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Modeling Learning Under
the Influence of Culture

Bradley C. Love and Todd M. Gureckis

Category learning is an incredibly broad topic. Researchers with heteroge-
neous goals and methods from various traditions are working to understand
the nature of human categorization. Diversity is desirable if findings can
eventually be placed in a common theoretical framework. However, one dan-
ger is that the study of categorization could fracture into isolated communities
that will not benefit from insights outside their cadre.

One current tension is between researchers engaged in mathematical
modeling of laboratory studies and those working in domains that explore
humans’ real-world knowledge, such as researchers exploring the influence
of culture on category formation. Both communities have good reasons to be
weary of each other. Researchers working in more naturalistic and meaning-
ful domains fault laboratory researchers and modelers for focusing on tasks
that do not approximate the richness of real-world categorization. Con-
versely, some modelers might be hard-pressed to see how research in less
well-controlled settings will eventually lead to a mechanistic understanding
of categorization.

For example, Lynch, Coley, and Medin (2000) explore how different
types of tree experts have different conceptualizations of the same trees (as
evidenced by their typicality ratings). Although their results are illuminat-
ing and rich, the groups they consider differ in a number of respects, making
it hard to develop a causal story that ends in a mechanistic account of
becoming an expert. On the other end of the naturalistic-tightly controlled
spectrum, Nosofsky, Gluck, Palmeri, McKinley, and Glauthier (1994) revisit
Shepard, Hovland, and Jenkins’s (1961) classic learning problems and fit
models to the results. Although data collected in well-controlled laboratory
studies that use random assignment and counterbalanced stimuli promote
model development, how such models could speak to Lynch et al’s results
remains unclear.

In this chapter, we attempt to ease this tension. We apply a model of cate-
gory learning developed through consideration of data from laboratory tasks
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to understanding how culture affects conceptual organization. In particular,
we applied the SUSTAIN model of category learning (Love & Medin, 1998b;
Love, Medin, Gureckis, 2004) to cross-cultural data on experts’ conceptual
organization of biological kinds (Medin et al., in press). Experts from both cul-
tures have equivalent knowledge in many ways. Nevertheless, the two groups
of experts organize their knowledge in different ways. One challenge is to
develop a mechanistic understanding of how culture affects the organization
of these experts’ knowledge.

Basic Challenges

Developing a mechanistic understanding of how culture affects conceptual
organization requires addressing a number of issues that are not usually a
concern when modeling data drawn from laboratory tasks. Some of these chal-
lenges are discussed below.

Knowledge Representation

The stimuli in laboratory experiments are usually constrained by the experi-
menter to admit one clear interpretation. For example, a stimulus set consist-
ing of triangles and squares that vary in color and size can be represented in a
straightforward manner.! In such constrained cases, the stimulus dimensions
are clear. When one considers less constrained domains, specifying the appro-
priate representations is more challenging. For example, what are the dimen-
sions that represent an expert’s knowledge of ecology? Fully addressing this
representational problem is beyond the grasp of the field. A more realistic goal
is to approximate experts’ knowledge. If it is based on reasonable assumptions,
such an approximation would enable formal modeling that could bolster our
understanding of the psychological processes underlying expert performance.

Task Formalization

The most common induction task used in laboratory studies is classification
learning. In classification learning, the learner is presented with a stimulus,
assigns it to one category in a set of mutually exclusive categories, and then
receives corrective feedback. The dependent measure is based on classification
accuracy. In such experiments, the learning task and key data are clear. A
learning trial for a human subject closely corresponds to a learning trial for a
model.

However, see Love and Markman (2003) for results suggesting that mental representations of
even this very constrained stimulus set are more elaborate than previously believed. In particu-
lar, when spatial working memory is available, color and size act as predicates with shape serving
as the argument.
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Identification of the learning problem is not as clear in the case of the
development of expertise within a cultural context. Models require specific
training regimens. The modeler must decide what the learning problem is,
how long to train the model, and what the feedback pattern should be. Map-
ping a model simulation to the learning history of an individual member of a
culture is a much more challenging task than fitting a model to the partici-
pant’s data in a laboratory study. In the former case, training will have to be
somewhat idealized and the mapping qualitative.

Simulation Evaluation

Like task formalization, the evaluation of simulations of laboratory classifica-
tion-learning studies is straightforward. For these studies, a model simulation
is successful to the extent that the error pattern generated by the model corre-
sponds to that of human subjects. When the goal of a simulation is for the
model’s conceptual organization to correspond to that of a human from a spe-
cific cultural group, the evaluation procedure is greatly complicated. Both
model and human conceptual organization must be operationalized within a
sensible metric.

SUSTAIN

In this section, the Supervised and Unsupervised STratified Adaptive Incre-
mental Network (SUSTAIN) model is introduced. SUSTAIN has accounted for
an array of challenging data sets spanning a variety of category-learning par-
adigms, including classification learning (Love & Medin, 1998b), learning at
different levels of abstraction (Love & Medin, 1998a), inference learning
(Love, Markman, & Yamauchi, 2000), development trends in learning
(Gureckis & Love, 2004), and unsupervised learning (Gureckis & Love, 2002,
2003). SUSTAIN’s formal description will not be discussed here. Instead, the
focus will be on SUSTAIN’s general operation and underlying principles.
Those interested in knowing more about the equations that actualize SUS-
TAIN’s principles can read Love, Medin, and Gureckis (in press).

SUSTAIN represents categories by one or more clusters. Clusters can be
seen as category subtypes or covert categories (see Berlin, 1974; Brown, 1974).
As shown in the right panel of Figure 13.1, SUSTAIN’s clusters mediate the
relationship between inputs (e.g., stimulus presentation) and output (e.g., cat-
egory assignment). SUSTAIN begins with one cluster centered on the first
training item. Additional clusters are recruited in response to surprising
events. In unsupervised learning, a surprising event is exposure to a suffi-
ciently unfamiliar or novel stimulus. In supervised learning, a surprising
event is a classification error (e.g., incorrectly predicting a bat is a bird). When
a surprising event does not occur, the current stimulus is assigned to the dom-
inant cluster (i.e., the cluster most activated or similar to the current item),
and this dominant cluster moves toward the current stimulus so that the clus-
ter converges to the centroid or prototype of its members.
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Figure 13.1. SUSTAIN’s mapping to constructs from the Medin et al. (in press) stud-
ies is shown. An expert’s knowledge of fish corresponds to SUSTAIN’s stimulus repre-
sentations. An expert’s knowledge organization corresponds to SUSTAIN’s clustering of
the stimuli. The effect of cultural orientation on an expert’s knowledge organization
corresponds to SUSTAIN’s training signal (i.e, its goals and feedback).

The Key Principles of SUSTAIN

With this general understanding of the operation of the model in mind, we
now examine the six key principles of SUSTAIN.

PrivcIPLE 1: SUSTAIN Is DIRECTED TOWARD SIMPLE SOLUTIONS. At the start
of learning, SUSTAIN has only one cluster that is centered on the first input
item. It then adds clusters (i.e., complexity) only as needed to accurately cap-
ture the category structure of the learning task. Its selective attention mecha-
nism further serves to bias SUSTAIN toward simple solutions by focusing the
model on the stimulus dimensions that provide consistent information.

PrINCIPLE 2: SIMILAR STIMULUS ITEMS TEND TO CLUSTER TOGETHER. SUS-
TAIN clusters similar items together. For example, different instances of a
bird subtype (e.g., sparrows) could cluster together and form a sparrow cluster
instead of leaving separate traces in memory for each instance. Clustering is
an unsupervised process because cluster assignment is done on the basis of
similarity, not feedback. SUSTAIN’s clusters are shown in Figure 13.1.

PrincipLE 3: SUSTAIN RELIES ON BOTH UNSUPERVISED AND SUPERVISED
LEARNING PROCESSES. As discussed above, SUSTAIN can cluster on the basis of
similarity (an unsupervised process). SUSTAIN’s operation is also affected by
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supervision when available. Consider the example of SUSTAIN learning to
classify stimuli as members of the category mammals or birds. Let’s assume
that a cluster representing four-legged land creatures has already been
acquired by the model, as well as another cluster representing small, winged
creatures that fly. The first time SUSTAIN is asked to classify a bat, the model
will predict that a bat is a bird because the bat stimulus will be more similar to
the existing bird cluster than to the existing mammal cluster. After receiving
corrective feedback (supervision), SUSTAIN will note its error and create a
new cluster to store the anomalous bat stimulus. Now, when this bat or one
similar to it is presented to SUSTAIN, it will correctly predict that the bat is a
mammal. This example also illustrates how SUSTAIN can entertain more com-
plex solutions when necessary through cluster recruitment (see Principle 1).

PrinciPLE 4: CLUSTERS ARE RECRUITED IN RESPONSE TO SURPRISING
EvENTS. As the previous example illustrates, surprising events lead to new
clusters being recruited. In unsupervised learning, a surprising event is sim-
ply exposure to a stimulus that is not sufficiently similar to any existing clus-
ter (i.e., a very novel stimulus).

PrINCIPLE 5: THE PATTERN OF FEEDBACK MATTERS. As the bird—-mammal exam-
ple in the preceding section illustrates, feedback affects the inferred category
structure. Prediction failures result in a cluster being recruited; thus different
patterns of feedback can lead to different representations being acquired. This
principle allows SUSTAIN to predict different acquisition patterns for different
learning modes (e.g., inference vs. classification learning) that are information-
ally equivalent but differ in their pattern of feedback. Likewise, the order of item
presentation in unsupervised learning can affect how items cluster together.

PrincrpLE 6: CLUSTERS COMPETE. Clusters can be seen as competing expla-
nations of the input. The strength of the response from the winning cluster (the
cluster to which the current stimulus is most similar) is attenuated in the pres-
ence of other clusters that are somewhat similar to the current stimulus (com-
pare with Sloman’s (1997) account of competing explanations in reasoning).

Summary of SUSTAIN

SUSTAIN represents categories by one or more clusters. SUSTAIN starts sim-
ple and adds clusters in response to surprising events. The cluster solutions
that SUSTAIN uncovers are driven by both the structure of the environment
and the learner’s goals (i.e., what task the learner is trying to master). This
property will prove critical in enabling SUSTAIN to account for different con-
ceptualizations of biological kinds by members of different cultures.

Cross-Cultural Studies of Wisconsin Fish Experts

We now describe the general findings to which SUSTAIN was applied. The
data are drawn from Medin et al. (in press). Medin et al. collected data from
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two groups of expert fishermen, majority-culture sports fishermen and Native
Americans of the Menominee tribe living on a reservation in Wisconsin. The
reservation contains numerous lakes, streams, rivers, and ponds. Cultural
beliefs and tribal practices within the Menominee community emphasize a
nature-centered biology of fish. The majority-culture fishermen live in commu-
nities proximate to the Menominee reservation. Outdoor recreation, including
fishing clubs, play an important role in the lives of the majority-culture mem-
bers. Many majority-culture fishermen participate in fishing contests with
considerable rewards. Fishing for food is a relatively more important activity
for the Menominee, whereas fishing for sport is relatively more important for
majority-culture fishermen.

One possibility is that the cultural orientations of the two groups play a
role in shaping conceptual organization of fish species. Medin and his col-
leagues’ (in press) results support this possibility. Majority-culture and
Menominee fish experts sorted cards depicting 44 native fish species as they
saw fit and then justified why they constructed the groupings as they did.
These sorts and justifications indicated that the species are primary organized
along fishing-related goals (e.g., a bait fish, a prestigious catch) for majority-
culture members, whereas the Menominee data suggested that the Menomi-
nee’s conceptual organization unfolds more along ecological lines (e.g., the
habitat of the fish). In general, the Menominee were less extreme in their
sorts. Although ecology played an important role in their sorts, fishing-related
goals were also evident to a moderate extent. This moderation was not seen
with majority-culture fishermen for whom fishing-related goals predominated
and ecological explanations were rare. Another feature of the data was that
there was less within-group agreement for the Menominee than for the major-
ity culture. Table 13.1 summarizes the basic findings from Medin et al.

Differences in conceptualization between the cultures are evident. It is
important to note that nothing in the data indicates higher expertise in one
group as opposed to the other. Both groups have extensive firsthand experi-
ence with native fish species. When tested without time pressure, both groups
display the same knowledge of the 44 species (e.g., identification, habitat, fish
interactions). Whereas previous work has shown that experts who have differ-
ent kinds of expertise in a common domain can show differences in free sort-
ing (Medin, Lynch, Coley, & Atran, 1997; Proffitt, Coley, & Medin, 2000), the
interactions of the Menominee and majority-culture fishermen with local fish
species are highly similar. One explanation is that cultural differences
between the two groups lead to differences in knowledge organization.

Table 13.1. The Basic Findings From Medin et al. (in press)

Majority Menominee
Ecological organization Low High
Prestige (fishing) organization Very high Medium

Within-culture agreement High Low
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Simulations

SUSTAIN captures conceptual organization in its clusters. For SUSTAIN to
generate the pattern of findings in Medin et al. (1997), SUSTAIN simulations
of the Menominee must result in qualitatively different clusterings than do
simulations of the majority culture. In particular, the cluster structure for
Menominee simulations should be organized along both fishing-related and
ecological lines, with an emphasis on ecology, whereas the majority simula-
tions should yield clustering dominated by fishing-related goals. Also, agree-
ment of cluster solutions across simulations should be greater for majority
simulations than for Menominee simulations.

In the introductory section of this chapter, basic challenges in modeling
the effects of culture on conceptual organization were discussed. Here, these
three basic challenges, knowledge representation, task formalization, and
simulation evaluation, are considered in the context of Medin et al. (in press).

Knowledge Representation

Following Medin et al. (in press), we assumed both groups had the same
knowledge of the fish. The inputs to SUSTAIN represented this knowledge,
whereas clustering represented knowledge organization. Thus the input rep-
resentation for both groups was identical. We wanted as objective and neutral
a representation as possible of the fish that captured or correlated with
aspects of the experts’ knowledge. The chosen solution was to create a spatial
representation of the taxonomic relations among the 44 indigenous species
considered in the Medin et al. (in press) study.

A 44 x 44 matrix was constructed that represented taxonomic distance.
Each entry in the matrix represented the distance in the scientific taxonomy
between two species. For example, two species sharing the same genus had a
distance of 1, whereas two species that matched at the family level had a dis-
tance of 2. This dissimilarity matrix was subjected to Sammon’s (1969) non-
metric multidimensional scaling. Five clear dimensions emerged. The values
along these five dimensions were used to represent each fish. Following SUS-
TAIN’s standard operation, the clusters were also located in this same five
dimensional space.

Task Formalization

Medin et al. hypothesized that differences between the two groups of experts
were driven by “habits of mind” or characteristic ways of thinking that were
culturally prescribed. One simple hypothesis is that cultural pressures for
majority-culture fishermen lead to an organization of fish species around fish-
ing-related goals, whereas the Menominee’s culture emphasizes ecological
properties.

To model this influence on knowledge organization, majority-culture simu-
lations were trained to predict the prestige of fish species (e.g., a northern pike
is a prized catch, an American eel is not), whereas Menominee simulations
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were trained to predict the habitat of the species. According to SUSTAIN’s fifth
principle, the pattern of feedback guides cluster organization. In the present
case, the pattern of feedback stresses ecological organization for the Menomi-
nee and fishing-related organization for the majority fishermen.

To implement this scheme, each of the 44 fish was scored for habitat and
prestige. For ecology, fish were scored along the following scale: 0 indicates
that the fish lives exclusively in lakes, 0.5 indicates that the fish lives in both
rivers and lakes, and 1 indicates that the fish lives exclusively in rivers. For
example, a bluegill was scored as a 0, a walleye as a 0.5, and a brown trout as
a 1. The same three point scale was used for low-, medium-, and high-prestige
fish.

SUSTAIN was trained on these two category systems using parameters
from Love et al. (in press). Fish were assigned to the cluster to which they
were most similar. If feedback indicated an incorrect cluster assignment, a
new cluster was recruited to encode the fish. An assignment was considered
incorrect when the cluster’s position on the critical dimension (i.e., habitat for
Menominee simulations, prestige for majority-culture simulations) was more
than 0.501 units away from the current fish’s value on this dimension.

Fish were presented to SUSTAIN in blocks. A block is the presentation of
the whole set of fish in a random order. Each simulation consisted of 50 blocks
of training. Because each simulation represents an individual member of the
culture, the average results were pooled over thousands of simulations to
obtain an accurate estimation of the group mean. Following training, clusters
not responding to any of the 44 fish were removed. Through this training regi-
men, the final cluster organization reflected both the goals of the learner
(either predicting ecology or prestige) and the correlational structure of the
stimulus set.

One interesting question is how supervised training affects conceptual
organization. To offer a “cultureless” baseline, a third set of simulations were
also included that involved unsupervised learning. In these simulations, SUS-
TAIN was not trained on habitat or prestige. Instead, new clusters were
formed when no existing cluster was sufficiently similar to the current stimu-
lus. The threshold for recruiting a new cluster was set to 0.31 to roughly
equate the number of clusters recruited with the Menominee and majority-
culture simulations. These unsupervised simulations can be thought of as
SUSTAIN’s attempt to carve nature at its joints (Hempel, 1965; Rosch,1978).

Simulation Evaluation

The most challenging aspect of this project was developing a method for
assessing the agreement between our modeling results and the results from
Medin et al. (in press). In this section, we detail methods for deciding whether
SUSTAIN simulations follow the same pattern as the populations studied by
Medin et al.

EvarLuaTinG ECOLOGICAL AND FISHING-RELATED ORGANTZATION. The result of
each SUSTAIN simulation is represented by a matrix F that details which fish
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share a cluster. We define the matrix F such that the entry {; is 1 if fish i and
fish j are in the same cluster at the conclusion of training and 0 otherwise.
Only entries from cells in the upper diagonal (i.e., the shaded region of F in
Figure 13.2) are included in the analyses because these cells carry all the rele-
vant information. Entries along the main diagonal are necessarily 1 (each fish
is in the same cluster as itself), and the lower diagonal mirrors the upper diag-
onal (i.e., f; = f;).

Once the matrix F' is constructed, it is converted to the vector f by concat-
enating the column entries forming the upper diagonal as shown in Figure
13.2. The vector T represents SUSTAIN’s conceptual organization for a single
simulation. Two other matrices and vectors must be constructed to evaluate
this conceptualization. These matrices and vectors are used to evaluate the
extent to which a SUSTAIN simulation is organized along ecological and
fishing-related lines.

The first matrix, E, is used to evaluate ecological organization. Like F, this
matrix consists of 44 x 44 entries. Each entry in the matrix indicates the ecological

f11 f2q f34 f41 f5.1

¥

-
1]

Figure 13.2. The matrix F details how fish cluster together. The matrix F_) used to
evaluate the actual simulations was larger, with 44 x 44 cells. The vector f is con-
structed from the upper diagonal of the matrix F as shown in the figure.
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compatibility (based on habitat) of two species. As in training, the three habitats
were lake only, lake and river, and river only. Fish living in the same habitat had
a compatibility of 1, fish overlapping in habitats (e.g., lake and river vs. river
only) had a compatibility of 0, and fish in nonoverlapping habitats (lake only vs.
river only) had a compatibility of —1. For example, the entry at the intersection of
blue gill (a fish that only lives in lakes) and brown trout (a fish that only lives in
rivers) is —1. This matrix E was converted into the vector T by the same method
used to construct the vector T from the matrix F. One additional step was per-
formed to create the vector € —the vector € was normalized to have mean zero.

The same steps were used to build the matrix P, which was used to evalu-
ate organization along fishing-related goals. The entries in matrix P were the
fishing-goal compatibilities (based on prestige) of the two species. As in train-
ing, the three levels of prestige were low, medium, and high. As in the ecology
evaluation, highly compatible fish had a value of 1 (e.g., low vs. low prestige),
somewhat compatible fish had a value of 0 (e.g., high vs. medium prestige),
and incompatible fish had a value of —1 (low vs. high prestige). The vector p
was constructed from P as in the above cases and was normalized to have
mean zero like vector €.

With these three vectors, ?, e, and H, the conceptual organization of a
SUSTAIN simulation can be evaluated. The organization of a simulation is
determined by calculating the vector cosine of T with either & or p depending
on whether organization is being evaluated along ecology or prestige. The vec-
tor cosine of two vectors @ and b is caleulated as follows:

_ _ab
cos(q) = ——; D

lallial

The vector cosine of two vectors measures their compatibility. Two vectors in
the same direction (i.e., perfectly compatible) will have a vector cosine of 1,
whereas two vectors in opposite direction (i.e., perfectly incompatible) will
have a vector cosine of ~1. Vectors that are orthogonal (i.e., unrelated or neu-
tral) will have a vector cosine of 0. Figure 13.3 shows three pairs of vectors.
The pair on the left are somewhat incompatible, the middle pair is neutral,
and the pair on the right are somewhat compatible.

N

Figure 13.3. Incompatible (negative vector cosine), neutral (zero vector cosine), and
compatible (positive vector cosine) vector pairs.
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Thus for evaluation of the ecological organization of a SUSTAIN simula-
tion, the vector cosine of T and € is calculated, whereas fishing-goal-related
organization is evaluated by calculating the vector cosine of f and p. This
scoring procedure has a number of advantages. One favorable property is that
positive and negative values have a clear interpretation. Any positive value
indicates consistent organization, whereas any negative value indicates incon-
sistent organization. Furthermore, the normalization of € and p ensures that
simulations that store all fish in a common cluster and simulations that store
each fish in a separate cluster result in a vector cosine of zero. Also, random
clustering of fish will on average result in a zero vector cosine.

EvALUATING CONSENSUS. To evaluate consensus, the T vectors from two
different simulations are selected and percent agreement is calculated. Corre-
sponding entries (i.e., 0 and 0 or 1 and 1) count as an agreement, whereas mis-
matches count as a disagreement. For example, if bluegill and brown trout
shared a cluster for the first simulation but did not for the second simulation,
this would result in a disagreement.

AVERAGING RESULTS. The presentation order of the fish in training was
randomized for each simulation. Different presentation orders can result in
different clusterings. Both an evaluation of conceptual organization and
agreement involve averaging over 5,000 simulations to ensure that the
reported means are stable. Averaging over 5,000 simulations results in esti-
mates of the mean stable enough that error bars are not needed (i.e., the
results will replicate at the level of precision reported).

Results and Discussion

The pattern of results from the SUSTAIN simulations corresponded to that of
the Medin et al. (in press) studies (see Table 13.1 for a summary of their find-
ings). The evaluation of SUSTAIN’s cluster organization for the Menominee
and majority-culture simulations is shown in Figure 13.4. As predicted, the
majority-culture simulations had a cluster organization highly compatible
with fish-related goals that was not highly aligned with ecology. The Menomi-
nee simulations were more moderate and had a strong ecological organization
that was also somewhat aligned with fishing related goals.

The differences between these two groups of simulations were driven by
their different training regimens. That cluster organization is most consistent
with prestige when simulations are trained to predict prestige is not surpris-
ing. However, it is somewhat unexpected that correlational structure of the
stimuli and feedback leads to a cluster organization consistent with multiple
goals in simulations trained to predict ecology but not in simulations trained
to predict prestige. As Medin et al. (in press) found with the Menominee,
Menominee simulations satisfy multiple goals.

Two SUSTAIN simulations for the same population can differ in their clus-
tering solutions because of differences in the order in which the items are pre-
sented. Analysis of “individual” differences data for SUSTAIN simulations
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Figure 13.4. Mean measures for ecological and fishing-related organization are
shown for the three sets of simulations.

showed distinct patterns of variations for the two groups. In majority-culture
simulations, simulations high on one measure tended to be high on the other (»
= +.43), whereas the correlation was weaker and negative in Menominee simu-
lations (r = —.23). Medin et al. (in press) was kind enough to examine the human
data to see whether this pattern held for human experts. Consistent with the
SUSTAIN simulations, the number of fishing-related and ecological sorting jus-
tifications provided by majority-culture fishermen correlated positive (r = +.56),
whereas the correlation was negative and weak (r = —.08) for the Menominee.

Both the Menominee and majority-culture simulations involved super-
vised learning. This supervision or goal-directedness played a strong role in
shaping conceptual organization. One interesting comparison with these sim-
ulations is the unsupervised simulations in which clustering was guided by
similarity. In these simulations, the structure of the environment (i.e., the dis-
tribution of fish features) was the primary factor in guiding cluster formation.
As can be seen in Figure 13.4, the unsupervised simulations resulted in
weakly consistent organizations for both measures.

Table 13.2 provides additional information about how many clusters were
recruited in each simulation to represent the 44 fish. Although this was not pre-
dicted, majority-culture simulations resulted in more clusters than Menominee
simulations (21.3 vs. 17.4). This difference mirrors the sorting results of Medin
et al. (in press). Majority-culture fishermen created 9.5 piles in which to sort
the 44 fish on average, compared with 8.5 piles for the Menominee fishermen.



w

ed

on are

ulture
ther (r
simu-
uman
th the
ag jus-
+.56),
nee.

super-
~ole in
e sim-
led by
1e dis-
1ation.
ted in

3 were
ot pre-
minee
Medin
0 sort

nen.

MODELING LEARNING UNDER THE INFLUENCE OF CULTURE 241

Table 13.2. The Mean and Modal Number of Clusters Recruited for Each Set
of Simulations

Condition Mean Mode
Majority culture 21.3 22
Menominee 17.4 17
Unsupervised 20.1 17

One additional prediction was that consensus should be less for the
Menominee than for the majority-culture simulations. This prediction held.
Agreement was 92% and 90% for the Menominee and majority-culture simula-
tions, respectively. The agreement is very high in both cases because of the
sparseness of the F matrix (i.e., most fish do not cluster with one another). To
put these numbers in perspective, we calculated the agreement between the
Menominee and majority-culture simulations. The agreement level was 90%.
One factor that led to higher agreement for the majority-culture simulations
was that these simulations resulted in more clusters being recruited on aver-
age (see Table 13.2). If each fish was assigned to its own cluster, agreement
would be 100%. Another explanation is that training on prestige more highly
constrains cluster organization than does training on ecology. Support for this
view is the extreme values for both measures for the majority-culture simula-
tions and the moderate values for the Menominee simulations.

Future Directions

Although the present work does make an important bridge between work
inside and outside the laboratory, more can be done to narrow the gap. In this
section, we consider possible ways to make models more effective tools for
understanding and exploring the role that culture plays in influencing concep-
tual organization. This section is organized by the basic modeling challenges
previously discussed. The greatest focus is on the first challenge, knowledge
representation. In terms of the three levels illustrated in Figure 13.1, knowl-
edge representation involves the bottom level. Readers not interested in our
proposed solution for this level may skip this lengthy section.

Knowledge Representation

Representing experts’ knowledge of fish for the simulations by scaling the tax-
onomic distance matrix was expedient and fairly effective. However, expert
knowledge in general is more nuanced. In this section, we consider methods
for improving the quality of expert knowledge representations without resort-
ing to hand-coded representations. Because most current learning models are
bound to process spatial representations, we will confine the discussion to spa-
tial representations. Of course, a complete account of representation would
also need to take into account symbolic relations (Gentner, 1983).
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Ideally, stimulus representations would be derived from measures taken
from the experts, as opposed to surrogate measures such as taxonomic dis-
tance. Also, measures should be open ended. One very open-ended measure is
to have the expert speak freely about the subject matter of interest. For exam-
ple, an expert could verbalize everything he or she knows about brown trout.
In this section, we will discuss a method that takes such dialogues and auto-
matically translates them into dimensional representations over which learn-
ing models can operate. Some initial results will be discussed.

The method, Corpus Scaling Analysis (CSA), works by taking a distance
matrix generated by transforming dialogues collected from human experts
(replacing the taxonomic distance matrix used in the previous simulations)
and submitting this distance matrix to multidimensional scaling (MDS) (see
Burgess & Conley, 1998, for a similar approach). A corpus approach is used to
create spatial representations of the experts’ dialogues. In terms of the sche-
matic shown in Figure 13.1, CSA translates from the knowledge box in the left
panel to the stimulus representation box shown in the right panel.

Corpus approaches construct term representations by exploiting informa-
tion contained in word co-occurrence patterns (Burgess & Lund, 1997; Land-
auer & Dumais, 1997). According to corpus approaches, the meaning of a term
is determined by the contexts in which the term appears. For example, the
concepts denoted by the terms circle and square are somewhat similar to each
other because circle and square appear in similar contexts, such as “The child
drew a red circle” and “The child drew a red square.” Of course, circle and
square do not have the same exact meaning because they can appear in differ-
ent contexts, such as “You are such a square” or “Circle the runway, and then
land.” It is unclear whether this contextual information is driving the acquisi-
tion of word meaning in humans or is simply an observable correlate of the
underlying semantics. However, work in semantic priming suggests that fea-
ture correlation patterns (e.g., has wings, can fly, has feathers) play a role in
semantic organization (McRae, de Sa, & Seidenberg, 1997). Nevertheless,
whether these effects are being driven by extensional or intentional forces is
not entirely clear. What is clear is that word usage patterns are a rich source
of information.

Here, Landauer and Dumais’s (1997) Latent Semantic Analysis (LSA)
method is adopted because of its popularity, broad application, and use of con-
text in determining word meaning. The similarity of two terms in LSA is cal-
culated by taking the vector cosine of the vectors representing the terms. For
all the analyses presented here, the LSA group’s default corpus was used. The
Touchstone Applied Science Associates, Inc. corpus consists of readings in aca-
demic subjects for students from third grade through the first year of college.
The corpus consists of 37,651 concatenated texts containing 92,409 unique
terms. The key parameter in LSA is the number of factors included in the sin-
gular valve decomposition reconstruction. The LSA group’s recommended
solution involving 300 factors was adopted. Thus all the defaults for LSA were
used, and no attempt was made to optimize performance for the particular
analyses considered here.

Of course, actual dialogues from experts contain numerous words. One
simple method for representing dialogues or documents is simply to sum the
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vectors for the document’s constituent words. This simple linear operation was
used to construct dialogue representations in the analyses presented here. With
these representations of the dialogues, the similarity of two dialogues is their
vector cosine. These vector cosines are then arranged-in a similarity matrix and
are subjected to MDS for the final solution. For example, in the Medin et al. (in
press) study discussed in a previous section, the similarity matrix would con-
tain 44 x 44 entries because 44 fish were included in the study.

Most learning models operate over a fixed input space or dimensionality.
Therefore if a new item is to be included as a transfer item (e.g., a new fish
species is introduced to a fish expert), then a method is needed to map it into
the space CSA yields. To accomplish this goal, the pairwise similarities to the
original set of documents—dialogues are calculated and these similarities are
transformed to distances. The position of the novel document in the final space
is determined by minimizing a stress measure. The following function is
minimized in order to determine the position of the novel document in the
final space:

n

Y (-4, (2)

=1

where n is the number of original documents, x; is the euclidean distance in final
space between the new document’s position and original document i, d;, is the
dissimilarity (i.e., transformed similarity) between the new document and origi-
nal document i, and f is a transformation function. In the case of metrical MDS,
fis simply a linear transformation used for scaling purposes. Once a novel docu-
ment is mapped into the final space, the learning model can make predictions
about the document and train on the document if corrective feedback is avail-
able. In terms of the SUSTAIN simulations discussed previously, the final space
corresponds to the Stimulus Representation box shown in Figure 13.1.

DEMONSTRATIONS OF CSA. Before CSA can be applied to expert popula-
tions, its properties and performance must be better understood. This section
takes an initial step toward evaluating CSA. Evaluating whether CSA has
correctly identified the appropriate set of dimensions assumes the existence of
a correct answer that can be known. In light of this verification issue, CSA
was applied to a stimulus set with known and agreed-upon dimensions. Suc-
cess on such a task is a prerequisite for exploring more abstract domains, such
as experts’ representation of biological kinds. The stimulus set considered con-
sists of eight items that are described by three dimensions: color (blue or red),
shape (square or triangle), and size (small or large). This stimulus set is fre-
quently used in category-learning research (Medin & Schaffer, 1978; Nosofsky
et al., 1994; Yamauchi, Love, & Markman, 2002).

The key question is whether CSA can transition from a term space con-
sisting of 92,409 dimensions to a final space consisting of the appropriate
three dimensions. To answer this question, CSA was applied to short descrip-
tions of the eight stimuli (e.g., “small, red, triangle”). Each document consisted
of three words describing the stimulus’s features.
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The results of applying CSA to these eight documents are shown in Table
13.3 and illustrated in Figure 13.5. Three clear dimensions of color, shape, and
size emerge. The eigenvalues for these three dimensions are 0.292, 0.080, and
0.065. The eigenvalue for the fourth dimension was less than 0.001, indicating
a three-dimensional solution. Notice that the values of each dimension are
clearly represented. For example, negative numbers on the first dimension

Table 13.8. CSA Recovers the Three Dimensions of Color, Shape, and Size

Text Dim. 1 Dim. 2 Dim. 3
Blue, square, small -1.91 -1.21 --0.63
Blue, square, large -1.81 -0.75 1.01
Blue, triangle, small -1.97 0.93 -1.23
Blue, triangle, large -1.86 1.36 0.82
Red, square, small 1.52 -1.15 -0.51
Red, square, large 1.49 -0.78 0.89
Red, triangle, small 2.30 0.58 -1.13
Red, triangle, large 2.25 1.01 0.77
Note. All coordinates are multiplied by 10.

|||| Size

Color

Shape

Figure 13.5. The eight coordinates from Table 13.3 are shown as circles connected
by line segments. The two largest circles are nearest to the viewer in three-dimensional
space. The positions of the eight points approximate a rectangular box. The hollow,
small circle is the result of mapping “red, square, medium” into the space.
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indicate a blue stimulus, whereas positive values indicate a red stimulus. The
values along dimensions clearly cluster. For example, the blue stimuli are all
closer to one another on the first dimension than they are to any red stimulus.

One question is whether CSA can successfully map new documents into
its space. To demonstrate this ability, the novel document “red, square,
medium” was mapped into the space shown in Table 13.3 according to Equa-
tion 1. One would expect the result to be close to “red, square, small” at posi-
tion (1.52, -1.15, —0.51) and “red, square, large” at position (1.49, -0.78,
0.89), splitting the difference on the third dimension, which represents size.
Indeed, the position (see Figure 13.5) of “red, square, medium” maps to (1.62,
—0.84,0.02).

One interesting question is whether the the proper three-dimensional
space could be recovered by including only LSA’s three most salient dimen-
sions (300 dimensions were used in the previous demonstration). When CSA is
run with LSA selecting out three dimensions, the scaling result does not pro-
duce the three correct dimensions. The first dimension loosely corresponds to
size {although the values are not clearly separated), and the other two dimen-
sions are uninterpretable. LSA cannot “know” ahead of time which three
dimensions are relevant to the current problem.

Although the previous results support CSA, the demonstrations did not
involve descriptions generated by human subjects, which are likely to be more
irregular than the experimenter-generated documents. Twenty-five human
subjects were shown the stimuli (as geometric figures, not text) sequentially on
a computer screen and provided text descriptions on a worksheet. These work-
sheets were transcribed verbatim. All descriptions for a given stimulus were
concatenated into a document, and the resulting eight documents were fed to
CSA. The recovered space mirrors the previous result and is shown in Table
13.4. Only the first three eigenvalues were nonzero (0.027, 0.019, and 0.016).

The emergence of three clear dimensions corresponding to color, shape,
and size is impressive given the nature of the data. The subjects’ task was
unconstrained, and many of their descriptions amounted to noise. For
instance, some descriptions referred to the previously displayed stimulus (e.g.,
“The same color as the previous shape”), which is noise in the analysis given
that the stimulus presentation order was randomized for each subject. The
size descriptions tended to show a lot of variation (e.g., “the size of four sugar
cubes,” “1/2 cm,” “one half cms,” “1 inch,” “1.2 inches,” along with spelling
errors). Somewhere in this morass, CSA found the signal.

Much more work must be done to determine whether CSA is a feasible
method for transforming experts’ verbal descriptions into knowledge represen-
tations. The initial results presented here are encouraging. CSA was able to
recover the three relevant physical dimensions with little human intervention.

Task Formalization

A second challenge in modeling expert performance is task formalization. Our
task formalization of the Medin et al. (in press) studies was fairly simplistic.
SUSTAIN was trained to predict habitat for the Menominee simulations and
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Table 13.4. CSA Recovers the Three Dimensions of Color, Shape, and Size

Text Dim. 1 Dim. 2 Dim. 3
Blue, square, small -7.10 -5.65 -2.35
Blue, square, large —4.13 -3.85 6.77
Blue, triangle, small -7.18 4.99 -3.84
Blue, triangle, large -3.60 5.72 494
Red, square, small 3.22 —4.49 -5.41
Red, square, large 7.33 -5.26 3.02
Red, triangle, small 3.76 3.11 -5.31
Red, triangle, large 7.69 5.43 2.18

Note. All coordinates are multiplied by 100.

prestige for the majority-culture simulations. This difference in training was
intended to capture the different orientations of the two cultures and to
explain how differences in conceptual organization arise. Ideally, future work
would bear a closer resemblance to the learning situations that humans actu-
ally face. More detailed information about the type and frequency of activities
from members of the two cultures across development would also allow for
predictions to be made about how one becomes an expert.

Simulation Evaluation

For the Medin et al. (in press) studies, the simulation evaluation was effective
in bridging the simulations and the results on conceptual organization. Of
course, new sources of data will require new methods for evaluating models.
For example, expert data from a picture-naming task (e.g., Tanaka & Taylor,
1991) would require new model evaluation methods to link human and model
performance.

Conclusions

In this chapter, a model developed from consideration of data from the labora-
tory was applied to understanding cross-cultural data. SUSTAIN offers a
mechanistic explanation of how the goals emphasized by a culture can influ-
ence conceptual organization. SUSTAIN is simultaneously sensitive to the
structure of the environment and the goals of the learner. These two drives
allowed SUSTAIN to capture the commonalities and differences between the
Menominee and majority-culture fishermen. Although both groups have simi-
lar experiences and interactions with biological kinds, their respective cul-
tures appear to influence how they organize this information.

The primary challenges faced in applying SUSTAIN to the Medin et al.
(in press) data were specifying knowledge representation, task formalization,
and simulation evaluation. The choices we made proved successful and did not
involve free parameters. Nevertheless, more progress can be made on all three



Dim. 3

~2.35
6.77
-3.84
4.94
-5.41
3.02
-5.31
2.18

1g was
ind to
> work
3 actu-
ivities
ow for

fective
on. Of
1dels.
laylor,
model

abora-
Yers a
influ-
to the
drives
en the
> simi-
e cul-

et al.
:ation,
lid not
[ three

MODELING LEARNING UNDER THE INFLUENCE OF CULTURE 247

fronts. Although the relationship between SUSTAIN simulations and catego-
rization within the two cultures is specified, the mapping is somewhat coarse.
A number of facets of real-world learning are not present in the current simu-
lations. As more constraining data become available, SUSTAIN can be further
specified.

We would be remiss if we did not acknowledge the role Doug Medin
played in this work. He is no stranger to developing psychological models (e.g.,
Medin & Schaffer, 1978) and has been involved in the development of SUS-
TAIN. It was Medin’s suggestion to apply SUSTAIN to the data considered
here. As always, his suggestions were very helpful in framing the project.

Finally, we would like to suggest that studies in the field and in the labo-
ratory are not as unrelated as some might believe. The same principles allow
SUSTAIN to aceount for data (with the same parameter settings) from both
communities. Theories generated in the laboratory may be more relevant to
those working outside the laboratory than is generally assumed. Similarly,
work outside the laboratory offers exciting challenges and perspectives on cat-
egorization for researchers working in the laboratory.
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