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Abstract Linking models and brain measures offers a number of advantages over 3

standard analyses. Models that have been evaluated on previous datasets can provide 4

theoretical constraints and assist in integrating findings across studies. Model-based 5

analyses can be more sensitive and allow for evaluation of hypotheses that would 6

not otherwise be addressable. For example, a cognitive model that is informed 7

from several behavioural studies could be used to examine how multiple cognitive 8

processes unfold across time in the brain. Models can be linked to brain measures 9

in a number of ways. The information flow and constraints can be from model to 10

brain, brain to model, or reciprocal. Likewise, the linkage from model and brain can 11

be univariate or multivariate, as in studies that relate patterns of brain activity with 12

model states. Models have multiple aspects that can be related to different facets 13

of brain activity. This is well illustrated by deep learning models that have multiple 14

layers or representations that can be aligned with different brain regions. 15

Model-based approaches offer a lens on brain data that is complementary to 16

popular multivariate decoding and representational similarity analysis approaches. 17

Indeed, these approaches can realise greater theoretical significance when situated 18

within a model-based approach. 19

Keywords Linking · Cognitive models · Multivariate measures of cognition 20

1 Introduction 21

Psychology and neuroscience are concerned with theoretical concepts that cannot be 22

directly measured. For example, theoretical concepts like recognition, familiarity, 23

error, learning, replay, receptive field, fear, prejudice, value, and uncertainty need to 24
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be operationalised. We cannot directly measure these concepts like we measure the 25

temperature of a room with a thermometer or the length of a bolt with a ruler. 26

To further complicate matters, we are often interested in how processes unfold 27

over time. For example, memory by definition involves processes that extend over 28

time and involve generalisation or similarity structure. Likewise, decision-making 29

processes, such as evidence accumulation for competing options, involve decision 30

variables that change over time (Shadlen & Kiani, 2013). The dynamical nature of 31

cognition is central in many accounts of behaviour (Busemeyer & Townsend, 1993; 32

Tanenhaus et al., 1995; Wijeakumar et al., 2017). 33

To understand the brain basis of theoretical concepts in psychology, we need to 34

measure these concepts and relate our measurements to the brain. Formal models 35

offer one way forward. Models can be used to characterise cognitive processes in 36

terms of the steps people carry out while performing a task. For example, drift- 37

diffusion models (see chapter “Reinforcement Learning: Application to fMRI”) 38

characterise how evidence is accumulated over time for choice options (Ratcliff, 39

1978). Learning models characterise how knowledge is updated in light of corrective 40

feedback, detailing the nature of error signals (Kruschke, 1992; Love et al., 2004). 41

Cognitive models that have been rigorously evaluated are our best guess of how 42

cognitive processes unfold. By fitting these models, such as to behavioural data, 43

we can operationalise and quantify theoretical concepts of interest, akin to how a 44

thermometer allows us to measure temperature. 45

One research goal in model-based neuroscience is to understand how abstract 46

processes and representations detailed in cognitive models are instantiated in the 47

brain (Forstmann et al., 2011; Palmeri et al., 2015; Turner et al., 2017). Additionally, 48

as I will discuss, relating theoretical concepts to brain measures may also help 49

advance our understanding of cognition by introducing additional constraints when 50

fitting and selecting among candidate cognitive models. In effect, there can be a 51

two-way street in which cognitive models help us to understand the brain and the 52

brain helps us to develop and evaluate cognitive models. 53

Cognitive models can serve as the bridge between abstract theories and brain 54

measures (Love, 2015). Model-based neuroscience offers the possibility of advanc- 55

ing our understanding along multiple levels of analysis. Linking models with brain 56

measures also creates a number of exciting opportunities. As I will review, there 57

are a number of cases in which brain imaging researchers could not have made 58

an advance without a model-based analysis approach. In this chapter, I will consider 59

several ways in which cognitive models can be related to brain measures and provide 60

illustrative examples. As reviewed in Turner et al. (2017), cognitive models, which 61

are concerned with behaviour, can be related to brain data in a number of ways, 62

including (1) using the brain measures to constrain the cognitive model, (2) using 63

the cognitive model to predict neural data, and (3) considering both the brain and 64

behavioural data simultaneously. These approaches can be univariate or multivariate 65

(i.e. patterns of brain activity are considered). 66
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2 Some Functions of Models in Science 67

Models can play a number of constructive roles in psychology, neuroscience, and 68

science more broadly. One function is simply organising one’s ideas and making 69

assumptions clear. Formal models require researchers to detail each step, which can 70

reduce wiggle room relative to purely verbal theories. Whatever wiggle room is left 71

(e.g. tuneable parameters) is made explicit. 72

As a consequence, what is predicted under different circumstances is made clear. 73

Rather than debate what a theory predicts, a model can be simulated. For example, 74

early work showing an advantage in processing category prototypes led researchers 75

to believe that abstract prototypes were stored in memory, but subsequent work 76

demonstrated that such effects were compatible with exemplar models that store 77

no abstractions in memory (Medin & Schaffer, 1978). More recently, models have 78

played a related role in the design and interpretation of fMRI (functional magnetic 79

resonance imaging) studies of memory (Caplan & Madan, 2016; Nosofsky et al., 80

2012). Models can play a constructive role in directing empirical investigations. 81

Science often progresses by evaluating competing theoretical accounts. Models 82

afford the possibility of model comparison in which competing accounts can be 83

pitted against one another, and the model that performs best can be favoured. 84

This approach is standard in mathematical psychology (Pitt et al., 2002) but can 85

also be done in cognitive neuroscience. For example, Mack et al. (2013) formally 86

evaluated whether the representations in an exemplar or prototype model best 87

matched the BOLD (blood-oxygen-level-dependent) response and found that the 88

exemplar model was more consistent (also see Stillesjö et al. (2019)). In such cases, 89

brain data can help adjudicate between competing models when behavioural data 90

alone cannot (Ditterich, 2010; Mack et al., 2013; Purcell et al., 2012). Recent 91

work evaluating whether the hippocampus learns to associate objects and words 92

incrementally or in an all-or-none fashion used a related approach that favoured 93

the all-or-none account (Berens et al., 2018). Model comparison can even be done 94

in cases in which behavioural data are not analysed. For example, recent work 95

(Bobadilla-Suarez et al., 2019) asks what makes two brain states similar evaluating 96

a number of basic accounts of similarity, such as Euclidean distance, Mahalanobis 97

distance, Pearson correlation, etc., and found that the same similarity measures were 98

operable across brain states but differed across tasks or stimuli. 99

Models can serve a powerful integrative role by linking seemingly disparate 100

findings through common computational mechanisms. For example, a simple model 101

of familiarity and recognition memory captured findings from both fMRI studies 102

of visual categorisation and word list memory (Davis et al., 2014). In my own 103

work, the same clustering approach for capturing behaviour in learning studies 104

has been applied to a number of fMRI studies (Davis et al., 2012a, b; Inhoff et 105

al., 2018; Mack et al., 2016, 2020). Applying the same model to multiple studies 106

helps to theoretically integrate these empirical contributions, which is especially 107

helpful when studies involve different paradigms and dependent measures. More 108

recently, our clustering work (Mok & Love, 2019) has extended these same 109
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model mechanisms to offer an alternative explanation for place and grid cell 110

responses in rodents and humans. This account makes novel predictions for how 111

cell responses should change under different experimental conditions. In summary, 112

cognitive models are useful tools for clarifying one’s thinking, evaluating theoretical 113

proposals, and, as will be discussed here, linking behaviour and brain. 114

3 Levels of Analysis 115

The aforementioned models can be considered cognitive models. These models are 116

hypothesised to involve the same processes and representations as the human mind. 117

Cognitive models reside at Marr’s (1982) algorithmic level and are well placed to 118

help explain how the brain implements higher-level computations (Love, 2015). As 119

discussed below, the algorithmic level resides between higher-level considerations 120

related to the description or goal of the overall computation and lower-level accounts 121

of the computation’s physical realisation, such as in the brain. 122

Marr’s tripartite hierarchy (Marr, 1982) is perhaps the most well-known and 123

influential organisation of levels in neuroscience. In brief, the computational level 124

is the top level where the problem to be addressed is specified. Rather than detail 125

the form of a potential solution, the computational level simply states the problem 126

(i.e. the input-output mapping desired). For example, for object recognition, a 127

computational-level account could involve naming various images under various 128

conditions. The next level is the algorithmic level. As its name indicates, the 129

algorithmic level is concerned with how the function specified at the computational 130

level is computed (i.e. the processes and representations used). For example, if the 131

computational-level task were to sort an array of numbers in ascending order, then 132

the algorithmic level would specify a possible approach, such as bubble sort or 133

quicksort. Different algorithms may solve the computational task in different ways, 134

have different runtimes, etc., but they should all conform to the computational-level 135

goal (e.g. correctly sort the array). Finally, the implementational level describes the 136

physical substrate for the computation (e.g. the computer that executes quicksort). 137

The previous examples from computer science are apropos as Marr was clearly 138

inspired by abstraction layers, a central concept in computer science (Wing, 2008). 139

Note that Marr’s top two levels, the computational and algorithmic, neatly map 140

onto the top two levels in a common abstraction hierarchy in computing (Fig. 1). 141

Abstraction layers in computing can contain finer-grain levels, including multiple 142

levels describing the physical computing device. In contrast, Marr effectively 143

lumped all of neuroscience into a single implementational level, which might partly 144

explain why some neuroscientists find his hierarchy inadequate (Churchland et al., 145

1990). 146

Although Marr’s scheme is highly influential, there are alternatives (Pylyshyn, 147

1984). Moreover, there is no reason to restrict to three levels. For example, there 148

are a number of four-level schemes in cognitive science (Dawson, 2013; Newell, 149

1980, 1990; Sun, 2009). Indeed, Bechtel and Richardon’s (1993) mechanistic 150
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Computational Level
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Fig. 1 Marr’s levels compared to abstraction layers in computing with examples of each. Marr’s
levels are clearly influenced by abstraction layers in computer science, though Marr’s levels are
less fine grain, particularly for levels of interest to many neuroscientists. On the left, an example
from category learning is shown in which an algorithmic model (Love et al., 2004) was fit to
behaviour and its internal representations are used to interpret BOLD response (Mack et al., 2016).
On the right, a sorting algorithm addressed the computational-level problem of sorting and was
implemented by a digital computer. The abstraction layers in computing make clear that moving to
a lower layer introduces additional detail (more information) about the computation whereas higher
layers introduce abstract constructs that can be realised in multiple ways. (Figure and discussion
from Love (2020a))

approach can be characterised as a “levels of mechanism” hierarchy in which there 151

are not a fixed number of levels. For example, a car can be seen as mechanism 152

consisting of interacting parts, such as an engine, drivetrain, steering wheel, brakes, 153

etc. A component of a mechanism itself can be further decomposed into its own 154

mechanism (e.g. braking system) and so forth with no limit except those imposed 155

by particle physics. 156

For the present purposes, the important point is that cognitive models reside at 157

an intermediary level that details the “how” of cognition. Given this placement, 158

cognitive models can bridge between input-output descriptions of behaviour and 159

brain implementation. 160

4 Other Types of Models Useful in Analysing Brain Data 161

In addition to using cognitive models, neuroscientists also use formal models as 162

data analysis tools. For example, the generalised linear model (GLM) itself is a 163

formal model that has assumptions and tuneable parameters that are fit to data. Of 164

course, the GLM is not a model of how people process and represent information. 165
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Returning to Marr’s levels, it is clear that the GLM does not lie at the algorithmic 166

level in understanding human cognition nor any other level. Instead, the GLM is an 167

analysis tool. 168

Other examples of data analysis tools that are not cognitive models include 169

dynamic causal modelling (Friston et al., 2003), techniques to measure the intrinsic 170

or functional dimensionality of fMRI data (Ahlheim & Love, 2018), and multi-voxel 171

pattern analysis (MVPA). 172

MVPA decoding approaches apply a machine classifier to “mind read” from the 173

BOLD response whether a participant, for example, is viewing a house or a face 174

(Cetron et al., 2019). Although these are not psychological models, they can be 175

used to make interesting behavioural predictions. For example, participants tend to 176

have faster response times for stimuli that are further from the classifier’s decision 177

bound, which indicates the classifier is more confident about its decision (Ritchie 178

& Op de Beeck, 2019a). Decoding approaches can also be used to determine when 179

people are engaging in replay (Lee et al., 2019; Momennejad et al., 2018; Shanahan 180

et al., 2018; Xue, 2018). 181

There is a lot of room for creativity and innovation in using non-cognitive 182

models, such as decoding procedures. For example, Shen et al. (2019) coupled 183

a decoding approach with a deep convolutional network to visualise the image 184

a person was viewing. Other methodological innovations include hyperalignment, 185

which creates a common brain space for multiple participants to increase decoding 186

performance (Haxby et al., 2011). Hyperalignment is successful because voxels do 187

not exactly align across individuals’ brains, but simple transformations to a common 188

space can reveal commonalities across individuals. 189

The line distinguishing cognitive models and data analysis tools can be blurred 190

at times. The distinction can depend on the intentions of the researcher using 191

the model. Analogously, a Bayesian model can be taken as a computational-level 192

theory of cognition (i.e. describing the behaviour that should occur under different 193

circumstances with no recourse to the processes or representations that people use) 194

or as algorithmic proposals of how people algebraically solve the task (Jones & 195

Love, 2011a). For example, an algorithmic Bayesian model may predict response 196

times depending on the nature of model updates, which are interpreted as mental 197

operations, not computational-level descriptions. Making clear the nature of the 198

model used is important because it determines how the model should be evaluated 199

(Jones & Love, 2011b). 200

5 General Comparison of Model and Brain Data 201

A lot of early brain-inspired work in cognitive science was only loosely informed 202

by findings in neuroscience. For example, the original parallel distributed processing 203

(PDP) movement in the 1980s was motivated by the idea that brain computation is 204
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distributed across neurons and that cognitive models should reflect this observation 205

(Rumelhart & McClelland, 1986). Notice this linkage between PDP models and the 206

brain does not involve the fit of neural measures nor other formal coupling. Theo- 207

retical assertions of being brain-like or biologically plausible can be controversial 208

in part because they are often underspecified whereas model selection procedures 209

make claims and results clearer (Love, 2020a). The PDP models neglected many of 210

the details of actual neurons, such as ion channels and spiking activity. Abstracting 211

away details is not necessarily negative – in accord with Occam’s razor, models 212

should be as simple as possible while capturing the data of interest, which may or 213

may not include the specifics of neurons. Again, model selection approaches make 214

clear what data the scientist intends to explain. 215

The loose coupling of models and brain can be made somewhat more direct in 216

cognitive models that attempt to simulate basic patterns of behaviour across different 217

populations that vary in some key way, such as whether a group has a hippocampal 218

lesion (Love & Gureckis, 2007; Nosofsky & Zaki, 1998). This basic approach 219

is common and has been fruitful in exploring semantic processing impairments 220

(Lambon Ralph et al., 2006; Tyler et al., 2000). Again, in these lines of work, 221

cognitive modelling and analysis of brain data are happening separately from one 222

another. 223

The relation between model simulations and brain measures can become quite 224

rich. For example, recent work relates clustering mechanisms that have been used in 225

concept learning to explain grid and place cell recordings in the rodent brain during 226

navigation tasks (Mok & Love, 2019). In this case, the cognitive model is predicting 227

how lower-level cell activity should vary with changes in task and environment. 228

Although this work is theoretical and links cognitive models to the level of neurons, 229

notice that this linkage does not involve exploiting any joint constraints in the data 230

analysis. For example, the cognitive model is not being used to identify cell types 231

by applying it to neural data. Instead, the model is being simulated and theoretically 232

related to brain activity to help interpret and conceptualise findings. 233

In some sense, the entire emerging field of computational psychiatry falls 234

under this heading of loosely connecting cognitive models to brain function. In 235

computational psychiatry, cognitive models are routinely fit to behaviour, and 236

fitted parameters for different populations (e.g. depressives vs. non-depressives) are 237

compared (Adams et al., 2015; Blanco et al., 2013). 238

Certainly, work that provides a general conceptual link between brain and 239

behaviour can be valuable. However, ideally, models would also be integrated into 240

the data analysis. The remainder of this chapter focuses on incorporating cogni- 241

tive models into the analysis of brain measures. Such model-based neuroscience 242

approaches both theoretically relate cognitive models to the brain (as do the accounts 243

reviewed in this section) and incorporate constraints across levels of analysis when 244

evaluating models and brain data. 245
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6 Cognitive Model as Integral Part of the Data Analysis 246

In a typical task fMRI (or EEG, MEG, etc.) analysis, experimental conditions are 247

contrasted with one another. For example, one may contrast voxels that are more 248

active for face than for house stimuli. The simplest model-based analyses replace 249

the stimulus condition with some model measure (e.g. prediction error) that varies 250

across trials (Daw et al., 2006). By entering this regressor (e.g. prediction error) 251

from the cognitive model into the GLM, one can evaluate which voxels co-vary 252

with the cognitive construct. As shown in Fig. 2, both the typical contrast approach 253

and simple model-based analyses are univariate. Instead, standard MVPA start from 254

a collection of voxels (multivariate) and aim to predict some experimental condition, 255

such as whether the participant is viewing a house or a face. One innovation is to 256

make the target of decoding a model measure, such as item familiarly according to 257

a cognitive model (Mack et al., 2013). The four quadrants shown in Fig. 2 are not 258

an exhaustive taxonomy of how to relate models to the BOLD response (for a more 259

complete treatment, see Turner et al. (2017)). 260

Perhaps because it is relatively straightforward, the univariate model-based 261

approach is most common in the field. Typically, a model is fit to behavioural data 262

Fig. 2 The top row illustrates approaches that are not model-based in that they do not leverage a
cognitive model of the task. For example, in the top-left panel, a standard analysis might identify
voxels that are more active for faces than for house stimuli, whereas in the top-right panel, a
decoder might try to classify whether the participant is viewing a house or a face stimulus on each
trial. In the bottom row, a cognitive model is at the centre of the analysis. In the bottom-left panel,
some measure from the cognitive model (which is usually fit to behavioural data), such as item
familiarity, learning update, etc., is entered into the GLM. Such an analysis will identify voxels that
show a similar activation profile to the model measure. In contrast, in the bottom-right quadrant, a
classifier is applied to the brain to try to decode some internal measure from the cognitive model.
In this case, models are favoured to the extent that their internal state is decodable (Mack et al.,
2013). (Figure and discussion from Love (2020b))
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and then used as a lens on the fMRI data. For example, an associative learning model 263

was fit to behavioural data from a task where people formed impressions of various 264

social groups through trial-by-trial feedback (Spiers et al., 2017). The fitted model 265

provided a GLM trial-by-trial measure of valence or prejudice for each group, which 266

tracked activity in the anterior temporal lobe in the model-based analysis. Model- 267

based analysis was critical for capturing changes in memory across study trials. 268

In a category learning study (Davis et al., 2012a), a model-based analysis with a 269

clustering model of learning was critical to capturing two time courses, one across 270

trials and one within. This study examined the hippocampus’ role in acquiring 271

categories in which most items followed a rule but some items (exceptions) did 272

not. A clustering model (Love et al., 2004) was fit to the behavioural data (i.e. 273

the learning curves), and two model-based measures were entered into the GLM, 274

one for recognition strength or familiarity and one for error correction or learning 275

update. As shown in Fig. 3, the hippocampus tracked the model’s recognition 276

measure at stimulus presentation and the error measure at feedback presentation. 277

Interestingly, a standard analysis contrasting exception and rule-following items 278

found no significant difference – the cognitive model proved critical to capturing 279

how hippocampal response changes over the course of study trials. 280

The same modelling approach can also be used to localise two simultaneousAQ1 281

processes (by using two different model-based measures) within the same phase 282

of a trial-to-draw distinction between the functions of anterior and posterior 283

hippocampus (Davis et al., 2012b). Another way to scale up this basic univariate 284

modelling approach is to adopt an encoder approach in which the fitted cognitive 285

model provides a number of model-based regressors to enter into the GLM with the 286

goal of explaining the most variance possible within brain regions of interest (van 287

Gerven, 2017). In the encoding approach, rather than trying to identify voxels that 288

significantly regress on some specific model-based measure (e.g. prediction error), 289

the goal is for multiple model measures to capture the most overall variance possible 290

in the GLM. 291

Another model-based work (Kragel et al., 2015; Palmeri et al., 2015) reverses the 292

flow of information to incorporate brain measures directly into the operation of the 293

model to better predict behaviour. For example, Kragel et al. (2015) used a variant 294

of the context maintenance and retrieval (CMR) model of free recall (Polyn et al., 295

2009) that took signals from the medial temporal lobe (MTL) to determine whether 296

contextual reactivation was successful at each potential recall event. The model that 297

incorporated the BOLD input performed better than a baseline model in predicting 298

behaviour. Another example of this approach is replacing parameters in decision 299

models, such as in drift-diffusion model (Ratcliff, 1978) and variants (Usher & 300

McClelland, 2001) with neural recordings from regions thought to implement the 301

functions of those parameters (Palmeri et al., 2015; Purcell et al., 2010). 302

Rather than linking from model to brain or brain to model, joint modelling 303

approaches (Turner et al., 2019a, b) simultaneously model the mutual constraints 304

between behavioural and brain measures through an intermediary cognitive model. 305

This approach can deal with multiple brain measures (e.g. fMRI and EEG) and can 306

make predictions about missing measures based on covariance with the observed 307
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Fig. 3 Panels a and b show model-based regressors for a measure of recognition strength
(i.e. familiarity) and error correction (i.e. learning update). These model-based regressors track
hippocampal activity at the stimulus presentation and feedback phases of trials, respectively (Davis
et al., 2012a). In contrast, a standard contrast of exception > rule-following items (panels e and f)
results in no statistically significant voxels, because this contrast does not track the time course of
hippocampal activitys

measures. This approach can be quite powerful and useful in practice. For example, 308

one could collect behavioural data from a number of participants and more costly 309

neural recordings from only a subset of participants and leverage the constraints 310

across measures and participants through hierarchal Bayesian modelling. 311

There are a number of other creative ways to link cognitive models to BOLD 312

response. One way is to link a key event, as indexed by the cognitive model, to an 313

operation in the brain. For example, a recent study finds that prediction errors during 314
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study are predictive of later replay events (Momennejad et al., 2018). In other work, 315

a Bayesian model determined the probability that an item would be remembered, 316

which correlated with hippocampal activity during encoding (Gluth et al., 2015). 317

Finally, a cognitive model’s fitted parameters can be related to the BOLD 318

response instead of a trial-by-trial measure from the model. During category 319

learning, models (Love et al., 2004; Nosofsky, 1986) predict that goal-relevant 320

aspects of the stimuli will receive greater weight or attention. A recent study found 321

that the learned attentional weights from category learning models fit to behaviour 322

were predictive of how well those stimulus aspects could be decoded from the 323

BOLD response (Braunlich & Love, 2019). Relatedly, in a study exploring vmPFC 324

(ventromedial prefrontal cortex)-hippocampal interactions during concept learning 325

(Mack et al., 2020), the pattern of goal-directed representation compression in 326

vmPFC paralleled the attention weights from a model fitted to behaviour. 327

7 Individual Differences 328

Both behavioural and brain measures, such as fMRI’s BOLD response, tend to be 329

very noisy both within and across individuals. Somewhat surprisingly, cognitive 330

models that are fit to individual’s behaviour can be used to understand individual 331

differences in brain response. For example, in studies of category learning, individ- 332

uals learn to attend to relevant stimulus dimensions that discriminate between the 333

category responses (Kruschke, 1992; Love et al., 2004; Nosofsky, 1986). According 334

to the fits of cognitive models, individuals’ attentional strategies differ slightly from 335

one another, which affects how attended each stimulus dimension is. Interestingly, 336

these individual differences in attention weights arising from fitting behaviour can 337

also be observed in brain response – stimulus aspects that are more attended by an 338

individual are easier to decode in visual areas using MVPA (i.e. mind reading) on the 339

fMRI BOLD response (Braunlich & Love, 2019). Relatedly, compression signals 340

found in the ventromedial prefrontal cortex (vmPFC) thought to relate to attentional 341

allocation and also relate to individual differences in attentional weighting over the 342

course of learning. A final example comes from the neuroeconomics literature from 343

a task patterned after shopping on Amazon. Participants’ willingness to update their 344

beliefs in the face of Amazon reviews was modelled by a Bayesian model fit to 345

behaviour with the tendency of an individual to update, correlating with overall 346

activity in the dorsomedial prefrontal cortex (De Martino et al., 2017). 347

In the aforementioned analyses, estimates for individuals were independent from 348

another in that individuals were not linked during the analysis. An alternative 349

approach, such as in Bayesian hierarchal modelling, is to assume that individuals 350

belong to a common family such that estimates of individual inform the estimates 351

for others. When data are noisy, hierarchal approaches that link estimates may offer 352

advantages and have been used successfully in modelling individual differences in 353

cognitive control (Molloy et al., 2019). When using an independent or hierarchal 354

approach, the conclusion that cognitive models can reflect a reality at both the 355
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behavioural and neural levels for individual participants is exciting and demon- 356

strates how modelling can extract fine-grain information. 357

8 Models Can Uncover Useful Latent States 358

Models can be useful in inferring latent states that can help explain behaviour and its 359

brain basis. One example of latent variables are the clusters in the aforementioned 360

learning models (Anderson, 1991; Love et al., 2004) which detail how related items 361

are stored together in memory (Mack et al., 2018). Models operationalise these 362

hypothesised representational structures, which can be useful in analysing BOLD 363

response. 364

Inferring latent state is more complex when researchers aim to characterise 365

complex mental operations that unfold through time (Wijeakumar et al., 2017). One 366

popular approach is to use hidden Markov models (HMMs) to infer what operations 367

people are currently undertaking and using this characterisation to interpret the 368

BOLD response (Anderson et al., 2018; Tubridy et al., 2018). 369

The importance of inferring latent state is also becoming appreciated in related 370

fields, such as reinforcement learning (Niv, 2019). Many of the same conceptual 371

issues and brain systems are implicated in these tasks as in goal-directed concept 372

learning. For example, strategic exploration relies on hippocampal-prefrontal coop- 373

eration (Wang & Voss, 2014) as is found during memory tasks (Mack et al., 2020). 374

9 Comparing Model and Brain Representations 375

In addition to MVPA decoding, multivariate pattern analysis can be used to 376

compare proposed (e.g. model) representations and voxel representations (Haxby, 377

2001). This pattern comparison analysis is popularly known as representational 378

similarity analysis (RSA) (Dimsdale-Zucker & Ranganath, 2018). RSA correlates 379

two similarity matrices, one from the cognitive model and one from the brain, to 380

assess how well the two similarity spaces align. RSA can be used as confirmatory 381

evidence that a model provides the correct representational account of a brain region 382

or in an exploratory fashion such as in a whole-brain searchlight analysis. One 383

application of RSA is to compare proposed memory representations acquired by 384

models of concept learning to brain regions thought to implement those functions 385

(Mack et al., 2013; Ritchie & Op de Beeck, 2019b). For example, RSA analyses 386

found that hippocampal representations of objects (see Fig. 4) are modulated by 387

changes in the task goal (Mack et al., 2016). 388

For an RSA to be model-based, one of the similarity matrices should be generated 389

by a cognitive model. RSA can involve the evaluation of several cognitive models. 390

A variety of models can be considered, and the model whose representations best 391

align with the brain can be favoured (Ritchie & Op de Beeck, 2019b). However, 392
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Fig. 4 Representation similarity analysis (RSA) can be used to compare a cognitive model’s
representations to those of the brain. In this example (Mack et al., 2016), a cognitive model
was fit to behaviour for different learning problems (shown in red and teal). For each problem,
the cognitive model was used to calculate a similarity matrix for the stimulus items. Similarity
matrices were also calculated by comparing voxel activity for the stimulus items. In the left anterior
hippocampus, the similarity patterns predicted by the model and those observed in the brain agreed

not all RSAs are model-based and the dividing line can be blurry. For example, 393

technically, finding that hippocampus CA1 codes distance to a goal (Spiers et al., 394

2018) is not model-based (because distance is specified by the task), whereas coding 395

distance to some model quantity, such as distance to a category prototype (Seger et 396

al., 2015), is model-based (because the prototype is specified by the fitted cognitive 397

model). For a model-based analysis to be useful, it should add something beyond a 398

standard analysis. Ideally, a model-based analysis would improve both data fit and 399

our understanding of the domain. For example, a model may largely code distance 400

to goal but diverge in informative ways under certain circumstances that could be 401

empirically verified and in turn deepen our understanding of the domain. 402

Certainly, univariate analyses can be rigorous, interesting, and motivated but 403

not model-based. The same is true in RSA. For example, a recent study (Martin 404

et al., 2018) used similarity matrices designed to capture perceptual or conceptual 405

similarity to hone in on the function of perirhinal cortex and other regions. This 406

work is exciting and valuable, but because the similarity matrices were derived 407

from human ratings rather than generated by a model of perceptual or conceptual 408

processing, the analysis is not model-based. 409

Although RSA is popular and powerful, it is not entirely clear what advantages 410

it offers over general statistical approaches such as canonical correlation analysis 411

(CCA) or related techniques such as partial least squares (PLS). CCA maximises the 412

correlation between two sets of multivariate measurements. For example, one set of 413

measures could be on the brain side, such as a collection of voxels or the time course 414

for an individual voxel, and the other set of measures could be from a cognitive 415

model, a set of experiment ratings, etc. Although CCA has been used in imaging 416

analysis and software tools exist (Bilenko & Gallant, 2016), it is not as popular as 417

RSA at the present time, though that could change as CCA seems to offer a number 418
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of advantages (e.g. it infers weights for the individual measures in the two domains, 419

takes the reliability of measures into account, etc.) and no disadvantages that I 420

can discern. It is also preferred over RSA for related problems, such as comparing 421

representations from deep learning networks (Morcos et al., 2018). 422

10 Multiple Levels of Representation 423

The advent of deep learning has opened a number of possibilities in model-based 424

neuroscience. Deep learning models are the descendants of connectionist models 425

that were prominent in psychology in the 1980s (Rumelhart & McClelland, 1986). 426

Like those earlier models, the weights in deep learning models are typically trained 427

end-to-end through gradient descent procedures. Through architectural innovations, 428

such as multiple convolutional and pooling layers, these networks display abilities 429

that eclipse their predictors and excel at computer vision benchmarks (Krizhevsky et 430

al., 2012). Despite being developed for engineering purposes, these models provide 431

leading accounts of computation along the human and monkey ventral stream 432

(Guclu & van Gerven, 2015; Khaligh-Razavi & Kriegeskorte, 2014; Kubilius et 433

al., 2018; Yamins & DiCarlo, 2016). They have also been useful for exploring 434

ideas about the nature of neural code (Guest & Love, 2017). Because deep learning 435

models can take photographic stimuli as input, they open a number of opportunities 436

for researchers, such as using these networks to derive stimuli that should best drive 437

the response of a brain region (Bashivan et al., 2019). 438

One positive aspect of these models is that they contain multiple levels of 439

representation (see Fig. 5). Each layer of the model takes as input the output of the 440

previous layer and transforms it, such that the initial input is a photograph and the 441

final output is an object recognition decision. At each step in this transformation, 442

the representations can be compared to the activity patterns in brain regions. One 443

common finding is that the early and late layers in models tend to correspond to 444

early and late regions along the visual ventral stream (Guclu & van Gerven, 2015; 445

Khaligh-Razavi & Kriegeskorte, 2014; Kubilius et al., 2018; Yamins & DiCarlo, 446

2016). Model representations can be related to brain response using either RSA or 447

encoder approaches. Although these models have been successful in accounting for 448

object recognition and activity along the ventral stream, one future challenge is to 449

incorporate additional processes, such as top-down, goal-directed attention (Lindsay 450

& Miller, 2018; Roads & Love, 2019). 451

11 Conclusions 452

Adopting a model-based approach to analysing brain measures offers a number of 453

advantages. In some cases, one can evaluate hypotheses that otherwise would not 454

be possible with a standard analysis approach. Models, which formalise related 455
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Fig. 5 Deep learning models
contain multiple layers or
processing stages that
transform the stimulus. This
enables evaluation of
hypotheses that span brain
regions, such as that the
levels of object recognition
deep networks correspond to
stages along the ventral visual
stream. (Image from Guest
and Love (2017))

theories, offer the hope that results will be theoretically grounded. As related models 456

are applied across data sets, models may promote a more systematic and cohesive 457

science. Cognitive models are well positioned to integrate findings across levels of 458

analysis (Love, 2015). 459

I have reviewed a number of ways to relate cognitive models to brain response. 460

Possibilities include fitting models to behaviour and incorporating derived trial-by- 461

trial measures into the GLM, model decoding approaches (Mack et al., 2013), using 462

brain response to drive the behavioural predictions of the model, joint modelling 463

to simultaneously address brain and behavioural measures, and comparing model 464

representations and brain response. Which approach is suitable is largely a function 465

of the study’s design and the researcher’s aims. 466

Opportunities and choices in conducting model-based analysis of brain data are 467

rapidly increasing. It is an exciting time as there is latitude to be creative whether 468

one is applying an existing technique or developing a novel analysis approach to 469

address a new challenge. Although flexibility in inference can lead to false positives, 470

model-based analyses can provide additional constraints by linking measures and 471

multiple datasets. Model-based approaches can offer more stringent tests of theories 472

and the possibility of comparing competing models. As open science initiatives and 473

data repositories, such as OpenNeuro, make more datasets publicly available, the 474

importance of model-based approaches, especially those that link multiple datasets, 475

will only increase. Against this backdrop, modellers should do their part by making 476

their code and details of their analyses publicly available through hosting and 477

version control services such as GitHub. 478

One key question to consider is why do model-based analyses work? Models 479

are not magical nor guaranteed to be helpful, so why are there so many cases in 480

which model-based analyses succeed in pulling more from the data than would 481

be possible through a standard analysis? The answer is that models have the 482

ability to incorporate constraints that are outside the immediate study. In my 483

own work, models are developed over years and honed while being applied to 484

multiple behavioural and fMRI datasets. In this sense, the models have a reality and 485
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value outside their immediate application, which is critical because a model-based 486

analysis is only as credible as the model used. 487
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Questions for Consideration 494

Model-based analyses can offer additional theoretical constraints but can also 495

introduce degrees of freedom when choosing which model-based analysis to 496

conduct. How should one choose which model-based analysis to conduct? 497

How much should we demand of researchers in terms of verifying their models 498

before conducting a model-based analysis given that the analysis is only as good as 499

the model used? 500

Will behavioural studies be increasingly valued as one avenue to verify models 501

for model-based neuroscience? 502

The motivation for a model-based analysis can involve more than the model itself 503

to include the bridge theory that links model components to brain regions. How does 504

one choose between this focused, top-down approach to model application and a 505

bottom-up, data-driven approach? 506

Models can be specified at multiple levels of abstraction (see “levels of mech- 507

anism” discussion). Why is it rare to have multiple models for the same task that 508

differ in their level of abstraction? 509
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of the Royal Society B. https://doi.org/10.1098/rstb.2019.0632 512

• Love, B. C. (2020b). Model-based fMRI analysis of memory. Current Opinion 513

in Behavioral Sciences, 32, 88–93. https://doi.org/10.1016/j.cobeha.2020.02.012 514
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