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7 Synonyms
8 Bayesian model; Normative; Probabilistic approaches;

9 Rational

10 Theoretical Background
11 Bayesian methods have undergone tremendous progress

12 in recent years, due largely to mathematical advances in

13 probability and estimation theory (Chater et al. 2006).

14 These advances have allowed theorists to express and

15 derive predictions from far more sophisticated models

16 than previously possible. These models have generated

17 a good deal of excitement for at least two reasons. First,

18 they offer a new interpretation of the goals of cognitive

19 systems, in terms of inductive probabilistic inference,

20 which has revived attempts at rational explanation of

21 human behavior (Oaksford and Chater 2007). Second,

22 Bayesian models may have the potential to explain some

23 of the most complex aspects of human cognition, such as

24 language acquisition or reasoning under uncertainty,

25 where structured information and incomplete knowledge

26 combine in a way that has defied previous approaches

27 (e.g., Kemp and Tenenbaum 2008).

28 Constructing a Bayesianmodel involves two steps. The

29 first step is to specify the set of possibilities for the state of

30 the world, which is referred to as the hypothesis space.

31 Each hypothesis can be thought of as a prediction by the

32 subject about what future sensory information will be

33 encountered. However, the term hypothesis should not

34 be confused with its more traditional usage in psychology,

35 connoting explicit testing of rules or other symbolically

36 represented propositions. In the context of Bayesian

37 modeling, hypotheses need have nothing to do with

38 explicit reasoning, and indeed the Bayesian framework

39 makes no commitment whatsoever on this issue.

40For example, in Bayesian models of visual processing,

41hypotheses can correspond to extremely low-level infor-

42mation, such as the presence of elementary visual features

43(contours, etc.) at various locations in the visual field

44(Geisler et al. 2001). There is also no commitment regard-

45ing where the hypotheses come from. Hypotheses could

46represent innate biases or knowledge, or they could have

47been learned previously by the individual. Thus, the

48framework has no position on nativist–empiricist debates.

49Furthermore, hypotheses representing very different types

50of information (e.g., a contour in a particular location,

51whether or not the image reminds you of your mother,

52whether the image is symmetrical, whether it spells

53a particular word, etc.) are all lumped together in

54a common hypothesis space and treated equally by the

55model. Thus, there is no distinction between different

56types of representations or knowledge systems within the

57brain. In general, a hypothesis is nothing more than

58a probability distribution. This distribution, referred to

59as the likelihood function, simply specifies how likely each

60possible pattern of observations is according to the

61hypothesis in question.

62The second step in constructing a Bayesian model is to

63specify how strongly the subject believes in each hypoth-

64esis before observing data. This initial belief is expressed as

65a probability distribution over the hypothesis space, and is

66referred to as the prior. The prior can be thought of as an

67initial bias in favor of some hypotheses over others, in that

68it contributes extra “votes” (as elaborated below) that are

69independent of any actual data. This decisional bias allows

70the model’s predictions to be shifted in arbitrary direc-

71tions regardless of the data. As we discuss below, the prior

72can be a strong point of the model if it is derived inde-

73pendently, from empirical statistics of real environments.

74However, more commonly, the prior is chosen ad hoc,

75providing substantial unconstrained flexibility to models

76that are advocated as rational and assumption-free.

77Together, the hypotheses and the prior fully determine

78a Bayesian model. The model’s goal is to decide how

79strongly to believe in each hypothesis after data have

80been observed. This final belief is again expressed as

81a probability distribution over the hypothesis space and

82is referred to as the posterior. The statistical identity known
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83 as Bayes’ Rule is used to combine the prior with the

84 observed data to compute the posterior. Bayes’ Rule can

85 be expressed in many ways, but here we explain how it can

86 be viewed as a simple vote-counting model. Specifically,

87 Bayesian inference is equivalent to tracking evidence for

88 each hypothesis, or votes for how strongly to believe in

89 each hypothesis. The prior provides the initial evidence

90 counts, Eprior, which are essentially made-up votes that

91 give some hypotheses a head start over others, before

92 observing any actual data. When data are observed, each

93 observation adds to the existing evidence according to

94 how consistent it is with each hypothesis. The evidence

95 contributed for a hypothesis that predicted the observa-

96 tion will be greater than the evidence for a hypothesis

97 under which the observation was unlikely. The evidence

98 contributed by the ith observation, Edatai ; is simply added

99 to the existing evidence to update each hypothesis’ count.

100 Therefore the final evidence, Eposterior, is nothing more

101 than a sum of the votes from all of the observations, plus

102 the initial votes from the prior. (Formally, Eposterior equals

103 the logarithm of the posterior distribution, Eprior is the

104 logarithm of the prior, and Edata(H) is the logarithm of the

105 likelihood of the data under hypothesis H. The model’s

106 prediction for the probability that hypothesis H is correct,

107 after data have been observed, is proportional to exp

108 [Eposterior(H)]).

EposteriorðHÞ ¼ EpriorðHÞ þ
X

i

Edatai ðHÞ ð1Þ

109 This sum is computed for every hypothesis, H, in the

110 hypothesis space. The vote totals determine how strongly

111 themodel believes in each hypothesis in the end. Thus, any

112 Bayesian model can be viewed as tracking evidence for

113 each hypothesis, with initial evidence coming from the

114 prior and additional evidence coming from each new

115 observation. At its core, this is all there is to Bayesian

116 modeling.

117 To illustrate these two steps and how inference pro-

118 ceeds in a Bayesian model, consider the problem of deter-

119 mining whether a fan entering a football stadium is

120 rooting for the University of Southern California (USC)

121 Trojans or the University of Texas (UT) Longhorns based

122 on three simple questions: (1) Do you live by the ocean?

123 (2) Do you own a cowboy hat? (3) Do you like Mexican

124 food? The first step is to specify the space of possibilities

125 (i.e., hypothesis space). In this case, the hypothesis space

126 consists of two possibilities: being a fan of either USC or

127 UT. Both of these hypotheses entail probabilities for the

128 data we could observe, for example, P oceanjUSCð Þ ¼ :8

129 and P oceanjUTð Þ ¼ :3. Once these probabilities are given,

130 the two hypotheses are fully specified. The second step is

131to specify the prior. In many applications, there is no

132principled way of doing this, but in this example, the

133prior corresponds to the probability that a randomly

134selected person will be a USC or a UT fan, that is, one’s

135best guess as to the overall proportion of USC and UT fans

136in attendance.

137With the model now specified, inference proceeds by

138starting with the prior and accumulating evidence as new

139data are observed. For example, if the football game is

140being played in Los Angeles, one might expect that most

141people are USC fans, and hence the prior would provide

142an initial evidence count in favor of USC. If our target

143person responded that he lives near the ocean, this obser-

144vation would add further evidence for USC. The magni-

145tudes of these evidence values will depend on the specific

146numbers assumed for the prior and for the likelihood

147function for each hypothesis, but all that the model does

148is take the evidence values and add them up. Each new

149observation adds to the balance of evidence among the

150hypotheses, strengthening those that predicted it relative

151to those under which it was unlikely.

152There are several ways in which real applications of

153Bayesian modeling becomemore complex than the simple

154example above. However, these all have to do with the

155complexity of the hypothesis space rather than the Bayes-

156ian framework itself. For example, many models have

157a hierarchical structure, in which hypotheses are essen-

158tially grouped into higher-level overhypotheses.

159Overhypotheses are generally more abstract and require

160more observations to discriminate among; thus

161hierarchical models are useful for modeling learning or

162change over developmental timescales (e.g., Kemp et al.

1632007). However, each overhypothesis is just a weighted

164sum of elementary hypotheses, and inference among

165overhypotheses comes down to exactly the same vote-

166counting scheme as described above. As a second example,

167many models assume special mathematical functions for

168the prior, such as conjugate priors, that simplify the com-

169putations involved in updating evidence. However, such

170assumptions are generally made solely for the convenience

171of the modeler, rather than for any psychological reason

172related to the likely initial bias of a human subject. Finally,

173for models with especially complex hypothesis spaces,

174computing exact predictions often becomes computation-

175ally intractable. In these cases, sophisticated approxima-

176tion schemes are used, such as Markov-chainMonte Carlo

177(MCMC) or particle filtering (i.e., sequential Monte

178Carlo). These algorithms yield good estimates of the

179model’s true predictions while requiring far less compu-

180tational effort. However, once again they are used for the

181convenience of the modeler and usually are not meant as
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182 proposals for how human subjects might solve the same

183 computational problems.

184 To summarize: Hypotheses are probability distribu-

185 tions and have no necessary connection to explicit reason-

186 ing. The model’s predictions depend on the initial biases

187 on the hypotheses (i.e., the prior). The heart of Bayesian

188 inference – combining the prior with observed data to

189 reach a final prediction – is formally equivalent to

190 a simple vote-counting scheme. Learning and one-off

191 decision-making both follow this scheme, and are identi-

192 cal except for timescale and specificity of hypotheses. Most

193 of the elaborate mathematics that often arises in Bayesian

194 models comes from the complexity of their hypothesis sets

195 or the tricks used to derive tractable predictions, which

196 generally have little to do with the psychological claims of

197 the researchers. Bayesian inference itself, aside from its

198 assumption of optimality and close relation to vote-

199 counting models, does not make psychological claims in

200 recards to representational format, encoding, retrieval,

201 attention, etc. However, the flexibility and power of the

202 Bayesian framework has allowed researchers to model

203 complex learning and decision-making behaviors that

204 have proven intractable or unwieldly under other

205 formulations.

206 Important Scientific Research and Open
207 Questions
208 The restriction to computational-level accounts (cf. Marr

209 1982) severely limits contact with process-level theory and

210 data. Rational approaches attempt to explain why cogni-

211 tion produces the patterns of behavior that it does, but

212 they offer no insight into how cognition is carried out.

213 Second, in general, there are multiple rational theories of

214 any given task, corresponding to different assumptions

215 about the environment and the learner’s goals. Conse-

216 quently, there is insufficient acknowledgement of these

217 assumptions and their critical roles in determining

218 model predictions. It is extremely rare to find

219a comparison among alternative Bayesian models of the

220same task to determine which is most consistent with

221empirical data. Likewise, there is little recognition when

222the critical assumptions of a Bayesian model logically

223overlap closely with those of other theories. These chal-

224lenges are currently being addressed by members of the

225Bayesian community. The end goal is to integrate Bayesian

226approaches with what we know about the mental pro-

227cesses that support learning and decision making (Jones

228and Love 2011).

229Cross-References
230▶Concept Learning

231▶Human Causal Learning

232▶Human Cognition and Learning

233▶Human Learning

234▶ Learning Algorithms

235▶Mathematical Models/Theories of Learning

236▶Metatheories of Learning

237▶Normative Reasoning and Learning
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