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Franz	remarked	in	his	1912	essay	“New	Phrenology”	
that	“the	individual	parts	of	the	brain	do	not	work	inde-
pendently;	they	work	interdependently,	and	it	is	because	
of	the	possible	functional	and	anatomical	connections	that	
certain	types	or	kinds	of	mental	states	are	more	in	evidence	
than	others”(p.	327).	To	Franz,	 the	allure	of	 localizing	
mental	activities	in	the	brain	begot	overly	simplistic	and	
crude	theories	of	mental	processes	and	brain	function.

Localizing	mental	function	need	not	be	problematic.	
The	issue	is	what	to	localize.	The	value	of	a	theory	that	
localizes	mental	function	lies	in	both	the	characterization	
of	the	mental	process	and	the	bridge	theory	that	links	this	
characterization	to	the	brain.	Starting	with	an	ill-specified	
or	folk	psychological	theory	of	mental	function	ultimately	
limits	the	value	of	the	overall	enterprise	and	invites	com-
parison	with	Franz’s	(1912)	new	phrenology.

In	this	article,	we	will	argue	that	well-specified	process	
models	of	cognitive	functions	are	the	appropriate	targets	
for	localization.	Successful	cognitive	models,	which	are	
quantitatively	validated	on	a	broad	range	of	data	sets,	offer	
a	number	of	advantages	over	folk	psychological,	ad	hoc,	or	
traditional	psychological	theories.	In	addition	to	being	pre-
dictive,	behavioral	models	have	mechanisms	and	dynamics	
that	can	be	related	to	brain	measures.	Although	they	are	not	
naive	accounts	of	mental	function,	cognitive	models	are	typ-
ically	idealized	and	relatively	simple.	This	clarity	provides	a	
good	starting	point	for	the	localizing	of	function.	Given	that	
debates	persist	over	the	basic	functions	of	areas	as	well	stud-
ied	as	the	hippocampus	(Eichenbaum,	1999;	Stark,	Bayley,	
&	Squire,	2002),	starting	simple	makes	sense.

Here,	we	will	focus	on	relating	a	successful	process	
model	of	human	category	learning	to	a	learning	circuit	in-
volving	the	hippocampus,	perirhinal,	and	prefrontal	(PFC)	
cortices.	Category	learning	offers	a	good	test	domain	for	
our	approach,	since	category	learning	by	example	is	a	
ubiquitous,	flexible,	and	critical	human	behavior	that	is	
well	studied	and	modeled	within	cognitive	psychology.	
Furthermore,	in	recent	years,	there	has	been	an	increasing	
interest	in	the	cognitive	neuroscience	of	category	learning	
(Ashby	&	Ell,	2001;	Kéri,	2003).

The	model	we	will	consider,	supervised	and	unsuper-
vised	stratified	adaptive	incremental	network	(SUSTAIN;	
Love,	Medin,	&	Gureckis,	2004),	will	be	applied	to	human	
learning	data	from	amnesic	patients,	infants,	young	adults,	
and	older	adults.	Work	in	neuropsychology,	electrophysi-
ology,	neuroanatomy,	brain	imaging,	and	animal	lesion	
studies	will	be	marshaled	to	support	the	mapping	between	
SUSTAIN	and	structures	in	the	brain.	SUSTAIN	predicts	
how	degraded	function	in	a	learning	circuit	involving	the	
hippocampus,	PFC,	and	perirhinal	cortex	affects	learn-
ing	performance	for	various	groups.	SUSTAIN	relates	the	
degree	of	preserved	function	to	how	readily	members	of	a	
group	can	individuate	events,	as	opposed	to	collapsing	ex-
periences	together	into	a	common	gestalt.	To	foreshadow,	
the	proposed	continuum	of	function	is	shown	in	Figure	1.	
After	 introducing	SUSTAIN,	we	will	 relate	aspects	of	
SUSTAIN	to	a	learning	circuit	involving	the	PFC,	hip-
pocampus,	and	perirhinal	cortex,	give	evidence	for	our	
characterization	of	this	learning	circuit,	and	present	sup-
portive	simulations.	This	exercise	in	relating	SUSTAIN	
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to	particular	brain	regions	suggests	a	recasting	of	several	
dichotomies	popular	in	the	field,	such	as	the	distinctions	
between	categorization	and	recognition,	recollective	and	
familiarity-driven	responding,	and	episodic	and	semantic	
memory.

A Brief Overview of SUSTAIN
The	 medium	 for	 representing	 category	 knowledge	

has	been	proposed	to	be	rule	based	(Nosofsky,	Palmeri,	
&	McKinley,	1994),	exemplar	based	(Kruschke,	1992;	
Medin	&	Schaffer,	1978;	Nosofsky,	1986),	and	prototype	
based	(Rosch	&	Mervis,	1975;	Smith,	2002).	SUSTAIN	
proposes	that	clusters,	which	display	characteristics	of	
all	three	of	the	aforementioned	approaches,	underlie	our	
category	representations	(see	Love,	2005).	A	cluster	is	a	
bundle	of	features	that	captures	conjunctive	relationships	
across	features	(e.g.,	wings,	flies,	and	has feathers	tend	to	
co-occur).

In	SUSTAIN,	categories	are	represented	by	one	or	more	
clusters.	For	example,	the	category	of	birds	is	likely	rep-
resented	by	multiple	clusters	(e.g.,	song	birds,	birds	of	
prey,	penguins,	ostriches,	etc.).	A	cluster	can	also	serve	to	
represent	multiple	categories.	For	example,	the	same	clus-
ter	can	be	used	to	represent	information	about	penguins,	
birds,	and	animals.	Clusters	are	linked	to	categories	by	
association	weights	that	are	adjusted	by	learning	rules.

As	is	shown	in	Figure	2,	SUSTAIN’s	clusters	mediate	
the	relationship	between	inputs	(e.g.,	stimulus	presenta-
tion)	and	output	(e.g.,	category	assignment).	SUSTAIN	
begins	with	one	cluster	centered	on	the	first	training	item.	
Additional	clusters	are	recruited	in	response	to	surpris-
ing	events.	In	unsupervised	learning,	a	surprising	event	
is	exposure	to	a	sufficiently	unfamiliar	or	novel	stimulus.	
In	supervised	learning,	a	surprising	event	is	a	classifica-
tion	error	(e.g.,	incorrectly	predicting	that	a	bat	is	a	bird).	
SUSTAIN’s	 recruitment	 scheme	 implies	 that	 surprise	
drives	differentiation	of	critical	stimulus	patterns.	When	

a	surprising	event	does	not	occur,	the	current	stimulus	is	
assigned	to	the	dominant	cluster	(i.e.,	the	cluster	most	ac-
tivated	or	similar	to	the	current	item),	and	this	dominant	
cluster	moves	toward	the	current	stimulus,	so	that	the	clus-
ter	converges	to	the	centroid	or	prototype	of	its	members.	
Thus,	in	the	absence	of	surprise,	events	are	collapsed	to-
gether	in	memory.

As	a	result,	SUSTAIN	is	a	prototype	model	when	each	
category	is	represented	by	one	cluster	and	is	an	exemplar	
model	when	each	item	is	captured	by	its	own	cluster.	Of	
course,	most	cases	fall	in	between	these	two	extremes.	In	
general,	the	simpler	or	more	regular	the	category	structure,	
the	smaller	the	number	of	clusters	recruited	is	(cf.	Feld-
man,	2000).	Rule-based	influences	arise	from	SUSTAIN’s	
attentional	mechanism,	which	biases	it	toward	solutions	
that	involve	a	limited	number	of	stimulus	attributes.

Increasing Ability to Create Clusters
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Figure 1. Various groups are ordered by prefrontal cortex–
 medial temporal lobe (PFC–MTL) function. At one extreme, am-
nesic patients with hippocampal lesions tend to collapse events into 
a single gestalt and, therefore, are sensitive primarily to feature 
or item frequency. At the other extreme, young adults draw finer 
distinctions and are more sensitive to study context and feature 
patterns or conjunctions present in their environment. SUSTAIN 
captures differences along this continuum by varying a parameter 
related to how readily additional clusters (i.e., bundles of features) 
are recruited during category learning. AD, Alzheimer’s disease.

Color
DarkLight

Size
Large Small

Stripe
Present Not Present

Category
A B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

–10 –8 –6 –4 –2 0 2 4 6 8 10

Color Size
Large Small

Stripe
Present Not Present

Category
A BDarkLight

?
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

–10 –8 –6 –4 –2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

–10 –8 –6 –4 –2 0 2 4 6 8 10

Figure 2. The basic components of the SUSTAIN model. First, 
the stimulus is encoded along its dimensions (in this case, there 
are four binary-valued attributes: three perceptual dimensions 
and the category label). The representational space is contorted 
(shrunk or stretched along each dimension) by the attentional 
mechanism to accentuate critical attributes. The clusters (in this 
case, there are three) compete to respond to the stimulus. The clus-
ter closest to the stimulus in representational space wins (through 
cluster competition; note the inhibitory connections among the 
three clusters). The winning cluster predicts the unknown stimu-
lus dimension value (in this case, the category label) by sending a 
signal to the output units forming the queried dimension.
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Although	intuitive	and	simple,	SUSTAIN	has	accounted	
for	an	array	of	challenging	data	sets	spanning	a	variety	
of	category-learning	paradigms,	including	classification	
learning	(Love	&	Medin,	1998b),	learning	at	different	levels	
of	abstraction	(Love	&	Medin,	1998a),	inference	learning	
(Love,	Markman,	&	Yamauchi,	2000),	development	trends	
in	learning	(Gureckis	&	Love,	2004),	unsupervised	learn-
ing	(Gureckis	&	Love,	2002,	2003),	the	influence	of	culture	
on	conceptual	organization	(Love	&	Gureckis,	2005),	and	
schematic	influences	on	category	learning	and	recognition	
memory	(Sakamoto	&	Love,	2004).	SUSTAIN’s	formal	de-
scription	is	presented	in	the	Appendix.

SUSTAIN’s	clustering	approach	addresses	a	fundamen-
tal	challenge	facing	all	learning	models:	defining	what	
constitutes	an	event	or	episode.	For	example,	what	con-
stitutes	an	exemplar	in	an	exemplar-based	approach	is	
typically	left	undefined	(see	Logan,	1988).	To	illustrate	
the	problem,	consider	a	learner	focusing	on	a	chair	while	
walking	across	a	room.	At	every	moment,	he	or	she	is	
exposed	to	a	slightly	different	image.	The	viewpoint	is	
constantly	changing	and,	with	it,	changes	a	number	of	the	
chair’s	properties	(e.g.,	the	visible	features,	albedo,	etc.).	
After	the	learner	has	walked	across	the	room,	is	one	ex-
emplar	stored	or	are	a	million?	What	constitutes	an	event	
or	experience	when	one	moves	outside	laboratory-defined	
learning	trials?

SUSTAIN’s	solution	is	to	collapse	all	information	into	
the	dominant	cluster	and	to	recruit	a	new	cluster	only	in	
response	to	a	surprising	event.	In	the	example	above	in-
volving	the	chair,	all	the	information	above	would	be	inte-
grated	into	a	single	cluster	unless	something	unexpected	
was	encountered.	SUSTAIN	does	not	merely	replace	one	
problem	(defining	what	an	exemplar	is)	with	another	(de-
fining	what	a	cluster	is)	either.	SUSTAIN	specifies	when	
and	how	clusters	are	formed	and	updated.	SUSTAIN’s	
clustering	method	may	prove	useful	 in	understanding	
how	humans	individuate	in	general	(see	Barsalou,	Hutten-
locher,	&	Lamberts,	1998).	In	terms	of	comparing	the	per-
formances	of	various	groups	(e.g.,	infants,	young	adults,	
older	adults,	and	amnesic	patients),	SUSTAIN	explains	
how	differences	in	the	ability	to	individuate	events	lead	to	
different	patterns	of	generalization.

Proposed Mapping Between  SUSTAIN 
and the Brain

Central	to	SUSTAIN	is	the	ability	to	form	new	clusters	
in	response	to	surprising	events.	This	type	of	learning	is	
rapid	and	involves	forming	new	codes	or	clusters	to	sup-
port	subsequent	learning.	A	mature	and	intact	learning	
circuit	involving	the	hippocampus,	PFC,	and	perirhinal	
cortex	is	assumed	to	underlie	this	ability.	We	view	the	
hippocampus	as	the	constructor	of	new	codes	or	clusters.	
We	propose	 that	 the	activation	of	previously	recruited	
clusters	is	reflected	by	a	familiarity	signal	generated	by	
structures	in	the	medial	temporal	lobe	(MTL),	such	as	the	
perirhinal	cortex.	The	PFC	is	assumed	to	play	a	role	in	
directing	encoding	and	retrieval.	The	PFC	plays	a	critical	
role	in	orienting	encoding	toward	surprising	events	(Cor-
betta	&	Shulman,	2002),	which	dovetails	with	SUSTAIN’s	
	surprise-driven	cluster	recruitment.	In	terms	of	SUSTAIN,	

the	PFC	can	be	seen	as	determining	when	the	measure	of	
fit	generated	by	the	perirhinal	cortex	is	insufficient.	When	
the	current	stimulus	is	judged	to	be	sufficiently	surprising,	
the	hippocampus	is	directed	to	create	a	new	cluster.

In	support	of	our	proposal,	the	PFC	and	the	perirhi-
nal	cortex	are	interconnected	and	participate	in	a	circuit	
that	may	direct	the	hippocampus’s	encoding	of	surpris-
ing	events	(see	Ranganath	&	Rainer,	2003,	for	a	review).	
Indeed,	lesioning	the	connection	between	the	PFC	and	
the	perirhinal	cortex	eliminates	memory	advantages	for	
surprising	items	(Parker,	Wilding,	&	Akerman,	1998).	The	
PFC	monitors	surprise	by	comparing	the	current	stimu-
lus	with	representations	in	the	perirhinal	cortex	(which	
provides	a	measure	of	familiarity	or	fit)	and,	on	the	basis	
of	this	comparison,	directs	hippocampal	encoding	(see	
Brown	&	Aggleton,	2001;	Ranganath	&	Knight,	2003).	
The	perirhinal	familiarity	signal	is	not	bereft	of	associa-
tive	or	conjunctive	information,	since	it	is	based	on	cluster	
activations,	consistent	with	the	position	that	conjunctive	
codes	are	present	in	regions	neighboring	the	hippocampus	
(e.g.,	Stark	et	al.,	2002).	Further	evidence	for	the	operation	
of	this	circuit	comes	from	interactions	observed	between	
the	PFC	and	the	hippocampus.	Suppression	of	memory	
for	an	item	leads	to	increased	PFC	activation,	decreased	
hippocampal	activation,	and	reduced	item	memory	(M.	C.	
Anderson	et	al.,	2004).	Although	not	as	broadly	construed,	
existing	learning	models	have	hinted	at	the	learning	cir-
cuit	identified	here	(Carpenter	&	Grossberg,	1993;	Li,	
Naveh-Benjamin,	&	Lindenberger,	2005).

In	focusing	on	the	hippocampal	aspect	of	the	learning	
circuit,	existing	accounts	of	hippocampal	function	fit	well	
with	our	account.	Recruiting	clusters	allows	SUSTAIN	
to	form	new	codes	that	enable	learning	of	conjunctive	or	
configural	information.	This	process	is	in	the	same	spirit	
as	configural	associative	theory,	which	holds	that	the	hip-
pocampus	binds	two	or	more	separated	representations	
to	create	a	new	unit	that	enables	configural	responding	
(Sutherland,	McDonald,	Hill,	&	Rudy,	1989).	Similarly,	
flexible	 relation	 theory	holds	 that	 the	hippocampus	 is	
specialized	for	encoding	relations	among	elements	(N.	J.	
Cohen	&	Eichenbaum,	1993).	One	unique	characteristic	
of	our	account	is	that	new	codes	begin	as	context-sensitive	
clusters	that	encode	all	the	attended	aspects	of	the	surpris-
ing	event	but,	over	time,	can	come	to	resemble	abstract	
codes	as	clusters	are	activated	by	similar	events.

As	 in	 Schmajuk	 and	 DiCarlo’s	 (1992)	 model,	 dis-
abling	the	hippocampus	(i.e.,	the	ability	to	form	multiple	
clusters	in	SUSTAIN)	prevents	rapid	learning	of	novel	
stimulus	configurations.	Interpreting	the	weight	update	
from	SUSTAIN’s	clusters	to	outputs	as	cortical	learning,	
SUSTAIN,	like	Gluck	and	Myers’s	(1993)	model,	assumes	
that	the	hippocampus	builds	the	internal	codes	that	sup-
port	cortical	learning.	SUSTAIN’s	rapid	recruitment	of	
clusters	in	response	to	surprising	events	parallels	Norman	
and	O’Reilly’s	(2003)	hippocampal	network,	which	rap-
idly	acquires	distinct	episodic	traces	that	bind	individual	
stimulus	elements	together	in	memory.

To	summarize,	we	propose	that	the	hippocampus	con-
structs	codes,	the	perirhinal	cortex	generates	a	familiarity	
or	fit	signal,	and	the	PFC	monitors	and	directs	encoding	
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and	retrieval	processes.	In	terms	of	SUSTAIN,	cluster	ac-
tivations	relate	to	the	fit	signal	generated	by	the	perirhinal	
cortex,	with	cluster	evaluation	processes	carried	out	by	
the	PFC.	When	an	event	is	deemed	surprising	by	the	PFC,	
the	hippocampus	attempts	to	construct	a	new	cluster.	The	
role	of	these	areas,	as	well	as	their	relation	to	aspects	of	
SUSTAIN,	is	summarized	in	Figure	3.

Note	that	disruption	anywhere	along	the	learning	circuit	
can	result	in	the	failure	to	encode	a	surprising	event.	For	in-
stance,	without	a	functioning	hippocampus,	an	event	could	
be	very	surprising	but	not	result	in	a	new	cluster’s	being	
formed.	Conversely,	with	a	functioning	hippocampus	and	
a	damaged	PFC,	a	surprising	event	that	should	orient	at-
tention	for	encoding	could	fail	to	do	so.	In	modeling	terms,	
the	degree	of	PFC	and	hippocampal	function	are	captured	
by	separate	parameters	(see	the	Appendix	for	details).

Here,	we	will	focus	on	populations	and	tasks	in	which	
hippocampal	function	should	be	the	limiting	factor.	The	
fact	that	behavioral	data	alone	cannot	determine	where	the	
cognitive	bottleneck	lies	highlights	the	worth	of	consider-
ing	a	broader	set	of	measures.

The	parameter	specifying	hippocampal	function	var-
ies	along	a	continuum,	with	amnesic	patients	lacking	a	
hippocampus	at	one	extreme	and	young	normals	at	the	
other	extreme.	The	parameter	sets	SUSTAIN’s	ability	to	
form	clusters	that	are	similar	to	existing	clusters.	When	
the	parameter	 is	set	 low	(poor	hippocampal	function),	
SUSTAIN	can	successfully	form	a	new	cluster	only	when	
the	current	stimulus	is	drastically	different	from	any	exist-
ing	cluster.	With	low	functioning,	SUSTAIN	has	trouble	
establishing	new	clusters	that	are	somewhat	similar	to	ex-
isting	clusters	and	experiences	(i.e.,	events	or	episodes	
tend	to	be	undifferentiated).	In	all	the	simulations	reported	
here,	this	parameter	is	the	only	aspect	of	SUSTAIN	that	
varies	across	populations.

The	proposed	mapping	between	SUSTAIN	and	brain	
regions	is	coarse	(e.g.,	no	distinction	is	made	between	
CA1	and	CA3	in	the	hippocampus)	and	incomplete,	since	
long-term	consolidation	processes	are	not	considered	and	
other	brain	areas	implicated	in	category	learning	are	left	
unmapped.	A	complete	theory	of	how	the	brain	supports	
category	learning	will	need	to	detail	the	contributions	of	
numerous	learning	systems.	For	example,	a	frontal	cir-
cuit	involving	the	head	of	the	caudate	nucleus,	anterior	
cingulate,	and	dorsolateral	PFC	likely	supports	verbal	or	
rule-based	learning	(Ashby,	Alfonso-Reese,	Turken,	&	
Waldron,	1998;	Posner	&	Dehaene,	1994).	Although	it	
will	not	be	explored	fully	here,	SUSTAIN’s	attentional	
system,	which	selects	a	small	subset	of	relevant	stimu-
lus	properties,	naturally	maps	onto	this	verbal-learning	
system	(Love,	2003).	Other	learning	systems,	such	as	a	
procedural-learning	system	(Ashby	et	al.,	1998)	and	an	
implicit-learning	system	(Reber,	Stark,	&	Squire,	1998),	
also	will	not	be	addressed	here.	We	will	focus	on	tasks	
and	groups	that	stress	the	role	of	the	PFC–MTL	learning	
circuit	in	category	learning.

By	focusing	on	the	hippocampus’s	role	in	constructing	
conjunctive	codes,	we	are	not	ruling	out	that	other	brain	
areas	could	carry	out	similar	functions	(perhaps	with	less	
efficiency	and	speed).	However,	we	are	stating	that	the	
hippocampus	plays	an	 important	 role	 in	fulfilling	 this	
function.	Despite	its	coarseness	and	incompleteness,	our	
simple	account	relating	SUSTAIN	to	the	brain	will	ad-
dress	a	diverse	set	of	findings	and	suggest	a	number	of	
predictions,	which	will	be	discussed	in	the	remainder	of	
the	article.

The Nature of Conjunctive Information
Recruiting	multiple	clusters	is	necessary	for	the	encod-

ing	of	conjunctive	information.	Clusters	can	be	seen	as	con-

Prefrontal Cortex

Directs encoding and retrieval

Determines when to recruit a cluster

Perirhinal Cortex

Signals familiarity

Signals cluster activations

Hippocampus

Builds conjunctive codes

Recruits new clusters

Figure 3. The hippocampus, perirhinal, and prefrontal cortex form a circuit whose operation par-
allels SUSTAIN’s. Each area’s functional role in the prefrontal cortex–medial temporal lobe circuit 
is given, along with its interpretation within SUSTAIN.
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junctive	codes	that	bundle	together	featural	information.	
Clusters	capture	critical	patterns	of	feature	co-occurrence.	
For	example,	relationships	such	as	wooden	spoons tend 
to be large, whereas steel spoons tend to be small,	can	be	
captured	by	multiple	clusters	that	bundle	together	related	
features	that	define	informative	subtypes	or	conjunctions.

How	conjunctive	a	task	is	and,	therefore,	how	much	
it	relies	on	the	PFC–MTL	learning	circuit	is	determined	
by	how	many	clusters	are	required	for	successful	perfor-
mance.	Example	tasks	that	will	tend	to	require	multiple	
clusters	include	memory	for	item	order	(a	conjunction	
of	item	and	position),	recollection	and	episodic	memory	
(item	or	event	conjoined	with	context),	list	discrimination	
(a	conjunction	of	item	and	study	list),	and	memory	for	
item	pairs	(a	conjunction	of	items).	Although	SUSTAIN	
has	not	yet	been	applied	to	all	of	these	tasks,	it	would	re-
quire	multiple	clusters	to	master	such	tasks.

In	 contrast,	 tasks	 that	 are	 more	 familiarity	 driven,	
such	as	know,	as	opposed	to	remember,	responses	in	the	
	remember–know	paradigm	(see	Tulving,	1985)	and	single-
item	recognition	for	featurally	distinct	stimuli,	should	rely	
more	on	existing	representations	in	the	perirhinal	cortex.	
SUSTAIN	can	successfully	perform	these	tasks	by	utiliz-
ing	existing	clusters	or	by	relying	on	one	recruited	cluster,	
which	is	sufficient	to	encode	feature	frequencies,	but	not	
feature	co-occurrence	patterns.1

Although	we	do	claim	that	the	hippocampus	is	special-
ized	for	encoding	conjunctive	information	in	the	form	of	
clusters,	we	are	not	claiming	that	tasks	that	rely	heavily	on	
conjunctive	code	formation	are	qualitatively	distinct	from	
those	that	tend	to	be	less	demanding	of	code	construc-
tion.	For	example,	although	recollective	responses	tend	to	
require	the	formation	of	codes	to	encode	the	conjunction	
of	context	and	item,	certain	familiarity-based	responses	
may	also	rely	on	conjunctive	codes.	For	example,	detect-
ing	patterns	or	correlations	of	features	in	the	environment	
requires	establishing	conjunctive	codes.	In	the	absence	
of	contextual	information,	pattern-following	items	will	
elicit	know	responses.	Analogously,	certain	single-item	
recognition	tasks	may	require	some	degree	of	conjunctive	
encoding	(e.g.,	item	feature	conjunctions)	to	successfully	
differentiate	studied	and	nonstudied	 items,	and	amne-
sic	patients	should	perform	worse	than	normals	at	such	
tasks.

Our	stance	is	that	there	are	a	number	of	tasks	and	meth-
ods	that	have	shown	dissociations	between	normals	and	
groups	low	in	hippocampal	function	and	that	the	true	un-
derlying	variable,	which	other	variables	correlate	with,	
is	the	number	of	clusters	required	for	successful	perfor-
mance.	Even	basic	distinctions,	such	as	episodic	versus	
semantic	memory,	are	blurred	by	our	analysis.	Reason-
ably,	 SUSTAIN	 predicts	 that	 semantic	 knowledge	 is	
rooted	in	an	episode	(i.e.,	a	recruited	cluster).	When	a	
recruited	cluster	responds	to	subsequent	events	and	is	up-
dated,	some	of	the	original	episodic	features	of	the	cluster	
will	be	washed	out	in	the	averaging	process	involved	in	
updating	a	cluster	with	new	information.	Thus,	over	time,	
the	distinction	between	episodic	and	semantic	knowledge	
can	become	blurred	(see	McClelland,	McNaughton,	&	
O’Reilly,	1995).	Likewise,	we	do	not	restrict	hippocampal	

learning	to	learning	involving	awareness;	rather,	we	view	
awareness	as	an	emergent	property	of	hippocampal	learn-
ing	(see	Chun	&	Phelps,	1999;	Eichenbaum,	1999).

Corroborating Empirical Data
The	next	two	sections	will	provide	empirical	evidence	

for	our	account	of	the	PFC–MTL	learning	circuit,	focus-
ing	on	the	role	of	the	hippocampus.	The	first	section	will	
review	evidence	that	the	hippocampus	is	involved	in	the	
construction	of	new	codes	that	support	later	learning.	The	
second	section	will	review	evidence	that	these	codes	are	
conjunctive	in	nature.

The hippocampus as code builder.	Electrophysi-
ological	studies	of	monkeys	have	shown	that	new	associa-
tions	for	location/scene	pairings	are	encoded	in	the	hippo-
campus	(Wirth	et	al.,	2003).	In	humans,	novel	items	tend	
to	activate	prefrontal	areas	and	the	MTL,	with	particularly	
robust	activations	in	the	hippocampus	(Kirchhoff,	Wagner,	
Maril,	&	Stern,	2000;	Knight,	1996;	Schacter	&	Buckner,	
1998),	and	these	MTL	activations	are	predictive	of	subse-
quent	memory	(Brewer,	Zhao,	Desmond,	Glover,	&	Gab-
rieli,	1998;	Grunwald,	Lehnertz,	Heinze,	Helmstaedter,	
&	Elger,	1998;	Stern	et	al.,	1996).	Ranganath	and	Rainer	
(2003)	have	provided	an	extensive	review	of	lesion,	event-
related	potential,	and	imaging	studies	that	demonstrate	a	
novelty	response	in	the	PFC	and	areas	of	the	MTL.	The	
involvement	of	prefrontal	areas	in	concert	with	the	MTL	
is	consistent	with	our	hypothesis	that	prefrontal	areas	are	
involved	in	the	assessment	of	surprise	and	direct	encoding	
of	information	in	the	hippocampus.

Time	course	data	from	imaging	studies	also	support	the	
idea	that	the	hippocampus	plays	a	prominent	role	in	code	
construction.	Stronger	hippocampal	activations	are	often	
seen	early	in	learning,	suggesting	that	the	codes	for	sup-
porting	later	learning	were	initially	constructed	by	the	hip-
pocampus	(Poldrack	et	al.,	2001;	Zeineh,	Engel,	Thomp-
son,	&	Bookheimer,	2003).	These	findings	are	consistent	
with	the	view	that	codes	previously	constructed	by	the	
hippocampus	can	support	learning,	throughout	the	brain,	
that	does	not	depend	on	the	hippocampus	(Gluck,	Oliver,	
&	Myers,	1996).	Analogous	results	have	been	found	in	
electrophysiological	studies	in	which	rabbit	eyeblink	con-
ditioning	has	been	examined	(Sears	&	Steinmetz,	1990).	
Consistent	with	these	results,	SUSTAIN	also	tends	to	re-
cruit	clusters	early	in	learning	when	surprising	events	are	
numerous.	Subsequent	learning	utilizes	these	clusters	in	
the	absence	of	additional	cluster	recruitment.

Conjunctive codes and the hippocampus.	Findings	
from	amnesic	patients	with	hippocampal	lesions	bolster	
this	theoretical	outlook.	Amnesic	patients	tend	to	be	worse	
at	recollection	and	recall,	which	requires	encoding	a	con-
junction	of	item	and	context,	 than	at	familiarity-based	
judgments	(Yonelinas,	Kroll,	Dobbins,	Lazzara,	&	Knight,	
1998;	Yonelinas	et	al.,	2002).	Amnesic	patients	equated	
with	controls	for	item	recognition	remain	impaired	in	list	
discrimination	(Downes,	Mayes,	MacDonald,	&	Hunkin,	
2002;	Mayes	et	al.,	2001),	which	requires	encoding	the	
conjunctions	of	item	and	list.	In	comparison,	prefrontal	
patients	are	not	impaired	at	this	test	when	equated	with	
controls	on	item	recognition	(Mangels,	1997).
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Patients	with	hippocampal	damage	make	more	con-
junctive	errors	than	do	control	participants	(Kroll,	Knight,	
Metcalfe,	Wolf,	&	Tulving,	1996).	In	Kroll	et	al.,	amne-
sic	patients	studied	pairings	of	syllables	and	were	able	to	
recognize	studied	syllables,	but	they	could	not	determine	
whether	 two	 syllables	had	 appeared	 together	 at	 study	
and	would	false	alarm	to	novel	combinations	of	studied	
syllables.	Similarly,	amnesic	patients	perform	well	on	
	single-item	recognition	tasks	but	show	deficits	on	tasks	
that	depend	on	encoding	relations	between	items	(Hold-
stock	et	al.,	2000;	Vargha-Khadem	et	al.,	1997),	such	as	
recognizing	the	pairing	of	a	picture	with	a	word	or	a	face	
with	a	voice.	Lesioning	studies	provide	a	similar	view	of	
hippocampal	function.	The	rat	hippocampus	supports	rec-
ognition	of	spatial	arrays	of	objects,	whereas	the	perirhi-
nal	cortex	responds	to	single	objects	(Wan,	Aggleton,	&	
Brown,	1999).	This	pattern	of	findings	with	lesioned	rats	
extends	to	nonspatial	domains	(see	Eichenbaum,	2000,	
for	a	review).

Findings	from	amnesic	patients	and	lesion	studies	are	
corroborated	by	fMRI	studies	of	healthy	normals.	Acti-
vation	of	the	hippocampus	at	study	predicts	recollection,	
but	not	item	recognition,	with	the	opposite	being	true	for	
the	perirhinal	cortex	(Davachi,	Mitchell,	&	Wagner,	2003;	
Ranganath	et	al.,	2004).	During	retrieval,	hippocampal	
activity	increases	when	accompanied	by	remember	re-
sponses,	but	not	when	accompanied	by	know	responses	
(Eldridge,	Knowlton,	Furmanski,	Bookheimer,	&	Engel,	
2000).	Recollective	memory	for	scenes	is	accompanied	by	
hippocampal	activation	at	retrieval,	whereas	familiarity-
based	responding	is	associated	with	perirhinal	activation	
(Daselaar,	Fleck,	&	Cabeza,	2006;	Montaldi,	Spencer,	
Roberts,	&	Mayes,	2006).	Similarly,	during	recognition,	
less	perirhinal	activation	is	observed	for	familiar	pictures,	
but	more	hippocampal	activation	is	observed	for	success-
ful	recognition	of	picture	and	name	pairings	(Gabrieli,	
Brewer,	Desmond,	&	Glover,	1997).

It	is	not	the	case	that	conjunctive	information	is	simply	
more	difficult	to	process.	One	source	of	evidence	argu-
ing	against	this	conclusion	is	the	aforementioned	studies	
in	which	amnesic	patients	were	equated	on	item	recog-
nition	measures	but	still	showed	substantial	deficits	on	
conjunctive	memory	tasks.	Another	source	of	evidence	
comes	from	work	showing	slower	forgetting	curves	for	
conjunctive	 information	 in	healthy	normals	 (Hockley,	
1992;	Naveh-Benjamin,	2000),	which	would	not	be	ex-
pected	if	conjunctive	information	was	simply	more	dif-
ficult	to	encode.

Category Learning and Recognition in Amnesic 
Patients

As	is	shown	in	Figure	1,	amnesic	patients	are	character-
ized	by	their	inability	to	individuate	events	(i.e.,	to	recruit	
clusters	in	response	to	surprising	events).	Knowlton	and	
Squire’s	(1993)	experiments	illustrate	this	point	with	a	
category-learning	task.	Knowlton	and	Squire	found	that	
amnesic	patients	can	categorize,	but	not	recognize,	dot	
pattern	stimuli	at	accuracy	levels	comparable	to	those	of	
matched	controls.2

	
This	basic	pattern	of	results	has	been	

replicated	utilizing	stimuli	with	discrete	features	(Reed,	
Squire,	Patalano,	Smith,	&	Jonides,	1999).

In	Knowlton	and	Squire’s	(1993)	categorization	task,	par-
ticipants	viewed	20	low	and	20	high	distortions	of	an	un-
derlying	prototype	during	the	study	phase	(see	Figure	4).	
The	participants	were	then	informed	that	all	of	these	items	
belonged	to	a	common	category.	At	test,	the	participants	in-
dicated	whether	the	presented	stimulus	was	a	member	of	the	
category.	The	four	types	of	test	stimuli	included	are	shown	
in	Figure	4.	Half	of	the	test	trials	consisted	of	foil	patterns	
that	did	not	conform	to	the	prototype	underlying	the	study	
items.	An	example	stimulus	is	shown	in	Figure	4	under	the	
heading	“Random.”	The	other	half	of	the	test	trials	included	
the	presentation	of	the	prototype	(which	was	not	actually	
shown	during	the	study	phase),	novel	low	distortions	of	the	
prototype,	and	novel	high	distortions	of	the	prototype.

In	the	recognition	task,	the	participants	viewed	five	dis-
tinct	patterns	eight	times	each.	At	test,	the	participants	
were	shown	these	five	items	and	five	foils	and	indicated	
whether	the	stimulus	was	shown	in	the	study	phase.	The	
main	results,	illustrating	a	dissociation	between	categori-
zation	and	recognition	performance	for	amnesic	patients,	
along	with	SUSTAIN’s	fit	of	these	data,	are	shown	in	Fig-
ure	5.	In	the	categorization	test	phase,	both	groups	(and	
SUSTAIN)	displayed	a	generalization	gradient	that	fell	as	
similarity	to	the	prototype	decreased	(see	Figure	6).

Simulations of Knowlton and Squire (1993).	Low	
hippocampal	function	in	SUSTAIN	was	modeled	by	re-
ducing	the	model’s	ability	to	recruit	a	cluster	in	response	to	
a	surprising	event	when	existing	clusters	were	somewhat	
similar	to	the	surprising	stimulus.	A	parameter	regulated	
the	threshold	for	successfully	forming	a	new	cluster	in	re-
sponse	to	a	surprising	event.	Groups	low	in	hippocampal	
function	had	a	lower	setting	of	this	parameter.	SUSTAIN	
simulations	of	amnesic	patients	were	identical	to	simula-
tions	of	the	controls,	except	for	the	setting	of	the	hippo-
campal	function	parameter.	Details	for	all	the	simulations	
are	provided	in	the	Appendix.

High DistortionPrototype Low Distortion Random

Figure 4. Example stimuli from Knowlton and Squire’s (1993) catego-
rization task.
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SUSTAIN’s	simulations	for	both	groups	utilized	a	sin-
gle	cluster	for	the	category-learning	task.	All	of	the	study	
items	were	sufficiently	similar	to	one	another	that	no	sur-
prising	events	occurred,	and	therefore,	all	the	items	were	
collapsed	into	a	single	cluster.	Because	both	groups	had	
the	same	internal	representation	of	the	study	items	(i.e.,	
one	cluster),	SUSTAIN	necessarily	predicted	equivalent	
performance	for	the	two	groups.

In	contrast,	the	simulations	for	the	controls	in	the	rec-
ognition	task	resulted	in	five	clusters	being	recruited.	The	
five	distinct	patterns	shown	in	the	recognition	study	phase	
were	sufficiently	dissimilar	that	they	were	individuated	
(i.e.,	each	item	was	surprising	when	initially	presented).	In	
the	amnesic	simulations	of	the	recognition	task,	each	item	
was	also	surprising	when	initially	presented,	but	because	

of	 low	hippocampal	function,	clusters	were	not	always	
recruited	in	response	to	these	surprising	events.	Instead	
of	recruiting	five	clusters,	as	in	the	normal	simulations,	
SUSTAIN	recruited	2–4	clusters	in	the	amnesic	simula-
tions.3

	
Collapsing	items	together	within	a	cluster	led	to	rep-

resentations	that	were	not	well	suited	for	item	recognition.	
Like	amnesic	patients,	the	amnesic	simulations	displayed	
degraded,	but	above-chance,	recognition	performance.

Multiple systems?	 The	 theoretical	 interpretation	
of	SUSTAIN’s	fits	differs	from	Knowlton	and	Squire’s	
(1993)	interpretation	of	their	data.	Following	Nosofsky	
and	Zaki	(1998),	we	suggest	that	recognition	and	catego-
rization	engage	common	mechanisms	(see	Love,	2002b,	
for	supportive	results	with	young	normals).	In	fact,	as	is	
described	fully	in	the	Appendix,	recognition	and	categori-
zation	are	modeled	in	an	identical	fashion.	The	two	tasks	
used	by	Knowlton	and	Squire	differ	to	the	degree	that	they	
require	multiple	clusters.	If	the	stimulus	sets	for	recogni-
tion	and	categorization	were	swapped,	we	would	predict	
that	the	pattern	of	results	would	be	reversed.

In	summary,	the	underlying	variable	for	explaining	per-
formance	differences	between	the	two	populations	is	not	
recognition	or	categorization	but	reliance	on	conjunctive	
codes	(i.e.,	number	of	clusters	required).	In	the	case	of	
Knowlton	and	Squire’s	(1993)	design,	only	one	cluster	
is	required	for	successful	categorization,	and	predicted	
performance	is	identical	for	both	groups.	However,	for	a	
more	difficult	category-learning	task	that	requires	mul-
tiple	clusters	(e.g.,	one	that	involves	multiple	categories	
or	category	subtypes),	SUSTAIN	predicts	that	amnesic	
patients	should	show	a	deficit,	relative	to	controls,	consis-
tent	with	Zaki’s	(2004)	meta-analysis	demonstrating	such	
a	deficit	across	a	number	of	category-learning	studies	in	
which	amnesic	patients	and	controls	were	compared.

The	 SUSTAIN	 simulations	 bear	 a	 resemblance	 to	
Nosofsky	and	Zaki’s	(1998)	modeling	of	these	data	with	
an	exemplar	model.	Nosofsky	and	Zaki	modeled	amnesic	
patients	as	having	lower	sensitivity	(i.e.,	broader	gener-
alization	gradients	for	each	exemplar)	than	do	controls.	
Effectively,	this	led	to	a	blurring	or	averaging	of	the	in-
ternal	representations	for	the	amnesic	simulations.	One	
interpretation	of	this	blurring	operation	is	that	it	function-
ally	implements	a	clustering	model	in	which	items	are	col-
lapsed	into	common	clusters,	as	in	SUSTAIN.	Although	
simulation	predictions	converge,	our	account	does	differ	
from	Nosofsky	and	Zaki’s	in	that	SUSTAIN’s	simulations	
indicate	that	amnesic	patients	should	have	difficulty	en-
coding	items,	as	evidenced	by	the	smaller	number	of	clus-
ters	recruited	in	the	recognition	condition,	relative	to	con-
trols.	In	other	words,	what	counts	as	an	exemplar	or	event	
differs	with	changes	in	PFC–MTL	function	(see	Figure	1).	
Finally,	whereas	Nosofsky	and	Zaki	advocated	a	single-
system	view	of	recognition	and	categorization,	we	see	it	
as	likely	that	multiple	and	overlapping	systems	contribute	
to	both	recognition	and	categorization,	although,	in	this	
article,	we	focus	on	the	PFC–MTL	learning	circuit.

Infant Category Learning
The	human	brain	undergoes	considerable	development	

postbirth.	In	fact,	important	structural	changes	continue	
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Figure 5. The main results from Knowlton and Squire (1993), 
along with SUSTAIN’s fit.
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shown, along with SUSTAIN’s fit.
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up	to	adulthood.	As	a	first	approximation,	the	pattern	of	
development	follows	a	back-to-front	trajectory,	starting	
with	basic	visual	areas	and	progressing	toward	frontal	
areas	(Johnson,	2003),	as	evidenced	by	synaptic	growth	
and	glucose	uptake	(Chugani,	Phelps,	&	Mazziotta,	1987).	
The	hippocampus	is	unusual	in	that	it	undergoes	functional	
neurogenesis	throughout	adulthood	(Eriksson	et	al.,	1998;	
van	Praag	et	al.,	2002),	and	this	growth	may	be	exagger-
ated	in	individuals	who	frequently	engage	in	stimulating	
behaviors	(Maguire	et	al.,	2000;	van	Praag,	Christie,	Se-
jnowski,	&	Gage,	1999).	These	new	neurons	participate	in	
the	formation	of	new	hippocampal-dependent	memories	
(Shors	et	al.,	2001)	and	may	naturally	map	to	the	cluster	
formation	process	in	SUSTAIN.

Considerable	developmental	changes	occur	in	the	hippo-
campus	during	the	1st	year	of	life.	Cell	differentiation	surges	
in	the	hippocampus	between	7	and	10	months	(Seress	&	
Mrzljak,	1992)	and	continues	into	the	2nd	year	(Merzenich	
&	Sameshima,	1993).	Connectivity	between	 the	hippo-
campus	and	other	areas	increases	into	the	2nd	year	(Benes,	
1994).	Hippocampal	volume	reaches	adult	level	during	the	
second	half	of	the	1st	year	of	life	(Kretschmann,	Kammradt,	
Krauthausen,	Sauer,	&	Wingert,	1986).

Given	these	developmental	changes,	one	reasonable	
hypothesis	is	that	infants’	PFC–MTL	learning	circuit	will	
not	be	fully	functional.	In	terms	of	the	continuum	shown	
in	Figure	1,	young	infants	(4-month-olds)	are	assumed	to	
have	function	closer	to	that	of	amnesic	patients	than	to	
that	of	young	adults.	Thus,	infants	should	show	difficulty	
in	conjunctive	tasks	that	require	multiple	clusters.	Indeed,	
the	ability	to	encode	and,	after	a	delay,	retrieve	conjunc-
tions	of	objects	and	actions	begins	to	emerge	at	9	months	
of	age	(Carver	&	Bauer,	2001;	Diamond,	Churchland,	
Cruess,	&	Kirkham,	1999;	Nelson,	1995).	Toward	the	end	
of	the	1st	year	of	life,	memory	capabilities	emerge	that	
are	more	context	sensitive	or	recollective	in	nature,	as	op-
posed	to	solely	familiarity	driven	(see	de	Haan,	Mishkin,	
Baldeweg,	&	Vargha-Khadem,	2006,	for	a	review).

Simulations of Younger and Cohen (1986).	Younger	
and	Cohen	(1986)	conducted	a	series	of	experiments	well	
suited	for	assessing	infants’	abilities	to	form	conjunctive	
codes	(i.e.,	multiple	clusters).	In	their	experiments,	infants	
were	habituated	to	a	set	of	sequentially	presented	visual	
stimuli	depicting	imaginary	animals.	The	stimuli	varied	
on	three	binary-valued	attributes	(e.g.,	the	type	of	body	
for	an	animal	was	elephant-	or	giraffe-like).	Importantly,	
two	stimulus	attributes	correlated	perfectly	across	 the	
study	items.	After	being	habituated,	infants	were	exposed	
to	test	items	that	either	followed	the	correlated	(i.e.,	con-
junctive)	pattern	of	the	habituation	items	or	violated	it.	
If	infants	formed	a	conjunctive	code	at	study	(i.e.,	dur-
ing	habituation),	they	should	find	the	item	inconsistent	
with	the	conjunctive	code	novel	and,	therefore,	look	at	it	
longer.	In	contrast,	if	infants	failed	to	encode	the	attribute	
relation	but,	instead,	encoded	only	attribute	value	(i.e.,	
feature)	frequencies,	both	the	consistent	and	the	inconsis-
tent	test	items	should	be	equally	interesting	to	the	infants	
and	should	yield	equal	looking	times.

The	design	of	Younger	and	Cohen’s	 (1986)	Experi-
ment	2	is	shown	in	Table	1,	and	the	basic	findings,	along	

with	SUSTAIN’s	fit,	are	shown	in	Figure	7.4
	
Four-month-

old	infants’	looking	times	for	the	consistent	and	the	incon-
sistent	items	were	equal,	whereas	10-month-old	infants	
devoted	more	time	to	the	inconsistent	item	than	to	the	con-
sistent	item.5

	
SUSTAIN	displayed	this	same	pattern.	As	in	

the	previous	simulations	comparing	amnesic	patients	and	
controls,	the	group	with	lower	PFC–MTL	function	(in	this	
case,	the	4-month-olds)	were	modeled	with	a	lower	setting	
of	the	hippocampal	function	parameter.

Figure	8	shows	the	spatial	configuration	of	SUSTAIN’s	
clusters,	relative	to	study	and	test	items.	In	the	simulation	for	
4-month-olds	(shown	in	the	left	plot	of	Figure	8),	SUSTAIN	
recruited	a	single	cluster.	The	single	cluster	represented	the	
average	of	the	four	study	items	(i.e.,	the	feature	frequencies).	
This	single	cluster	was	located	in	the	center	of	the	space	and	
was	equidistant	from	both	the	consistent	and	the	inconsistent	
test	items.	Given	this	configuration,	SUSTAIN	predicted	
that	both	of	the	test	items	would	be	equally	familiar.

In	the	simulation	for	10-month-olds	(shown	in	the	right	
plot	of	Figure	8),	SUSTAIN	recruited	two	clusters.	Each	of	
these	two	clusters	represented	the	average	of	two	of	the	four	
study	stimuli.	One	cluster	represented	the	average	of	stim-
uli	1	1	2	and	1	1	1	(located	at	1	1	1.5),	whereas	the	other	
represented	the	average	of	stimuli	2	2	2	and	2	2	1	(located	

Table 1 
The Abstract Structure of Younger and Cohen’s (1986) 

Experiment 2

	 Study		 Test 	

1	1	1	 2	2	2	(consistent)
1	1	2	 2	1	2	(inconsistent)
2	2	1
2	2	2	

Note—The	first	two	attributes	of	the	study	items	correlate	perfectly.	
After	being	habituated	for	12	trials	during	study,	participants	viewed	the	
consistent	test	item	(which	obeys	the	studied	correlation)	and	the	incon-
sistent	test	item	(which	violates	the	studied	correlation).
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fants in Younger and Cohen’s (1986) Experiment 2, along with 
SUSTAIN’s fit.
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at	2	2	1.5).	In	this	case,	the	inconsistent	test	stimulus	was	
farther	from	the	nearest	cluster	than	was	the	consistent	test	
stimulus.	This	effect	was	magnified	by	SUSTAIN’s	shift	of	
attention	to	the	two	correlation-relevant	attributes.	These	
two	clusters	effectively	encoded	the	conjunctive	relation-
ship	between	the	first	two	attributes	of	the	study	items.

These	simulations	closely	parallel	the	simulations	of	
Knowlton	and	Squire’s	(1993)	data.	Both	young	infants	
and	amnesic	patients	are	sensitive	to	feature	frequency,	but	
not	to	feature	relations.	Perhaps	an	even	closer	parallel	to	
Younger	and	Cohen’s	(1986)	experiments	is	Save,	Poucet,	
Foreman,	and	Buhot’s	(1992)	experiments,	in	which	rats	
were	habituated	in	an	environment	consisting	of	multiple	
objects.	After	familiarizing	themselves	with	the	environ-
ment,	the	rats’	rate	of	exploration	declined,	much	as	the	
infants	in	Younger	and	Cohen’s	study	habituated	to	the	
stimuli	during	the	study	phase.	Once	the	rats	had	been	
habituated,	the	experimenter	altered	the	configuration	of	
objects.	The	rats	with	an	intact	hippocampus	once	again	
found	their	environment	engaging	and	increased	their	rate	
of	exploration,	which	is	analogous	to	the	10-month-olds’	
reaction	to	the	inconsistent	test	item.	However,	the	rats	
who	had	their	hippocampus	lesioned	did	not	increase	their	
rate	of	exploration,	which	is	analogous	to	the	4-month-
olds’	lack	of	differentiation	between	the	consistent	and	the	
inconsistent	test	items.

Aging and Category Learning
Aging	does	not	affect	the	brain	uniformly.	Imaging	and	

neuroanatomical	studies	have	revealed	greater	shrinkage	

in	the	hippocampus	and	PFC	than	in	other	areas,	such	as	
the	parietal	and	occipital	cortex	(Flood	&	Coleman,	1988;	
Raz,	2000).	These	declines	should	impact	our	proposed	
PFC–MTL	learning	circuit,	and	therefore,	we	predict	that	
older	individuals	will	show	deficits	in	tasks	that	require	
constructing	conjunctive	codes	(see	Davidson	&	Glisky,	
2002;	Li	et	al.,	2005).

The	hippocampus	is	particularly	vulnerable	in	the	aging	
process.	The	hippocampus	has	the	highest	concentration	of	
glucocorticoid	(i.e.,	cortisol)	receptors	in	the	central	ner-
vous	system	(McEwen,	Weiss,	&	Schwartz,	1968).	Cortisol	
released	in	response	to	agitating	or	stressful	episodes	(e.g.,	
illness,	trauma,	surgery,	temperature	extremes,	depressive	
states,	or	anxious	moods)	leads	to	hippocampal	shrinkage	
and	loss	of	function.	One	possibility	is	that	the	aging	ef-
fects	seen	in	the	hippocampus	result	simply	from	the	ac-
cumulation	of	negative	events	over	an	individual’s	life.

Supporting	this	notion,	an	MRI	study	of	humans	has	
shown	that	hippocampal	atrophy	is	the	anatomical	cor-
relate	 of	 delayed	 recall	 performance	 in	 older	 adults	
(Golomb	et	al.,	1994).	Humans	with	prolonged	elevated	
levels	of	cortisol	showed	reduced	hippocampal	volume	
and	deficits	in	hippocampal-mediated	memory	tasks	(Lu-
pien	et	al.,	1998).	Experimental	manipulations	of	stress	
level	with	rats	led	to	predicted	increases	in	cortisol	levels,	
hippocampal	atrophy,	and	memory	impairments	(Land-
field,	Baskin,	&	Pitler,	1981;	Sapolsky,	Krey,	&	McEwen,	
1986).	Underscoring	the	importance	of	cortisol	in	cog-
nitive	aging,	recent	work	suggests	that	elevated	cortisol	
levels	may	also	affect	frontal	function	in	humans	(Young,	
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Sahakian,	Robbins,	&	Cowen,	1999).	Paralleling	the	nega-
tive	effects	of	excessive	cortisol,	older	adults	showed	re-
duced	activations,	relative	to	young	adults,	in	the	PFC	and	
hippocampus	during	encoding	(Grady	et	al.,	1995),	which	
maps	onto	reduced	cluster	recruitment	(i.e.,	conjunctive	
code	formation)	in	SUSTAIN.

Given	these	assaults	on	the	PFC–MTL	learning	cir-
cuit,	we	predict	that	older	adults	should	be	impaired	at	
	conjunctive-learning	tasks.	Indeed,	item	memory	in	older	
individuals	is	preserved	to	a	greater	extent	than	is	memory	
for	the	conjunction	of	item	and	context	(see	Spencer	&	
Raz,	1995,	for	a	meta-analysis).	Recollection	(a	conjunc-
tion	of	item	and	context)	and	source	memory	are	impaired	
in	older	individuals,	whereas	some	studies	have	shown	no	
impairment	in	judgments	of	familiarity	(Dywan	&	Jacoby,	
1990;	Hay	&	Jacoby,	1999;	Titov	&	Knight,	1997).	For	ex-
ample,	older	adults	have	trouble	determining	at	test	which	
modality	an	item	was	presented	in	at	study	(McIntyre	&	
Craik,	1987).

These	deficits	hold	 for	other	conjunctive	 tasks	 that	
involve	forming	arbitrary	associations	or	conjunctions.	
Older	adults	are	particularly	bad	at	forming	conjunctive	
codes,	such	as	linking	or	associating	two	pictures	(Chal-
fonte	&	Johnson,	1996;	Naveh-Benjamin,	Hussain,	Guez,	
&	Bar-On,	2003).	Age-related	declines	in	hippocampal	
activation,	with	accompanying	behavioral	deficits,	have	
been	observed	in	conjunctive	memory	tasks	(Mitchell,	
Johnson,	Raye,	&	D’Esposito,	2000).	Interestingly,	such	
conjunctive	tasks	are	not	as	difficult	when	they	rely	on	
preexisting	associations	or	codes	(Naveh-Benjamin,	2000;	
Hess,	Pullen,	&	McGee,	1996).	In	such	cases,	SUSTAIN	
predicts	that	a	new	cluster	is	not	needed,	so	hippocampal	
involvement	should	be	minimal.

In	the	domain	of	category	learning,	Hess	(1982)	has	
demonstrated	that	older	adults	can	abstract	prototypes	as	
effectively	as	can	younger	adults.	Later	work	incorporat-
ing	a	distraction	task	showed	prototype	organization	fol-
lowing	study	for	both	younger	and	older	adults,	with	the	
younger	participants	having	a	slight	advantage.	However,	
the	advantage	was	much	more	pronounced	for	a	disjunc-
tive	concept-learning	task	(Hess	&	Slaughter,	1986)	that,	
according	to	SUSTAIN,	requires	forming	multiple	clus-
ters.	Paralleling	the	amnesic	findings,	these	aging	findings	

suggest	that	differences	between	older	and	younger	adults	
are	magnified	for	tasks	that	require	forming	conjunctive	
codes.	Consistent	with	this	view,	Ashby,	Noble,	Filoteo,	
Waldron,	and	Ell	(2003)	found	that	contrastive	category-
learning	tasks	involving	irregularly	structured	categories	
(requiring	multiple	clusters	to	be	mastered)	were	more	
difficult	for	older	adults,	whereas	differences	between	
younger	and	older	adults	were	minimal	for	easily	describ-
able	structures	(also	see	Filoteo	&	Maddox,	2004).

Simulating the effects of aging on category learning.	
Ideally,	a	study	in	which	younger	and	older	adults	were	
examined	would	utilize	a	single	task	in	order	to	compare	
reliance	on	conjunctive	codes	both	between	and	within	
groups.	One	such	study	(Love,	2002a;	Love	&	Gureckis,	
2004;	Love,	Gureckis,	&	Worchel,	2007)	was	simulated	
with	SUSTAIN.	In	Love	et	al.,	younger	and	older	adults	
were	trained	by	supervised	classification	learning	on	the	
two	contrastive	categories	shown	in	Table	2.	As	can	be	
seen	in	Table	2,	there	was	an	imperfect	rule	on	the	first	at-
tribute	of	each	category.	For	instance,	if	the	first	attribute	
was	randomly	assigned	to	size	for	a	participant	and	1	in-
dicated	a	small	object	and	2	a	large	object,	all	the	items	in	
Category	A	(except	the	last	item)	would	be	small.	To	fur-
ther	cue	this	imperfect	rule	during	the	study	phase,	a	hint	
was	provided	at	the	bottom	of	the	screen	(e.g.,	“A:	size	is	
large;	B:	size	is	small”).	Cuing	the	rule	increased	the	like-
lihood	that	the	deficits	observed	in	older	adults	are	attrib-
utable	to	the	PFC–MTL	learning	system,	as	opposed	to	
working	memory	or	hypothesis-testing	learning	systems.	
Participants	completed	80	study	trials	and	then	completed	
a	test	phase	consisting	of	the	eight	studied	items	and	eight	
novel	items	that	contained	the	same	features	as	the	studied	
items	rearranged.	In	the	test	phase,	the	participants	indi-
cated	the	category	membership	of	the	stimulus,	as	in	the	
study	phase,	but	the	hint	indicating	the	imperfect	rule	and	
corrective	feedback	were	not	provided.

The	main	prediction	was	that	relative	to	younger	adults,	
older	adults	should	have	greater	difficulty	learning	the	ex-
ception	items	than	the	rule-following	items.	This	predic-
tion	was	based	on	modeling	the	older	adults	by	reducing	
SUSTAIN’s	ability	to	form	new	clusters	that	were	similar	
to	existing	clusters	(as	in	previous	simulations	of	amnesic	
patients	and	4-month-old	infants).	SUSTAIN	predicted	
that	exception	items	could	be	mastered	only	by	forming	
separate	clusters	to	encode	these	items.	Because	exception	
items	would	be	fairly	similar	to	existing	clusters	that	cap-
tured	rule-following	items	from	the	opposing	category,	
SUSTAIN	predicted	that	these	items	should	be	especially	
difficult	for	older	adults	to	master.

These	predictions	held.	The	main	results	from	the	study	
phase	and	SUSTAIN’s	fit	are	shown	in	Figure	9.	Older	
adults	performed	equivalently	to	younger	adults	on	rule-
following	items	but	showed	a	large	deficit	on	the	excep-
tion	items.	Within	the	older	adult	group,	the	difficulty	with	
exception	items	increased	with	age,	whereas	performance	
actually	increased	with	age	for	rule-following	items.	As	
can	be	seen	in	Figure	10,	SUSTAIN	created	separate	clus-
ters	for	each	exception	in	the	younger	adult	simulations,	
allowing	it	to	eventually	master	these	items.	In	contrast,	
SUSTAIN	assigned	the	exception	items	to	clusters	that	

Table 2 
The Logical Structure of the Stimulus Set for the Study and Test 

Phases of the Aging Study

	 Category	A	 Category	B	

Study	Phase
1	1	1	2 2	1	1	2
1	1	2	1 2	1	2	1
1	2	1	1 2	2	1	1
2	2	2	2 1	2	2	2

Test	Phase

1	1	1	1 2	1	1	1
1	1	2	2 2	1	2	2
1	2	1	2 2	2	1	2
1	2	2	1 2	2	2	1

Note—The	first	attribute	specifies	an	imperfect	rule,	with	the	fourth	
item	in	each	category	violating	the	rule.
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largely	captured	the	rule-following	items	from	the	op-
posing	category	for	the	older	adult	simulations.	For	these	
simulations,	SUSTAIN	failed	to	individuate	the	exception	
items	and	treated	these	items	as	if	they	provided	support	
for	the	discriminative	rule.	Rather	than	simulating	indi-
vidual	differences	within	groups,	we	chose	to	simulate	
idealized	younger	and	older	adults.	Thus,	SUSTAIN	over-
stated	the	interaction	between	group	and	item	type	shown	
in	Figure	9.

SUSTAIN	clusterings	for	the	older	adult	simulations	
predicted	that	older	adults	should	have	more	abstract	rule	
representations	than	would	younger	adults.	As	is	shown	in	
the	lower	panel	of	Figure	10,	the	clusters	for	the	older	adult	
simulations	stressed	the	rule-relevant	stimulus	dimension	
and	did	not	preserve	item-specific	information.	This	pre-
diction	held.	Older	adults	applied	the	imperfect	rule	in	
the	transfer	phase	as	often	to	rule-following	items	that	ap-
peared	in	the	study	phase	as	they	did	to	novel	items.	In	
contrast,	younger	adults’	rule	application	was	influenced	
more	by	similarity	to	exemplars	seen	in	the	study	phase	
(cf.	Allen	&	Brooks,	1991),	as	is	suggested	by	SUSTAIN’s	
clusterings	shown	in	Figure	10.

These	results	distinguish	between	our	approach	to	cap-
turing	reduced	function	and	Nosofsky	and	Zaki’s	(1998)	
approach.6

	
Extrapolating	Nosofsky	and	Zaki’s	amnesic	

simulations	to	the	aging	data,	the	older	adult	model	would	

perfectly	store	every	example	in	an	exemplar	memory	
system,	but	retrieval	operations	would	blur	these	exem-
plars,	creating	confusions	between	exemplars.	This	blur-
ring	operation	predicts	the	main	result	(i.e.,	older	adults’	
deficit	centers	on	exception	items),	but	it	cannot	predict	
the	observed	stronger	rule-based	responding	with	increas-
ing	age.	Much	as	Nosofsky	and	Zaki’s	amnesic	simula-
tions	predict	lower	performance	for	amnesic	patients	in	
both	recognition	and	categorization,	with	a	greater	deficit	
in	recognition,	analogous	simulations	of	the	aging	data	
would	predict	deficits	for	both	rule	and	exception	items,	
with	a	greater	deficit	in	exception	performance.

General Discussion
The	what	of	localization	is	at	least	as	important	as	the	

where.	For	example,	the	shift	from	viewing	the	brain,	as	
opposed	to	the	heart,	as	the	seat	of	cognition	was	perhaps	
the	greatest	advance	in	localizing	mental	function,	yet	it	
had	little	impact,	in	its	own	right,	on	how	we	understood	
human	behavior.	Although	our	understanding	of	cogni-
tion	has	advanced	beyond	that	of	the	early	Greeks,	we	still	
run	the	danger	of	amassing	a	list	of	brain	areas	associated	
with	certain	tasks	in	the	absence	of	linking	theories.	In	
this	article,	we	argued	that	localizing	cognitive	models	
(that	simulate	interesting	behaviors)	are	our	best	bet	for	
directing	and	understanding	empirical	research.	At	some	
level,	every	researcher	is	theoretically	driven	and	relies	
on	a	model	of	how	cognition	works,	even	if	that	model	is	
not	explicitly	acknowledged.	We	argue	that	the	best	model	
to	use	is	one	that	is	well	specified,	relatively	simple,	and	
verified	empirically—that	is,	an	existing	cognitive	model.	
Successful	cognitive	models	best	suited	for	this	task	are	
ones	that	stress	processing	and	representation,	as	opposed	
to	models	that	are	formulated	at	a	more	abstract	level,	
such	as	Bayesian	approaches.	Models	that	stress	simu-
lation	form	a	diverse	group,	ranging	from	connectionist	
models	(e.g.,	SUSTAIN)	to	production	systems,	such	as	
ACT–R	(J.	R.	Anderson,	Qin,	Stenger,	&	Carter,	2004).

In	this	article,	we	applied	an	existing	model	of	category	
learning	from	examples	to	findings	from	numerous	popu-
lations,	including	amnesic	patients	with	hippocampal	le-
sions,	infants,	young	adults,	and	older	adults.	The	mapping	
between	the	SUSTAIN	model	and	the	PFC,	hippocampus,	
and	perirhinal	cortex	was	simple	and	incomplete,	yet	it	
was	sufficiently	powerful	to	place	findings	from	numer-
ous	subfields	into	a	common	theoretical	framework.

Our	account	holds	that	a	healthy	PFC–MTL	circuit	is	
necessary	to	encode	conjunctive	information	in	the	form	
of	clusters,	which	encode	relations	among	stimulus	fea-
tures.	New	clusters	are	recruited	in	response	to	surprising	
events,	such	as	an	unfamiliar	stimulus	in	unsupervised	
learning	or	a	prediction	error	in	supervised	learning.	Thus,	
new	conjunctive	codes	begin	as	episodic	traces.

Individuals	with	low	PFC–MTL	function	will	fail	to	es-
tablish	a	new	cluster	when	an	existing	cluster	is	somewhat	
similar	to	the	surprising	stimulus.	In	such	cases,	the	surpris-
ing	stimulus	is	assimilated	into	an	existing	cluster.	Thus,	
groups	varying	in	hippocampal	function	will	differ	in	the	
granularity	in	which	events	are	individuated	(see	Figure	1),	
with	low	function	groups	collapsing	numerous	experiences	
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together	into	a	single	representation	(i.e.,	cluster).	These	
low-function	groups	will	show	the	greatest	deficits	in	tasks	
that	require	establishing	numerous	conjunctive	codes.

In	SUSTAIN,	these	differences	between	groups	are	cap-
tured	by	a	parameter	related	to	hippocampal	function.	This	
parameter	governs	the	ability	of	the	model	to	form	clusters	
in	response	to	surprising	events	in	the	presence	of	somewhat	
similar	existing	clusters	(see	the	Appendix	for	details).	Al-
though	the	focus	is	on	the	hippocampus,	other	areas	of	the	
brain	are	critical	to	category	learning.	Activations	of	exist-
ing	clusters	are	reflected	by	a	familiarity	or	fit	signal	gener-
ated	by	the	perirhinal	cortex.	The	PFC	monitors	this	signal	
to	determine	when	a	stimulus	is	sufficiently	surprising	to	
warrant	the	creation	of	a	new	cluster.	Figure	3	summarizes	
the	mapping	between	SUSTAIN	and	these	regions.

Although	we	have	argued	that	cognitive	models	offer	
a	tool	for	determining	functional	localization,	accepted	
views	on	functional	localization	may	offer	an	even	more	
powerful	tool	for	selecting	among	cognitive	models	that	
successfully	address	behavioral	findings	but	make	con-
flicting	assumptions	about	representation	and	processing.	
In	cases	in	which	these	conflicting	assumptions	suggest	
different	accounts	of	localization,	cognitive	neuroscience	
data	can	play	a	key	role	in	selecting	the	appropriate	cog-
nitive	model.	In	the	case	of	our	clustering	account	and	
Nosofsky	and	Zaki’s	(1998)	exemplar	approach,	we	be-
lieve	the	mapping	between	SUSTAIN	and	the	PFC–MTL	
learning	system	is	more	satisfying	than	possible	align-
ments	we	can	imagine	between	the	exemplar	approach	and	
the	hippocampus.	As	has	been	discussed,	Nosofsky	and	
Zaki	assumed	that	all	exemplars	are	stored	but	are	stored	
in	a	blurry	fashion	for	populations	with	reduced	function,	
so	that	retrieval	operations	coactivate	numerous	exem-
plars	in	memory.	Veridically	storing	all	exemplars	(albeit	
in	a	fashion	that	promotes	generalization	across	exem-
plars)	seems	at	odds	with	modeling	amnesic	populations	
that	lack	the	proposed	machinery	for	storing	exemplars.	
In	contrast,	our	clustering	account	proposes	an	interplay	
among	brain	areas	to	determine	when	storage	operations	
should	occur	(i.e.,	in	response	to	surprising	events),	with	
the	degree	of	preserved	hippocampal	function	determin-
ing	when	desired	storage	operations	will	be	successful.

Filling in the continuum.	One	avenue	for	future	in-
vestigation	is	considering	additional	populations	that	suf-
fer	from	low	functioning	along	the	proposed	PFC–MTL	
circuit,	such	as	those	suffering	from	early	Alzheimer’s	
disease.	Although	the	damage	caused	by	Alzheimer’s	dis-
ease	affects	numerous	parts	of	the	brain,	including	frontal	
areas,	early	cell	loss	is	concentrated	in	the	hippocampus	
formation	(Coleman	&	Flood,	1987;	Convit	et	al.,	1995;	
Golomb	et	al.,	1994).	These	patients	exhibit	the	kinds	of	
learning	deficits	we	would	predict	(e.g.,	Faust,	Balota,	
&	Spieler,	2001;	Zaki,	Nosofsky,	Jessup,	&	Unverzagt,	
2003).	As	has	been	predicted,	these	patients	do	not	show	
deficits,	relative	to	age-matched	controls,	on	nonconjunc-
tive	categorization	tasks	that	rely	on	forming	only	one	
cluster	(Bozoki,	Grossman,	&	Smith,	2006).	Finally,	those	
suffering	 from	chronic	depression	and	exhibiting	hip-
pocampal	atrophy	related	to	excess	cortisol	levels	show	

the	kind	of	behavioral	deficits	we	would	predict	(Butters	
et	al.,	2000;	Golinkoff	&	Sweeney,	1989).

In	all	of	our	simulations	and	discussions,	we	have	fo-
cused	on	one	problem	in	cluster	formation—namely,	the	
lack	of	it.	There	are	many	other	possible	disorders	to	ex-
plore	as	a	cluster	formation	process.	One	possibility	is	
that	some	groups,	such	as	autistics,	recruit	new	clusters	
too	aggressively	and	this	is	the	cause	for	their	poor	gen-
eralization	beyond	the	training	set	(see	I.	L.	Cohen,	1994;	
Klinger	&	Dawson,	2001).	In	effect,	autistic	patients	may	
be	to	 the	right	of	young	normals	along	the	continuum	
shown	in	Figure	1.

Limits and future challenges.	Although	our	account	
of	PFC–MTL	function	is	applicable	to	a	wide	range	of	
populations,	 it	 is	not	applicable	to	all	populations	and	
tasks.	For	example,	our	account	is	silent	on	Parkinson’s	
patients	with	damage	concentrated	in	striatal	dopamine-
driven	learning	systems.	Accordingly,	our	account	does	
not	make	predictions	about	behavioral	manipulations	in-
tended	to	disrupt	procedural	learning	mediated	by	the	stri-
atum	(see	Ashby	&	Maddox,	2005,	for	a	review	of	relevant	
manipulations).	Finally,	our	account	is	not	applicable	to	
relevant	populations,	such	as	hippocampal	amnesic	pa-
tients,	when	the	behavioral	task	primarily	taps	learning	
systems	other	than	the	PFC–MTL	circuit.	For	example,	
simple	rule-based	tasks,	such	as	the	Wisconsin	card	sort-
ing	task	(Heaton,	1981),	are	likely	accomplished	through	
working	memory	systems	that	can	be	preserved	in	patients	
with	hippocampal	damage	(Ashby	&	Maddox,	2005).	One	
important	direction	for	future	work	will	be	the	develop-
ment	of	models	that	detail	the	interactions	of	numerous	
learning	systems.

Beginning	with	a	cognitive	model	has	a	number	of	ad-
vantages,	but	it	is	just	a	starting	point.	The	next	step	is	
to	use	brain	measures	to	modify	our	proposed	learning	
algorithms.	Given	that	the	hippocampus	is	central	to	our	
explanation,	one	critical	process	that	needs	to	be	included	
in	future	modeling	is	consolidation.	The	importance	of	
consolidation	to	memory	performance	has	been	under-
appreciated	by	cognitive	psychologists	(Wixted,	2005).	
Another	example	in	which	brain	measures	could	influence	
model	development	is	in	work	in	novelty	detection.	As	has	
been	explored	in	this	article,	specifying	when	an	event	is	
surprising	and	results	in	cluster	recruitment	is	central	to	
our	modeling	efforts.
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NOTES

1.	Forming	one	cluster	 is	 consistent	with	 a	 lack	of	hippocampal	
function,	because	one	cluster	alone	is	not	sufficient	for	encoding	con-
junctive	information.	Possessing	one	cluster	allows	for	the	encoding	
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of	feature	frequencies,	but	not	feature	relations.	In	terms	of	mapping	
a	single	cluster	representation	to	the	brain,	likely	candidates	for	visual	
category-learning	tasks	are	a	fluency-based	responding	mechanism,	as	
evidenced	by	posterior	occipital	deactivations	(Reber	et	al.,	1998),	and	
the	elemental-learning	system	discussed	in	Fanselow	(1999).

2.	Although	it	 is	an	effective	demonstration,	Palmeri	and	Flanery	
(1999)	 have	 noted	 methodological	 flaws	 in	 Knowlton	 and	 Squire’s	
(1993)	experiments	that	raise	alternative	explanations	of	their	findings.	
Subsequent	work	improving	upon	Knowlton	and	Squire’s	methodology	
bolsters	the	claim	that	MTL-impaired	populations	can	learn	category	
structures	consisting	of	an	underlying	prototype	(Bozoki	et	al.,	2006).

3.	The	variability	across	simulations	is	due	to	the	interaction	of	order-
ing	effects	with	SUSTAIN’s	incremental	recruitment	of	clusters.	Dif-
ferent	simulations	involve	different	random	presentation	orders,	which	
can	lead	to	different	cluster	solutions.	SUSTAIN’s	predictions	for	such	
ordering	effects	have	been	systematically	explored	by	Gureckis	and	Love	
(2002)	with	human	participants	and	confirmed.	Because	of	variability	
across	simulations,	the	results	of	numerous	simulations	are	averaged	
together.

At	first	glance,	it	might	seem	odd	for	amnesic	patients	to	be	able	to	re-
cruit	multiple	clusters	in	the	recognition	task,	much	as	it	seems	odd	that	
Knowlton	and	Squire’s	(1993)	amnesic	patients	displayed	above-chance	
recognition	performance.	One	possibility	is	that	a	subset	of	Knowlton	

and	Squire’s	patients	had	some	preserved	function,	since	the	group	was	
of	mixed	etiology.	Another	possibility,	previously	discussed,	is	that	the	
hippocampus	may	be	specialized	for	forming	conjunctive	codes	but	that	
other	regions	may	also	perform	this	function	(perhaps	with	less	effective-
ness),	particularly	in	cases	in	which	the	hippocampus	is	damaged.	Gluck	
and	Myers	(2001)	reviewed	evidence	in	support	of	this	position	in	the	
second	chapter	of	their	book.

4.	The	consistent	test	item	shown	in	Table	1	was	itself	a	study	item,	
raising	possible	concerns.	Experiments	3	and	4	in	Younger	and	Cohen	
(1986)	showed	the	same	pattern	of	results	when	this	item	was	removed	
from	the	study	set.	SUSTAIN	successfully	fits	all	the	experiments	con-
tained	in	Younger	and	Cohen	(Gureckis	&	Love,	2004).

5.	Although	not	central	to	our	hypothesis,	a	third	test	item	was	also	
included	that	contained	novel	values	on	all	three	attributes.	This	item	
received	the	longest	looking	times	for	both	groups	of	infants	and	was	
included	primarily	to	ensure	that	the	infants	were	encoding	the	attri-
butes	of	the	study	items	in	a	manner	consistent	with	the	experimenters’	
expectations.	SUSTAIN	also	predicts	that	this	novel	item	should	elicit	
the	longest	looking	times	for	both	groups.

6.	If	other	model	parameters,	in	addition	to	the	key	parameter,	related	
to	memory	fidelity	are	allowed	to	vary	across	simulations	of	different	
populations,	both	models	are	likely	to	capture	the	complete	data	pattern	
at	the	cost	of	explanatory	power.

APPENDIX

Here,	SUSTAIN’s	implementation	will	be	described,	as	well	as	the	procedures	used	to	apply	it	to	the	three	
simulations	discussed	in	the	main	text.

Input Representation
A	nominal	stimulus	attribute	(as	used	in	Younger	&	Cohen,	1986,	and	Love	et	al.,	2007),	containing	k	distinct	

values	is	represented	in	the	model	by	k	input	units.	The	unit	that	denotes	the	value	of	the	attribute	is	set	to	one,	
and	all	of	the	other	units	forming	the	attribute	are	set	to	zero.	Thus,	a	complete	stimulus	is	represented	by	Iposik,	
where	i	indexes	the	stimulus	attribute	and	k	indexes	the	nominal	values	for	attribute	i.	The	“pos”	in	Ipos	denotes	
that	the	current	stimulus	occupies	a	particular	position	in	a	multidimensional	representational	space.

The	distance	µij	between	the	ith	stimulus	attribute	and	cluster	j’s	position	along	the	ith	attribute	is	defined	as
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where	vi	is	the	number	of	different	nominal	values	on	the	ith	attribute,	Iposik	is	the	position	of	the	input	stimulus	
on	the	ith	attribute	for	value	k,	and	Hj

posik
	
is	cluster	j’s	position	on	the	ith	attribute	for	value	k.	The	distance	µij	is	

always	between	0	and	1,	inclusive.	Distance	calculations	for	dot	pattern	stimuli	will	be	discussed	in	the	section	
detailing	the	simulation	procedures	for	Knowlton	and	Squire’s	(1993)	simulations.

Generating a Response
Once	the	stimulus	is	encoded,	clusters	are	activated	on	the	basis	of	their	similarity	to	the	input	item.	The	

activation	of	a	cluster	is	given	by
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where	Hj
act	is	the	activation	of	the	jth	cluster,	na	is	the	number	of	stimulus	attributes,	λi	is	the	tuning	of	the	recep-

tive	field	(which	implements	selective	attention	in	SUSTAIN)	for	the	ith	input	attribute,	and	r	is	the	attentional	
parameter	(always	nonnegative).	At	the	start	of	learning,	λi	is	set	to	1.

Clusters	compete	to	respond	to	input	patterns	through	a	process	of	mutual	inhibition.	The	final	output,	Hj
out,	

of	each	cluster	j	is	computed	according	to
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where	nc	is	the	current	number	of	the	clusters	and	β	is	a	lateral	inhibition	parameter	(always	nonnegative)	that	
regulates	cluster	competition.
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APPENDIX (Continued)

In	supervised	learning,	SUSTAIN	selects	the	cluster	with	the	largest	output	value,	and	only	this	cluster	is	al-
lowed	to	pass	its	output,	Hj

out,	across	the	upper	layer	of	connection	weights	to	the	final	output	units.	The	winning	
cluster,	Hm,	passes	its	output	to	the	k	output	units	of	the	unknown	(queried)	attribute	z	by

	 C w H
zk m zk m
out out=

,
, 	 (A4)

where	Czk
out	is	the	output	of	the	unit	representing	the	k th	nominal	value	of	the	unknown	zth	attribute	and	wm,zk	is	

the	weight	from	the	winning	cluster,	Hm,	to	output	unit	Czk.	In	classification	learning,	z	is	the	category	label.	The	
value	Czk

out	is	calculated	for	each	of	the	k	units	belonging	to	queried	attribute	z.
The	probability	of	making	a	response	k	(the	k th	nominal	value)	for	the	queried	attribute	z	is
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where	d	is	the	response	parameter	(always	nonnegative)	and	vz	is	the	number	of	nominal	units	(and	hence,	output	
units)	forming	the	queried	attribute	z.

Recognition	and	unsupervised	categorization	judgments	are	modeled	in	an	identical	fashion.	In	these	cases,	
SUSTAIN’s	response	is	determined	by	summing	the	output	Hj

out	for	all	clusters:
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where	R	is	the	recognition	score	for	the	current	stimulus.	This	recognition	score	is	a	measure	of	the	model’s	
overall	familiarity	for	a	stimulus.

Cluster Recruitment 
In	all	learning	tasks,	the	initial	cluster	is	centered	on	the	first	stimulus	presentation,	and	additional	clusters	are	

recruited	in	response	to	surprising	events	encountered	throughout	learning.	Newly	recruited	clusters	are	initially	
centered	on	the	surprising	stimulus	(i.e.,	all	µij	will	be	zero	for	the	new	cluster	and	the	current	stimulus).

In	supervised	category-learning	tasks,	feedback	is	provided	after	the	model	makes	its	response.	SUSTAIN	
attempts	to	recruit	a	new	cluster	when	the	winning	cluster,	Hm,	predicts	the	incorrect	category	label.	In	unsu-
pervised	learning,	this	signal	to	create	a	new	cluster	is	generated	whenever	the	activation	of	the	winning	cluster,	
Hm

act,	is	below	the	parameter	τs.	
Not	all	attempts	to	recruit	a	new	cluster	are	successful.	The	ability	to	construct	a	new	cluster	in	response	to	

a	surprising	event	is	proposed	to	be	hippocampal	dependent.	Simulations	with	low	hippocampal	function	will	
fail	to	recruit	a	cluster	in	response	to	a	surprising	stimulus	when	that	stimulus	is	similar	to	an	existing	cluster.	
Formally,	a	new	cluster	is	recruited	when	the	activation	of	the	winning	cluster,	Hm

act,	is	less	than	the	value	of	the	
hippocampal	function	parameter	τh.	

Note	that	in	unsupervised	category	learning,	the	lower	of	the	two	thresholds,	τs	and	τh,	determines	when	a	
cluster	can	be	recruited.	Formally,	these	two	parameters	could	be	replaced	with	a	single	parameter.	Neverthe-
less,	these	parameters	are	conceptually	distinct	and	could	be	identifiable,	given	other	data	sources.	For	instance,	
an	amnesic	patient	could	be	surprised	by	a	stimulus	but	not	be	able	to	recruit	a	cluster	to	encode	the	stimulus.	
However,	because	these	two	parameters	are	not	identifiable	in	the	current	simulations,	we	report	the	minimum	
of	the	two	thresholds,	min(τs,τh).	On	the	basis	of	our	literature	review	and	the	demands	of	the	learning	tasks	
simulated,	we	assume	that	the	deficit	for	the	groups	considered	here	lies	in	hippocampal	function	(i.e.,	τh	,	τs),	
although	the	same	results	would	hold	if	the	deficit	was	in	the	PFC.

Learning 
Learning	rules	are	applied	on	each	training	trial	that	update	the	clusters	and	weights.	On	trials	on	which	a	new	

cluster	is	recruited,	it	will	be	selected	as	the	winning	(i.e.,	most	activated)	cluster,	due	to	the	fact	that	this	cluster	
is	centered	on	the	current	input	item.	Otherwise,	the	cluster	most	similar	to	the	stimulus	will	be	the	winner.	For	
the	winning	cluster	Hm,	the	position	of	the	cluster	is	adjusted	by

	 ∆H I H
m m

ik ik ikpos pos pos= −( )η , 	 (A7)

where	η	is	the	learning	rate	parameter.	Thus,	the	winning	cluster	moves	toward	the	current	stimulus.	This	learn-
ing	rule	tends	to	center	the	cluster	amid	its	members.	

Receptive	field	tunings	(which	implement	attribute	attention)	are	updated	according	to

	 ∆λ η λ µλ µ
i i im

e i im= −( )− 1 , 	 (A8)

where	m	is	the	index	of	the	winning	cluster.	Only	the	winning	cluster	updates	the	value	of	λi.
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In	supervised	category	learning,	the	one-layer	delta	learning	rule	(Rumelhart,	Hinton,	&	Williams,	1986)	is	
used	to	adjust	weights	from	the	winning	cluster	to	output	units:

	 ∆w t C H
m zk zk zk m,

,= −( )η out out 	 (A9)

where	z	is	the	queried	attribute	(i.e.,	the	category	label	in	classification	learning).

Simulation Procedures
In	the	following	section,	we	will	provide	simulation	details	for	each	reported	study.	Simulations	were	con-

ducted	in	a	manner	that	paralleled	the	procedures	used	for	human	participants.	For	example,	in	each	study,	the	
number	of	learning	trials	and	randomization	procedures	for	SUSTAIN	simulations	matched	the	experiences	of	
human	participants.

Instead	of	fitting	each	study	individually,	we	used	a	single	set	of	core	parameters	across	all	three	studies.	These	
core	parameters	(r	5 2.844,	β	5 2.386,	d	5 12.000,	and	η	5 .093)	were	set	to	the	global	parameters	reported	in	
Love	et	al.	(2004)	that	enabled	SUSTAIN	to	correctly	predict	patterns	of	human	performance	across	a	wide	range	
of	studies.	Other	decisional	parameters	(which	effect	quantitative	fit,	but	not	qualitative	predictions)	varied	across	
the	three	simulations	reported	here.	All	of	these	peripheral	parameters	will	be	discussed	in	the	sections	below	
devoted	to	particular	simulations.	Of	course,	the	τh	parameters	necessarily	varied	across	studies.	Unfortunately,	
scaling	issues	with	particular	stimuli	types	prevent	the	direct	comparison	of	τh	values	across	studies.

Knowlton and Squire (1993).	Stimuli	were	random	dot	patterns	as	shown	in	Figure	4.	Because	these	
stimuli	do	not	contain	nominal	attributes	or	features,	input	to	the	model	was	a	set	of	Cartesian	coordinates	that	
described	the	location	of	each	of	the	nine	dots	in	a	50		50	pixel	grid.	A	complete	stimulus	was	defined	by	a	set	
of	nine	tuples,	each	of	which	specified	the	location	of	one	dot	in	the	stimulus	pattern.	The	same	representation	
characterized	cluster	positions.

The	distance	between	the	current	stimulus	and	cluster	Hj	was	determined	by	first	calculating	the	average	
distance	between	pairs	of	corresponding	dots	in	both	patterns.	Correspondences	between	dots	were	determined	
by	attempting	to	minimize	the	average	distance	over	all	possible	permutations	of	dot	correspondences.	Unfor-
tunately,	determining	these	correspondences	is	computationally	demanding,	because	there	are	9!	5	362,880	
ways	to	map	the	nine	dots,	all	of	which	have	to	be	searched	to	find	the	minimum	average	distance	on	each	trial	
for	each	cluster.	To	approximate	this	exhaustive	computation,	a	greedy	heuristic	was	used	that	placed	two	dots	
in	correspondence	one	at	a	time	on	the	basis	of	the	closest	pairs.	At	each	step	of	the	greedy	algorithm,	the	two	
dots	with	the	shortest	Euclidean	distance	between	them	were	placed	in	correspondence	and	then	removed	from	
consideration.	This	simple	algorithm	was	able	to	recover	the	minimal	mapping	(out	of	362,880	possible	map-
pings)	33%	of	the	time.	Furthermore,	nonoptimal	correspondences	closely	approximated	optimal	solutions.	
For	example,	we	computed	the	distance	between	10	test	patterns	against	10	random	training	patterns	(100	total	
comparisons)	and	found	that	the	true	average	distance	for	this	set	was	4.3,	whereas	the	greedy	method	yielded	
an	average	distance	of	4.8.	In	comparison,	random	dot	correspondences	yield	an	average	distance	of	11.0.

Following	Smith	and	Minda	(2001),	the	log	of	this	average	dot	distance	plus	1	(to	ensure	positive	distances)	
served	as	our	psychological	distance	measure	µ1j,	replacing	Equation	A1	which	was	used	in	the	case	of	nominal-
valued	attributes.	With	only	µ1j	serving	as	input,	Equation	A2	reduces	to

	 H e
j

c jact = −λ µ1 , 	 (A10)

where	Hj
act	is	the	activation	of	the	jth	cluster	and	λc	is	a	dot	pattern	generalization	parameter	that	controls	the	

gradient	of	generalization	in	the	model.	In	the	best-fit	results	shown	in	Figures	5	and	6,	there	was	no	learning	
on	this	dot	pattern	generalization	parameter,	and	it	was	treated	as	a	parameter	that	differed	between	the	catego-
rization	(λc	5 0.8)	and	recognition	(λc	5 1.3)	tasks.	Critically,	amnesic	patients	were	modeled	as	having	lower	
setting	of	the	hippocampal	parameter,	relative	to	controls	[min(τs,τh)	5	.053	vs.	.13,	respectively].

Both	categorization	and	recognition	responses	in	the	model	were	computed	using	the	following	response	
function:

	 P R
R k

( ,endorsement) =
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	 (A11)

where	P(endorsement)	is	the	probability	that	the	stimulus	is	judged	as	old	in	the	recognition	task	or	as	a	mem-
ber	of	the	category	in	the	categorization	task.	The	recognition	score,	R,	is	computed	according	to	Equation	A6.	
The	response	criteria	parameter,	k,	was	held	constant	(k	5 .19)	across	tasks.	Thus,	there	was	one	parameter	
[min(τs,τh)]	that	differed	between	the	simulated	groups	and	another	(λc)	that	differed	between	tasks;	otherwise,	
each	simulated	condition	was	identical.	In	this	sense,	our	approach	to	simulating	this	data	set	bears	a	strong	
resemblance	to	previous	efforts	(Nosofsky	&	Zaki,	1998;	Smith	&	Minda,	2001).	However,	we	also	considered	
the	ability	of	SUSTAIN	to	account	for	these	data	using	only	a	single	parameter,	min(τs,τh),	by	allowing	it	to	learn	
the	value	of	λc	over	the	course	of	training	according	to	Equation	A8.	Given	an	initial	setting	of	λc	5 0.47	and	k	5 
.26	across	all	tasks	and	populations	allowed	the	model	to	provide	a	similar	fit	[in	these	simulations,	min(τs,τh)	
was	.24	and	.27	for	amnesics	and	controls,	respectively].
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Younger and Cohen (1986).	Four-month-old	infants	were	modeled	as	having	lower	setting	of	the	hippocam-
pal	function	parameter,	relative	to	10-month-olds	[min(τs,τh)	5	.10	vs.	.67].	All	other	parameters	were	shared	
by	both	groups.	At	the	end	of	the	study	phase,	looking	time	was	predicted	by	SUSTAIN’s	recognition	score	(see	
Equation	A6).	More	familiar	items	were	assumed	to	predict	shorter	looking	times.	Absolute	looking	time	(in	
seconds)	was	calculated	by	linearly	regressing	mean	infant	looking	times	with	the	average	recognition	scores	
[R2	5

	
.96;	F(1,2)	5	47.5,	p	, .03].

Love, Gureckis, and Worchel (2007).	Older	adults	were	modeled	as	having	lower	setting	of	the	hippocam-
pal	function	parameter,	relative	to	younger	adults	(τh	5	.07	vs.	1.00).	All	other	parameters	were	shared	by	both	
groups.	The	parameter	τs	is	not	germane,	because	surprising	events	were	mispredictions	in	supervised	learning.	
One	additional	parameter,	λdistinct,	was	necessary	for	these	simulations,	due	to	the	fact	that	the	rule-relevant	
dimension	was	cued	throughout	the	study	phase	and,	therefore,	was	likely	to	be	more	salient	to	participants.	At-
tention	on	this	particular	attribute	was	fixed	(λdistinct	5	5.1)	throughout	the	simulations	instead	of	being	initially	
set	to	1	and	updated	by	Equation	A8.
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