. Here, I focus on rule-based mod-
els, like RULEX, that engage in explicit, hypothesis 
testing. RULEX’s mechanistic approach (i.e., algo-
rithmic in the sense of Marr, 1982) contrasts with 
other approaches that aim to predict how diffi  cult 
learning should be, based on calculations of how 
complex the correct hypothesis is (Feldman, 2000). 
Th e latter approaches, which are not concerned with 
the actual process of learning, have more in com-
mon with measures of complexity and compression 
(Pothos & Chater, 2002). Yet other approaches, 
such as General Recognition Th eory (Maddox & 
Ashby, 1993), aim to assess and compactly describe 
people’s performance rather than characterize 
the learning process. Unlike these more abstract 
approaches, mechanistic models of hypothesis test-
ing, such as RULEX, largely implement the strate-
gic and conscious thought processes that we feel (by 
introspection) that we are carrying out when solving 
classifi cation problems. Th ese explicit processes are 
thought to rely on limited working memory capac-
ity (Zeithamova & Maddox, 2006). 

 Although rules can in principle provide a concise 
representation of a category, often more elaborate 
representations would serve us better. Category rep-
resentation needs to be richer than a simple rule, 
because we use categories for much more than simply 

Category A Category B

 Figure 22.1      Examples of category A and category B. A simple 
rule on shape discriminates between the two categories.  
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gives birth to a child. But what about a woman 
who adopts a neglected infant and raises it in a 
nurturing environment? Is the birth mother who 
neglected the infant a mother? What if a woman is 
implanted with an embryo from another woman? 
Court cases over maternity arise because the cat-
egory of motherhood is ambiguous. Th e category 
exhibits greater fl exibility and productivity than 
is even indicated above. For example, is it proper 
to refer to an architect as the mother of a build-
ing? All the above examples of the category mother 
share a family resemblance structure (i.e., they are 
organized around some commonalities), but the 
category is not rule based. Some examples of the 
category mother are better than others. 

 I do not want to imply that rule-based approaches 
do not have their place. For example, rule-based 
approaches might be viable for some socially defi ned 
categories. For example, determining whether 
currency is legal tender might largely involve apply-
ing a series of rules (Hampton, 2001). Also, as we will 
see later in this chapter, rule-based approaches fi gure 
prominently in multiple systems accounts. While 
rule-based approaches might not provide a suffi  cient 
explanation of human learning in isolation, such 
approaches might prove viable in certain domains or 
as components of multiple systems models.  

  Prototype-Based Models 
 Th e prototype approach to category learning and 

representation was developed by Rosch and col-
leagues to address some of the shortcomings of the 
rule approach. Prototype models represent informa-
tion about all the possible properties (i.e., stimu-
lus dimensions), instead of focusing on only a few 
properties like rule models do. Th e prototype of a 
category is a summary of all of its members (Posner 
& Keele, 1968; Reed, 1972; Smith & Minda, 2001). 
Mathematically, the prototype is the average or cen-
tral tendency of all category members.  Figure 22.2  
displays the prototypes for two categories, simply 
named categories A and B. Notice that all the items 
diff er in size and luminance (i.e., there are two stim-
ulus dimensions) and that the prototype is located 
amidst all of its category members. Th e prototype 
for each category has the average value on both the 
stimulus dimensions of size and luminance for the 
members of its category.       

 Th e prototype of a category is used to represent 
the category. According to the prototype model, a 
novel item is classifi ed as a member of the category 
whose prototype it is most similar to. For example, 
a large bright item would be classifi ed as a member 

the members of the category game as being orga-
nized around a family resemblance structure (analo-
gous to how members of your family resemble one 
another). Rosch and colleagues’ (Rosch & Mervis, 
1975) seminal work demonstrated the psycho-
logical reality of many of Wittgenstein’s intuitions. 
Even some paradigmatic examples of rule-based 
classifi cation reveal a non-rule-based underbelly (see 
Love, Tomlinson, & Gureckis, 2008, for a review). 
Hahn and Ramscar (2001) off er one such example. 
Tigers are defi ned as having tiger DNA, which is a 
seemingly rule-based category defi nition. However, 
determining whether an animal has tiger DNA 
amounts to assessing the similarity of the animal’s 
DNA to known examples of tiger DNA. 

 A related weakness of the rule account of cat-
egories is that examples of a category diff er in their 
typicality (Barsalou, 1985; Posner & Keele, 1968; 
Reed, 1972; Rosch & Mervis, 1975). If all a cat-
egory consisted of was a rule that determined mem-
bership, then all examples should have equal status. 
According to the rule account, all that should mat-
ter is whether an item satisfi es the rule. Our cat-
egories do not seem to have this defi nitive fl avor. 
For example, some games are better examples of 
the category game than others. Basketball is a very 
typical example of the category of games. Children 
play basketball in a playground, it is competitive, 
there are two teams, each team consists of multiple 
players, you score points, etc. Basketball is a typi-
cal example of the category of games because it has 
many characteristics in common with other games. 
Russian roulette, by contrast, is not a very typical 
game—it requires a gun and one of the two players 
dies. Russian roulette does not have many proper-
ties in common with other games. In terms of family 
resemblance structure, we can think of basketball as 
having a central position and Russian roulette being 
a distant cousin to the other family members. Th ese 
fi ndings extend to categories in which a simple clas-
sifi cation rule exists. For example, people judge the 
number 3 to be a more typical odd number than the 
number 47, even though membership in the cat-
egory odd number can be defi ned by a simple rule 
(Gleitman, Gleitman, Miller, & Ostrin, 1996). 

 Th e fact that category membership follows a 
gradient as opposed to being all or none aff ords 
us fl exibility in how we apply our categories. Of 
course, this fl exibility can lead to ambiguity. 
Consider the category mother (see Lakoff , 1987, 
for a thorough analysis). It is a category that we 
are all familiar with that seems straightforward—a 
mother is a woman who becomes pregnant and 
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be viewed in geometric terms—the closer together 
items are in the plot, the more similar they are. 
Th us, the most typical items for categories A and 
B are those that are closest to the appropriate pro-
totype. Accordingly, the prototype approach can 
explain why robins are more typical birds than 
penguins. Th e bird prototype represents the aver-
age bird: has wings, has feathers, can fl y, can sing, 
lives in trees, lays eggs, etc. Robins share all of 
these properties with the prototype, whereas pen-
guins diff er in a number of ways (e.g., penguins 
can’t fl y, but they do swim). Extending this line of 
reasoning, the best example of a category should 
be the prototype, even if the actual prototype has 
never been viewed (or doesn’t even exist). Indeed, 
numerous learning studies support this conjecture. 
After viewing a series of examples of a category, 
human participants are more likely to categorize 
the prototype as a category member (even though 
they never actually viewed the prototype) than they 
are to categorize an item they have seen before as a 
category member (Posner & Keele, 1968). 

 Because the prototype approach does not rep-
resent categories in terms of a logical rule that is 
either satisfi ed or not, it can explain how category 
membership has a graded structure that is not all or 
none. Some examples of a category are simply better 
examples than other examples. Also, categories do 
not need to be defi ned in terms of logical rules but 
are rather defi ned in terms of family resemblance to 
the prototype. In other words, members of a cate-
gory need not share a common defi ning thread, but 
can have many characteristic threads in common 
with one another. 

of category B because category B’s prototype is 
large and bright (see Figure 22.2). Th e position of 
the prototype is updated when new examples of 
the category are encountered. For example, if one 
encountered a very small and dark item that is a 
member of category A, then category A’s prototype 
would move slightly toward the bottom left cor-
ner in Figure 22.2. As an outcome of learning, the 
position of the prototype shifts toward the newest 
category member in order to take it into account. 
A prototype can be very useful for determining 
category membership in domains where there are 
many stimulus dimensions that each provide infor-
mation useful for determining category member-
ship, but no dimension is defi nitive. For example, 
members of a family may tend to be tall and have 
large noses, a medium complexion, brown eyes, 
and good muscle tone, but no family member pos-
sesses all of these traits. Matching on some subset 
of these traits would provide evidence for being a 
family member. 

 Notice the economy of the prototype approach. 
Each cloud of examples in Figure 22.2 can be repre-
sented by just the prototype. Th e prototype is intended 
to capture the critical structure in the environment 
without having to encode every detail or example. It 
is also fairly simple to determine which category a 
novel item belongs to by determining which category 
prototype is most similar to the item. 

 Unlike the rule approach, the prototype model 
can account for typicality eff ects. According to the 
prototype model, the more typical category mem-
bers should be those members that are most simi-
lar to the prototype. In Figure 22.2, similarity can 
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 Figure 22.2      Two categories and their prototypes.  
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 Th e prototype approach, while preferable to the 
rule approach for the reasons just discussed, does fail 
to account for important aspects of human category 
learning. Th e main problem with the prototype 
model is that it does not retain enough informa-
tion about examples encountered in learning. For 
instance, prototypes do not store any information 
about the frequency of each category, yet people are 
sensitive to frequency information. If an item was 
about equally similar to the prototype of two dif-
ferent categories and one category had 100 times 
more members than the other, people would be 
more likely to assign the item to the more common 
category (under most circumstances, see Kruschke, 
1996). Of course, some of these concerns could be 
addressed by expanding the information that a pro-
totype encodes. 

 However, other concerns seem fundamental to 
the prototype approach. Prototypes are not sensitive 
to the correlations and substructure within a cat-
egory. For example, a prototype model would not 
be able to represent that spoons tend to be large and 
made of wood or small and made of steel. Th ese two 
subgroups would simply be averaged together into 
one prototype. Th is averaging makes some categories 
unlearnable with a prototype model. One example 
of such a category structure is shown in  Figure 22.3 . 
Each category consists of two subgroups. Members 
of category A are either  small  and  dark  or they are 
 large  and  light , whereas members of category B are 
either  large  and  dark  or they are  small  and  light . Th e 
prototypes for the two categories are both in the 
center of the stimulus space (i.e., medium size and 
medium luminance). Items cannot be classifi ed cor-
rectly by which prototype they are most similar to 
because the prototypes provide little guidance.       

 In general, prototype models can only be used to 
learn category structures that are linearly separable. 
A learning problem involving two categories is lin-
early separable when a line or plane can be drawn 
that separates all the members of the two catego-
ries. Th e category structure shown in Figure 22.2 
is linearly separable because a diagonal line can be 
drawn that separates the category A and B members 
(i.e., the category A members fall on one side of the 
line and the category B members fall on the other 
side of the line). Th us, this category structure can 
be learned with a prototype model. Th e category 
structure illustrated in Figure 22.3 is nonlinear—no 
single line can be drawn to segregate the category A 
and B members. Mathematically, a category struc-
ture is linearly separable when there exists a weight-
ing of the feature dimensions that yields an additive 

rule that correctly indicates one category when the 
sum is below a chosen threshold and the other cat-
egory when the sum is above the threshold. 

 Th e inability of the prototype model to learn 
nonlinear category structures detracts from its 
worth as a model of human category learning 
because people are not biased against learning 
nonlinear category structures. While the extent to 
which natural categories deviate from linear struc-
tures is contested (Murphy, 2002), the general 
consensus is that people in the laboratory do not 
show a preference for linear structures in supervised 
learning (Medin & Schwanenfl ugel, 1981), though 
they might in unsupervised learning (Love, 2002). 
Some nonlinear category structures may actually be 
easier to acquire than linear category structures. For 
example, it seems quite natural that small birds sing, 
whereas large birds do not sing. Many categories 
have subtypes within them that we naturally pick 
out. One way for the prototype model to address 
this learnability problem is to include complex fea-
tures that represent the presence of multiple simple 
features (e.g., large and blue). Unfortunately, this 
approach quickly becomes unwieldy as the number 
of stimulus dimensions increases (e.g., Gluck & 
Bower, 1988). 

 Related to the prototype model’s inability to 
account for substructure within categories is its 
inadequacy as a model of item recognition. Unlike 
exemplar models considered in the following sec-
tion (Medin & Schaff er, 1978; Nosofsky, 1986), 
prototypes models do not readily account for how 
people recognize specifi c items because the category 
prototype averages away item-distinguishing infor-
mation that people retain in some situations.  

  Exemplar-Based Models 
 Exemplar models store every training example in 

memory instead of just the prototype (i.e., the sum-
mary) of each category. Perhaps surprising upon 
fi rst consideration, exemplar models can account for 
fi ndings marshaled in support of prototype models, 
such as sensitivity to family resemblance structure. 
At the same time, by retaining all of the informa-
tion from training, exemplar models address many 
of the shortcomings of prototype model. Exemplar 
models are sensitive to the frequency, the variability, 
and the correlations among items. In this section, I 
will discuss how exemplar-based models can display 
these behaviors. 

 Unlike prototype models, exemplar models can 
master category structures that contain substructure. 
For the learning problem illustrated in Figure 22.3, 
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in memory will be very similar to the current item, 
whereas others will not be very similar. Th e current 
item is classifi ed in the category in which the sum 
of its similarities to all the exemplars is greatest. 
When a previously unseen prototype is presented 
to an exemplar model, it can be endorsed as a cat-
egory member more strongly than a previously seen 
item. Th e prototype (which is the central tendency 
of the category) will tend to be somewhat similar to 
every item in the category, whereas any given non-
prototype item will tend to be very similar to some 
items (especially itself!) in memory, but not so simi-
lar to other items. Overall, the prototypical item can 
display an advantage over an item that has actually 
been studied. Abstraction in an exemplar model is 
indirect and results from processing (i.e., calculat-
ing and summing pairwise similarities), whereas 
abstraction in a prototype model is rather direct 
(i.e., prototypes are stored). 

 By and large, exemplar models can mimic all the 
behaviors of prototype models, but the opposite is 
not true. Th ere are some subtle behaviors that the 
prototype model can display that versions of exem-
plar models cannot. For example, prototype and 
exemplar models predict slightly diff erent category 
endorsement gradients (i.e., probability of member-
ship) as one moves toward the center of a category 
(see Nosofsky & Zaki, 2002; and Smith, 2002, for 
a recent debate). 

 Although exemplar models are decent models of 
recognition, they do have some fundamental short-
comings. Exemplar models calculate recognition 
strength as the sum of similarity to all items stored 
in memory. Th us, the pairwise similarity relations 

an exemplar model would store every training exam-
ple. New items are classifi ed by how similar they are 
to all items in memory (not just the prototype). For 
the category structure illustrated in Figure 22.3, the 
pairwise similarity of a novel item and every stored 
item would be calculated. If the novel item tended 
to be more similar to the category A members (i.e., 
the item was small and dark) than to the category B 
members, then the novel item would be classifi ed as 
a member of category A. 

 One aspect of exemplar models that seems coun-
terintuitive is their lack of any abstraction in cat-
egory representation. It seems that humans do learn 
something more abstract about categories than 
a list of examples. Surprisingly, exemplar models 
are capable of displaying abstraction. For instance, 
exemplar models can correctly predict that humans 
more strongly endorse the underlying prototype 
(even if it has not been seen) than an actual item 
that has been studied (a piece of evidence previ-
ously cited in favor of the prototype model). How 
could this be possible without the prototype actu-
ally being stored? It would be impossible if exemplar 
models simply functioned by retrieving the exem-
plar in memory that was most similar to the cur-
rent item and classifi ed the current item in the same 
category as the retrieved exemplar (this is essentially 
how processing works in a prototype model, except 
that a prototype is stored in memory instead of a 
bunch of exemplars). 

 Instead, exemplar models engage in more 
sophisticated processing and calculate the similarity 
between the current item (the item that is to be clas-
sifi ed) and every item in memory. Some exemplars 
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 Figure 22.3      Two categories and their prototypes.  
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the real world contain multiple subtypes and excep-
tions. For example, the category mammals con-
tains subcategories like cats, dogs, horses, and bats. 
Ideally, our mental representations would refl ect 
this structure. Both prototype and exemplar models 
are infl exible in that they treat the structure of each 
category as predetermined. Th ese models do not let 
the distribution of category members infl uence the 
form category representations take. For example, 
prototype models assume that categories are always 
represented by one node (i.e., the prototype) in 
memory, whereas exemplar models assume that cat-
egories are always represented by one node in mem-
ory for every category example encountered. 

 One reasonable intuition is that similar items 
should cluster together in memory (Anderson, 1991; 
Love, Medin, & Gureckis, 2004; Vampaemel & 
Storms, 2008). For example, a person walking down 
Congress Avenue in Austin in the fall will encoun-
ter thousands of seemingly identical grackles. Th e 
rationale for storing each of these birds separately 
in memory is unclear. At the same time, someone 
walking down the street probably would mentally 
note unusual or otherwise surprising birds. 

 Clustering models embody these intuitions 
about memory. For example, Anderson’s (1991) 
rational model (also see Sanborn, Griffi  ths, & 
Navarro, 2006) computes the probability that an 
item belongs to an existing cluster (a prototype can 
be thought of as a cluster that encodes all category 
members). If this probability is suffi  ciently high, 
the cluster is updated to refl ect its new member. 
However, if the item is more likely from a new clus-
ter, then a new cluster is created. Th e overarching 
goal of Anderson’s model is to create clusters that 
are maximally predictive. 

 Love et al.’s SUSTAIN model operates along 
similar lines in that it incrementally adds clusters 
as it learns, but its recruitment process is some-
what diff erent from the rational model’s. In the 
SUSTAIN model, new clusters are recruited in 
response to surprising events. What counts as a sur-
prising event depends on the learner’s current goals. 
When the learner’s goals are somewhat diff use, as 
in unsupervised learning, SUSTAIN’s operation is 
very similar to that of the rational model. In such 
cases, items that are dissimilar from existing clus-
ters result in a new cluster being recruited to encode 
the item. However, in supervised learning situa-
tions, such as in classifi cation learning (the learner’s 
goal is to properly name the stimulus’s category), 
items are recruited when a surprising error results. 
For example, upon encountering a bat for the fi rst 

among items govern recognition. However, humans 
often appear to build schema-like structures in 
memory and store items preferentially that devi-
ate from these structures (see Sakamoto & Love, 
2004, for a review). Th us, exemplar models do not 
correctly predict enhanced recognition for items 
that violate salient rules or patterns (Palmeri & 
Nosofsky, 1995). Exemplar models do not cap-
ture these results because exception items that vio-
late these patterns are not exceptional in terms of 
their pairwise similarity relations to other items. 
Exception items are exceptional in terms of vio-
lating a knowledge structure stored in memory 
(Sakamoto & Love, 2004, 2006). 

 At a more philosophical level, exemplar mod-
els seem to make some questionable assumptions. 
For example, exemplar models store every training 
example, which seems excessive. Also, every exem-
plar is retrieved from memory every time an item is 
classifi ed (though see Nosofsky & Palmeri, 1997, 
for an exception). In addition to these assumptions, 
one worries that the exemplar model does not make 
strong enough theoretical commitments because it 
retains all information about training and contains 
a great deal of fl exibility in how it processes infor-
mation. In support of this conjecture, Sakamoto, 
Matsuka, and Love (2004) built an exemplar model 
that eff ectively built distributed knowledge struc-
tures and could account for exception recogni-
tion fi ndings (also see Rodrigues & Murre, 2007). 
While their model did not explicitly build schema 
or exception representations, the model did learn to 
selectively tune exemplars (broad tunings for rule-
following items and tight tunings for exception 
items) and properly weight these exemplars to give 
rise to an exemplar model that functionally con-
tained exception and schema-like knowledge struc-
tures. If there are no constraints on how items are 
processed, then in principle an exemplar model can 
account for any pattern of results, thereby reducing 
the exemplar model’s theoretical utility. However, in 
practice, exemplar models often follow previously 
published formalisms and serve as valuable theoreti-
cal tools.  

  Clustering Models 
 Prototype and exemplar models can be seen as 

opposite ends of a continuum of category repre-
sentation. On one extreme, prototype models store 
every category member together in memory. At the 
other extreme, exemplar models store every category 
member separately in memory. Between these two 
extremes lie a wealth of possibilities. Categories in 
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exceptions to these rules (Sakamoto & Love, 2004). 
SUSTAIN creates a small set of clusters to encode 
items that follow the rules and encodes exceptions 
in their own clusters. Attention is heavily biased to 
the rule-relevant dimensions. Th is allows SUSTAIN 
to show enhanced recognition for exceptions and 
rule-like behavior for rule-following items, while 
maintaining some sensitivity to non-rule-relevant 
dimensions like human subjects do. 

 Th e incorporation of selective attention mech-
anisms into non-rule models invites a number of 
theoretical questions. It is not entirely clear whether 
these selective attention mechanisms should be 
viewed as an integral part of non-rule models or 
as rule mechanisms grafted onto non-rule models. 
One possibility is that people are relying on rule and 
non-rule systems, thus necessitating the need for 
selective attention mechanisms in non-rule models.  

  Multiple Systems Models 
 Determining the best psychological model can 

be diffi  cult, as one model may perform well in one 
situation but be bested by a competing model in 
a diff erent situation. One possibility is that there 
is not a single “true” model. In category learning, 
this line of reasoning has led to the development of 
models containing multiple learning systems. Th ese 
more complex models hold that category learn-
ing behavior refl ects the contributions of diff erent 
systems organized around discrepant principles 
that use qualitatively distinct representations. Th e 
idea that multiple learning systems support cat-
egory learning behavior enjoys widespread support 
among researchers in the cognitive neuroscience of 
category learning (see Ashby & O’Brien, 2005, for 
a review and Nosofsky & Zaki, 1998, for a dissent-
ing opinion). 

 Multiple systems models of category learning 
detail the relative contributions of the component 
learning systems. For each categorization decision, 
some multiple systems models select which indi-
vidual system governs the response (Ashby, Alfonso-
Reese, Turken, & Waldron, 1998). Over time, one 
system might prove more useful and dominate 
responding. Alternatively, the modeler can prede-
termine the timing of the shift from one system to 
another. Th is is sensible in cases where there is good 
evidence for predictable shifts, such as the shift from 
rule-based to exemplar-based responding in classifi -
cation learning (Johansen & Palmeri, 2002). 

 Both of these multiple systems approaches are 
somewhat inadequate in that they do not allow 
the current situation to dictate which system 

time and being asked to name it, a child surprised 
to learn that a bat is not a bird would recruit a new 
cluster to capture this example. If the child activates 
this cluster in the future to successfully classify other 
bats, then the cluster would come to resemble a bat 
prototype. 

 Both the rational model and SUSTAIN can be 
viewed as multiple prototype models in which the 
number of prototypes is determined by the com-
plexity of the category structure. When categories 
are very regular, these models will function like pro-
totype models. When categories are very irregular 
(i.e., there is no discernable pattern linking mem-
bers to one another), these models will tend to func-
tion like exemplar models. SUSTAIN’s sensitivity 
to a learner’s goal allows it to capture performance 
diff erences across diff erent induction tasks. For 
example, people learning through inference (e.g., 
 Th is is a mammal. Does it have fur? ) tend to focus on 
the internal structure of categories, whereas people 
learning through classifi cation (e.g.,  Th is has fur. Is 
it a   mammal? ) tend to focus on information that 
discriminates between categories (see Markman & 
Ross, 2003, for a review). Th ese two ways of inter-
acting with stimuli during learning have very diff er-
ent acquisition and retention profi les (Sakamoto & 
Love, 2010). 

 Clustering models, like exemplar and prototype 
models, can be coupled with selective attention 
mechanisms that can learn to emphasize critical 
stimulus properties. For example, in learning to 
classify car makes, SUSTAIN would learn to weight 
shape more than color because shape reliably indi-
cates model type whereas color varies idiosyncrati-
cally. Th e motivation for selective attention comes 
from the observation that people can only process 
a limited number of stimulus properties simultane-
ously. Selective attention mechanisms have been 
developed through consideration of human and 
animal learning data (see Kruschke, 2003, for a 
review). In tasks that require people to actively sam-
ple stimulus dimensions, selective attention mecha-
nisms predict which dimensions are fi xated (Rehder 
& Hoff man, 2005). 

 Importantly, selective attention mechanisms 
allow non-rule models to display rule-like behav-
iors. When a prototype, exemplar, or clustering 
model places all of its attention on one stimulus 
dimension, a model’s operation is indistinguish-
able from the application of a simple rule. In terms 
of accounting for human data, SUSTAIN outper-
forms RULEX in some respects on learning prob-
lems that require acquiring a simple rule and storing 
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mediated procedural learning system that involves 
the striatum (Ashby et al., 1998), a repetition prim-
ing system that involves early visual areas (Reber, 
Gitelman, Parrish, & Mesulam, 2003), and a medial 
temporal lobe (MTL) learning system that maps 
onto exemplar- or cluster-based learning (Love & 
Gureckis, 2007). For each system, there are behav-
ioral manipulations that tend to emphasize the one 
system over the other systems. Lesion, patient, and 
imaging studies provide compelling evidence for the 
multiple systems view. Th e relationship between the 
models discussed above and proposed learning sys-
tems in the brain is discussed in greater detail in the 
next section.   

  Brain Basis of Category Learning 
 In this section, the relationship between the mod-

els described above and candidate learning systems 
in the brain is considered. Successful models that 
have been developed in light of these learning sys-
tems’ detailed circuitry (e.g., Becker & Wojtowicz, 
2007; Frank, Seeberger, & O’Reilly, 2004; Norman 
& O’Reilly, 2003) will not be discussed. Instead, 
the focus will be on linking the basic computational 
properties of category learning models to learning 
systems in the brain. 

  Posterior Occipital Cortex 
 Forms of implicit learning (i.e., learning with-

out awareness) with visual stimuli are thought to 
rely on the posterior occipital cortex (see Smith & 
Grossman, 2008, for a review). Th e best support for 
this hypothesis comes from prototype abstraction 
studies in which subjects view numerous stimuli 
that are similar to an underlying prototype (e.g., dot 
pattern tasks). In these tasks, patients with impaired 
declarative memory, such those with lesions in 
the MTL (Knowlton & Squire, 1993; Kolodny, 
1994; Reed, Squire, Patalano, Smith, & Jonides, 
1999) and Alzheimer’s disease (Bozoki, Grossman, 
& Smith, 2006; Eldridge, Masterman, & Knowlton, 
2002), retain the ability to extract a single prototype 
through implicit means. 

 After exposure to items that coalesce around a 
prototype, imaging studies fi nd deactivations of 
posterior occipital cortex (roughly V2) for items 
that are similar to the prototype (Aizenstein et al., 
2000; Koenig et al., 2008; Reber, Stark, & Squire, 
1998; Reber et al., 2003). High accuracy in pro-
totype extraction tasks does not appear to require 
involvement of declarative memory areas, though 
such areas can be engaged by these learning tasks 
(Koenig et al., 2008). 

is operable. For example, when trying to learn 
how to operate a new piece of machinery, a per-
son might use a hypothesis (i.e., rule) system, but 
when riding a bicycle, a more procedural system 
might govern responding and be updated. In some 
models, like ATRIUM (Erickson & Kruschke, 
1998), the relative contributions of divergent sys-
tems can depend on the circumstances (cf., Yang 
& Lewandowsky, 2004). ATRIUM contains a 
rule-and-exemplar learning system. Th e system 
that is operable is determined by a gating system, 
allowing diff erent classifi cation procedures to be 
applied to diff erent parts of the stimulus space. For 
example, familiar items could be classifi ed by the 
exemplar system, whereas rules could be applied to 
unfamiliar items. 

 Somewhat muddying the waters, ostensibly 
single-system models have been developed that also 
manifest this ability. In CLUSTER (Love & Jones, 
2006), clusters can tune themselves (i.e., attend) 
to diff erent stimulus properties and encode cat-
egories at various levels of granularity. Th is allows 
CLUSTER to apply diff erent procedures to diff er-
ent parts of the stimulus space, like ATRIUM does. 
For example, clusters would heavily weight color in 
the domain of clothing and processor type in the 
domain of laptops. Th is tuning is accomplished by 
minimizing an error term that refl ects the model’s 
predictive accuracy, a technique commonly used in 
connectionist modeling. Tunable parameters that 
encode each cluster’s specifi city and attentional 
weighting of diff erent properties are shaped by 
experience. 

 Models like CLUSTER are very rich. Consid-
eration of such models leads to the question of 
what constitutes or defi nes a system. As previously 
discussed, one could even construe the selective 
attention mechanism of various models as being 
a separate system (see Poldrack & Foerde, 2008, 
for a related discussion on model parameters). 
Fortunately, models are mathematically well speci-
fi ed and allow researchers to make predictions and 
state their theories clearly without having to be 
overly concerned with the semantics of what con-
stitutes a system. Th e mathematical specifi cation of 
models can free researchers from some potentially 
thorny debates. 

 Th e notion of a system perhaps takes on greater 
signifi cance when considered in the context of 
the brain (Ashby & Crossley, 2010). Within cog-
nitive neuroscience, it is generally accepted that 
there is a hypothesis-testing system that relies on 
frontal circuitry (Ashby et al., 1998), a dopamine-
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category learning system. Like the posterior occipi-
tal cortex, it is not clear to what extent learned PFC 
representations persist over time (though see Asaad, 
Rainer, & Miller, 1998). 

 In terms of the models reviewed, the PFC best cor-
responds to a rule-based model in which there is no 
permanent store of inferred rules (i.e., inferred rules 
reside in a WM and are subject to disruption). Like the 
perceptual priming system, the explicit rule system is 
extremely limited in the types of categories that it can 
learn. All the aforementioned studies involve acquir-
ing rules with one or two antecedents (e.g., “If the 
item is big and bright, then it is a member of Category 
A”). Multiple prototype, exemplar, and clustering 
models all provide more general and powerful learn-
ing mechanisms. Th at said, common laboratory and 
neuropsychology tasks, such as the Wisconsin Card 
Sorting Task, likely rely on the PFC (Joel, Weiner, & 
Feldon, 1997). Additionally, subtle category discrimi-
nations can involve a rule component supported by 
the PFC (especially during initial acquisition).  

  Striatum and Midbrain Dopaminergic 
Areas 

 Th e tail and body of the caudate nucleus are 
theorized to support a category learning system that 
involves the strengthening of associations between 
individual stimuli and category responses, often 
described as procedural learning (Ashby et al., 1998; 
Foerde, Knowlton, & Poldrack, 2006; Knowlton, 
Mangels, & Squire, 1996; Knowlton, Squire, & 
Gluck, 1994; Poldrack et al., 2001). Unlike the pre-
viously discussed learning systems, the procedural 
learning system appears able to learn arbitrary cate-
gory discriminations under appropriate conditions. 

 Necessary conditions for learning include cor-
rective feedback arriving shortly after responding 
(Shohamy, Myers, Kalanithi, & Gluck, 2008). 
Following Schultz, Dayan, and Montague (1997), 
one hypothesis is that delaying feedback disrupts 
dopamine-mediated learning (Maddox, Ashby, & 
Bohil, 2003). Likewise, manipulations that dis-
rupt procedural learning in serial reaction time 
tasks (e.g., Willingham, 1998) also disrupt category 
learning tasks based on subtle (non-rule-based) 
discriminations (Ashby, Noble, Filoteo, Waldron, 
& Ell, 2003). Further supporting the linkage of 
procedural learning to dopamine-mediated striatal 
learning, patients with Parkinson’s disease have defi -
cits in processing feedback in procedural learning 
tasks (Shohamy et al., 2004). Neuroimaging studies 
further support this linkage (Nomura et al., 2007; 
Poldrack & Foerde, 2008; Shohamy et al., 2008). 

 Interestingly, this form of implicit learning 
seems to be very limited in terms of the types of 
categories that can be learned. Alzheimer’s patients 
and amnesiacs can extract a single prototype but 
are unable to discriminate two prototypes (Sinha, 
1999; Zaki, Nosofsky, Jessup, & Unversagt, 2003). 
Th ese results suggest that the learning supported by 
posterior occipital cortex is better viewed as a per-
ceptual priming system than as a general mechanism 
for acquiring category knowledge. One possibility is 
that people experience a feeling of fl uency (based 
on deactivations in visual areas) for items similar 
to the average of recent items and that this feeling 
of fl uency supports categorization performance for 
tasks in which there is a single prototype. Such a 
learning system would not be useful for discrimi-
nating categories. In terms of the models discussed, 
a prototype model restricted to a single prototype 
provides the best characterization of the reviewed 
fi ndings. Th e other models all master a greater vari-
ety of discriminations than the posterior occipital 
cortex appears to support. An open issue is whether 
perceptual priming for prototypical stimuli leads to 
lasting representations or is short-lived.  

  Prefrontal Cortex 
 Th e prefrontal cortex (PFC) and head of the 

caudate nucleus are theorized to engage a rule-based 
category learning system that depends on working 
memory (WM) to support maintenance of rules and 
new hypothesis testing (Ashby et al., 1998; Monchi, 
Petrides, Petre, Worsley, & Dagher, 2001; Seger 
et al., 2000; Smith, Patalano, & Jonides, 1998). Th is 
learning system appears to correspond with explicit 
hypothesis testing in which learners are aware of 
applying a rule and can accurately verbally report 
the hypothesis they are entertaining. Manipulations 
that disrupt WM or executive attention are particu-
larly detrimental to this form of rule-based learning 
(DeCaro, Th omas, & Beilock, 2008; Waldron & 
Ashby, 2001; Zeithamova & Maddox, 2006). 

 Patient studies indicate that explicit learning 
of rules does not rely on intact MTL (Janowsky, 
Shimamura, Kritchevsky, & Squire, 1989; Leng 
& Parkin, 1988). One possibility is that people 
solve simple rule-based tasks by entertaining rules 
in WM. Indeed, executive attention is mediated by 
structures in the PFC (Posner & Petersen, 1990). 
Imaging results of rule-based learning corroborate 
this interpretation (Konishi et al., 1999; Monchi 
et al., 2001; Smith et al., 1998). Here, the PFC may 
be better viewed as supporting rule-based reasoning 
during category learning tasks than as a dedicated 
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 One hypothesis is that the SUSTAIN clustering 
model corresponds to the operation of MTL and 
its subregions (Davis et al., 2012; Love & Gureckis, 
2007). In terms of declarative memory, the hippocam-
pus is thought to play a critical role in rapidly form-
ing conjunctive representations that bind together 
diff erent sources of information into a single fl exible 
memory (Brown & Aggleton, 2001; Eichenbaum, 
Yonelinas, & Ranganath, 2007; Norman & O’Reilly, 
2003). Conjunctive representations are thought to 
be encoded by the hippocampus in response to nov-
elty (Stark & Squire, 2001; Tulving, Markowitsch, 
Craik, Habib, & Houle, 1996; Yamaguchi, Hale, 
Desposito, & Knight, 2004) in as little as a single 
trial (Morris, Garrud, Rawlins, & O’Keefe, 1982; 
Rutishauser, Mamelak, & Schuman, 2006), as well 
as code information about the spatiotemporal con-
text in which an item occurred (Staresina & Davachi, 
2009; Wallenstein, Eichenbaum, & Hasselmo, 1998). 
SUSTAIN’s clusters resemble hippocampal conjunc-
tive representations in that they can be dynamically 
recruited in response to novelty on a single trial. Th ey 
also bind together multiple-item features and cate-
gory information into a single fl exible representation 
that can promote generalization to novel contexts 
(Love et al., 2004). 

 Many real-world categories often appear to be 
describable by simple representations, such as logi-
cal rules, but upon closer inspection are found to be 
more complex (Wittgenstein, 1953). For example, 
natural categories such as birds and mammals are 
often associated with verbalizable rules such as, if it 
has wings, it is a bird, but also contain violations of 
these rules, such as bats. People can verbally report 
descriptions of bats and explicitly relate bats to other 
mammals, but these descriptions are not rules per se. 
In order for people to learn that examples as diverse 
as bats and ponies are all members of the category 
mammals, people need to build representations 
of the category mammals that are appropriate for 
this goal. Th e SUSTAIN model would predict that 
people achieve this goal by forming a separate clus-
ter for birds and mammals, and then creating addi-
tional specialized clusters for exceptions, like bats, 
as they are encountered. One possibility is that the 
MTL acquires declarative knowledge that eclipses 
the limitations of rule-based models through mech-
anisms similar to that of the SUSTAIN model.   

  Conclusion 
 In this chapter, I have reviewed the relative mer-

its of a variety of category learning models, includ-
ing rule-, prototype-, and exemplar-based models, 

 In terms of the previously reviewed models, vari-
ants of exemplar models are the best computational 
analog to the procedural learning system. Like human 
procedural learning, exemplar models can master 
arbitrary category discriminations and are sensitive 
to the details of their inputs. Th e best matching vari-
ant is the covering map version of Kruschke’s (1992) 
connectionist exemplar model. Th is model seeds the 
space of possible stimuli uniformly with a number 
of exemplar nodes and uses error-driven learning 
to associate stimuli with category responses. Such 
a model corresponds to a standard exemplar model 
when training examples are uniformed sampled 
over the space of possible items. Th e Striatal Pattern 
Classifi er (SPC; Ashby & Waldron, 1999) has a 
similar operation, though the high-level motivation 
for this model is quite diff erent. In the SPC, the 
mechanisms in the model are described as associat-
ing regions of stimulus space with motor responses, 
not as storing experienced exemplars in memory. 
Nevertheless, at an abstract computational level, 
these approaches are highly similar.  

  Medial Temporal Lobe 
 One neurobiological system that has proven dif-

fi cult to characterize in terms of its role in category 
learning is the MTL. Th e essential role of the MTL 
for encoding and retrieval of declarative memo-
ries, long-term memory for facts and events, is well 
established (Scoville & Milner, 1957; Squire, 1992). 
However, the role of the MTL in category learning 
remains controversial; each of the major fi xed repre-
sentational forms (e.g., rules, prototypes, exemplars) 
has been ascribed to the function of the MTL by 
diff erent groups of researchers. For example, many 
theories suggest that the MTL uses exemplar-based 
representations (Ashby & Maddox, 2005; Ashby & 
O’Brien, 2005; Pickering, 1997). However, empiri-
cal work has suggested that the MTL may be essen-
tial for the storage of category rules (Nomura et al., 
2007; Seger & Cincotta, 2006) or representations 
of category prototypes (Aizenstein et al., 2000; 
Reber et al., 2003; Zaki et al., 2003; Zeithamova, 
Maddox, & Schnyer, 2008). In contrast, other ther-
orists question whether the MTL is involved in cat-
egory learning at all (Ashby et al., 1998; Maddox & 
Ashby, 2004). Given these diffi  culties in ascribing a 
single, fi xed representational type to the function of 
the MTL, one plausible alternative that may inte-
grate these disparate theories is that the MTL builds 
representations that are appropriate for a specifi c 
learning context, like those proposed by clustering 
models (e.g., Anderson, 1991; Love et al., 2004). 
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level as long as it is acknowledged that certain brain 
areas are best suited to certain learning conditions. 
For example, secondary task load impairs PFC- and 
MTL-mediated learning but not procedural learn-
ing (Foerde et al., 2006), whereas delayed feedback 
impairs procedural learning but not rule-based learn-
ing (Maddox & Ing, 2005). Our recommendation is 
to specify model-based mechanisms and relate these 
mechanisms to brain function, not to argue for or 
against a particular number of learning systems. We 
believe that, in practice, the criteria for delineating 
separate systems is often underspecifi ed and can lead 
to needless controversy. Indeed, SUSTAIN, which 
is a single-system model, can act as an exemplar-, 
prototype-, or rule-based model depending on the 
nature of the category learning task.  

  Future Directions  
   1.     Now that many in the fi eld are confi dent 

that several learning systems have been identifi ed, 
basic questions surround how these learning 
systems interact during learning. Under what 
conditions do systems cooperate or compete? For 
a given situation, what determines which learning 
system guides behavior? Answering these questions 
will likely require the specifying of model gating 
mechanisms that determine how the outputs of 
systems infl uence behavior.  

  2.     I suggested that two learning systems, the 
rule-based and perceptual priming systems, may be 
better viewed as general cognitive and perceptual 
abilities than as proper learning systems. One 
question for future research is how processes 
outside of category learning systems, such as those 
engaged in analogy and language use, impact 
categorization behavior.  

  3.     For decades, cognitive psychologists have 
made theoretical progress by comparing the 
predictions and fi ts of models to behavioral data. 
One fruitful area for future research may be to 
extend this endeavor to incorporate brain imaging 
and neuropsychological data.     
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as well as clustering models and multiple systems 
models that combine two or more of these model 
types. Also considered was how inclusion of selec-
tive attention mechanisms can increase the capa-
bilities of these models by endowing them with the 
ability to manifest rule-following behavior. 

 To review briefl y each model family’s merits, 
rule-based models conform to our intuition that we 
eff ortfully search for patterns that we can verbally 
communicate to others. In contrast to rule models, 
prototype models successfully refl ect the graded nature 
of category membership. Exemplar models address 
defi ciencies in the prototype model and can capture 
correlations within categories. Exemplar models also 
capture aspects of recognition memory performance. 
Clustering models successfully transition between pro-
totype- and exemplar-like representations, depending 
on the complexity of the category structure. 

 All of these models have played a critical role 
in advancing the theory and design of key experi-
ments. Th e development of new models is informed 
by the failings of preceding models. Th e history 
of model development is marked by the arrival of 
models with increasingly sophisticated processing 
mechanisms that can manifest the behaviors of pre-
vious models as well as additional human behaviors 
beyond the reach of previous models. Of course, the 
value in models lie more in predicting unanticipated 
behaviors than in simply accounting for known 
behaviors. Th us, it is important for models to be 
somewhat constrained to have theoretical value. 

 Later in the chapter, these four basic model types 
were related to four candidate learning systems in 
the brain: a PFC-supported rule-based system, a per-
ceptual priming system that operates like a restricted 
prototype model, a procedural learning system that 
has some characteristic of exemplar models and 
related variants, and an MTL-supported fl exible 
clustering model. One important question for future 
research is how these multiple mechanisms interact. 

 Some researchers may question whether it is even 
useful to think in terms of multiple learning systems. 
After all, many behavioral fi ndings thought to indi-
cate the need for multiple systems of representation 
have subsequently been shown to be consistent with 
a single-system interpretation (Johansen & Palmeri, 
2002; Nosofsky & Johansen, 2000; Nosofsky & 
Zaki, 1998). At fi rst blush, this position might seem 
recalcitrant, but given the mounting evidence that 
many brain areas perform cooperatively in learn-
ing tasks (Koenig et al., 2008; Sadeh, Shohamy, 
Levy, Reggev, & Maril, 2011), one could reason-
ably argue there is a single system at a functional 
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