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   Editor’s Preview
  Chapter 4, ‘Mechanistic models of associative and rule-based category 
learning’, reviews some of the computational models that have been 
used to simulate the different forms of concept learning that were 
introduced in Chapters 2 and 3. One class of models has been 
designed to capture our ability to learn rule-based categories that 
have defining features. Such models are well suited to learn concepts 
such as  triangle  in which all members have three sides, angles that 
add to 180°, and form a closed figure. With rule-based concepts, 
membership is all or none, meaning that as long as an object has the 
criterial features of a triangle, it is a triangle, and no triangle is any 
better example of a triangle than any other triangle. 

 A difficulty with category-learning models that can just learn rules 
is that many categories do not seem to be rule based. For example, 
one might try to define the concept of  bird  with features such as, has 
feathers, can fly, and lays eggs, but exceptions can be found (i.e. baby 
male ostriches are birds, but they do not (1) have feathers, (2) fly, or 
(3) lay eggs). In a more famous example, the philosopher Wittgenstein 
argued that a concept such as  game  has no attribute shared by virtu-
ally all of its members. Rather, members of a category bear a relation-
ship of family resemblance where there is a cluster of attributes that 
characterizes the family, but hardly any attribute would hold for all 
members of the family. 

 Categories with a family-resemblance structure are learned well by 
models that represent prototypes. A prototype can be thought of as 
the central tendency of a category or as the best representative of a 
family in the sense of having the greatest number of attributes in 
common with other members of the category and the fewest number 
of attributes in common with members of contrast categories. Models 
that represent categories as prototypes can account for typicality 
effects in which category membership is graded with some members 
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judged as more representative of the category than other members, 
based on their greater resemblance to the prototype (e.g. robins are 
rated as more typical birds than are penguins). 

 While prototype models perform well in terms of learning, many 
natural categories that have a regular, similarity-based structure, 
models that represent concepts as sets of exemplars perform better at 
representing more complex, irregular category structures (i.e. large 
and dark things, and small and light things go into one category, and 
small and dark things, and large and light things go into another 
category, see  Figure  4.3   of Chapter 4). Exemplar models represent 
more information about categories than do prototype models in 
terms of retaining data about the frequency of the exemplars, their 
variability, and the correlations among them. However, at the level of 
intuition, exemplar models are not always viewed as cognitively 
 efficient because they store every exemplar ever encountered (e.g. is 
it reasonable to think that a person walking down the street will 
record every similar-looking bird that is experienced and store it in 
memory?).  

 Given that each of the models (rule, prototype, and exemplar) runs 
into one or another difficulty, investigators have more recently been 
implementing hybrid models where the manner in which the model 
represents concepts is determined by the structure of those concepts 
(i.e. categories that can be organized by a regular, similarity-based 
structure are represented as prototypes, whereas categories that have 
a more complex, irregular structure are represented as exemplars). 
There are also models that have different category-learning systems 
within them such that each category-learning system functions via a 
distinct set of operating principles. Despite the differences in the 
various systems of category learning, one commonality is that they all 
function based on experiences with exemplars. Given that human 
adults, human infants, and nonhuman animals all experience exem-
plars, one may therefore look for evidence that the various category-
learning systems are continuous across development and species.  

   Introduction   
 Judging a person as a friend or foe, a mushroom as edible or poisonous, or a sound as 
an  l  or  r  are examples of categorization problems. As people never encounter the same 
exact stimulus twice, they must develop categorization schemes that capture the useful 
regularities in their environment. One challenge for psychological research is to deter-
mine how humans acquire and represent categories. 

 The focus of this chapter is on proposed category learning mechanisms. We focus 
on models that attempt to explain how people acquire categories from observed 
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 examples, as opposed to verbal instruction. Most of the models that are discussed in 
this chapter were developed to account for adult human performance, but many of 
these models have also been successfully applied to studies involving humans of all 
ages and to other species. Category learning is a theory and model-rich area within 
cognitive psychology. Models have played a prominent role in shaping our under-
standing of human category learning. Accordingly, proposed mechanisms are diverse, 
including rule-, prototype-, and exemplar-based models, as well as hybrid models and 
models that contain multiple systems. One general trend is towards models with 
increasingly sophisticated processing mechanisms that can mimic the behaviours of 
existing  models, as well as address behaviours outside the scope of previous models. 

 In the course of reviewing these various models, we emphasize what the relative 
merits of each model reveal about the nature of human learning. When we discuss 
exemplar models, we devote special attention to a model of category learning that 
attempts to bridge work in the analogy and category-learning literatures. The model, 
‘building relations through instance-driven gradient error shifting (BRIDGES), success-
fully accounts for findings in the child and animal learning literatures. (Tomlinson & 
Love,  2006  ) We choose to showcase this particular model because it is well matched to 
the overarching goals of this book, and the focus should help the reader understand 
the basis for all the models reviewed, which is the primary goal of this chapter. 

 In the remainder of this chapter, we briefly review several models of human cate-
gory learning. Presentation order is organized chronologically from oldest to most 
recent accounts of category learning. Although more recent models offer some advan-
tages over their ancestors, it would be a mistake to view ancestral models as being 
supplanted by their descendants. Each model class addresses some key aspects of 
human category learning and serves an important theoretical role. In fact, many older 
models have taken on new life as components in recently proposed multiple systems 
models. One common component in these multiple systems models is a rule-based 
system, which is the first model class that we consider.     

   Rule-based models   
 The classical view of concepts holds that categories are defined by logical rules. This 
view has a long history dating back to Aristotle. In  Figure  4.1  , any item that is a square 
is a member of category  A . This simple rule determines category membership. 
According to the rule view, our concept of category  A  can be represented by this sim-
ple rule. Discovering this rule would involve a rational hypothesis testing procedure. 
This procedure attempts to discover a rule that is satisfied by all of the positive exam-
ples of a concept, but none of the negative examples of the concept (i.e. items that are 
members of other categories). In trying to come up with such a rule for category  A , 
one might first try the rule  if dark, then in category A . After rejecting this rule (because 
there are counterexamples), other rules would be tested (starting with simple rules 
and progressing towards more complex rules) until the correct rule is eventually dis-
covered. For example, in learning about birds, one might first try the rule  if it flies, then 
it is a bird . This rule works pretty well, but not perfectly (penguins do not fly and bats 
do). Another simple rule like  if it has feathers, then it is a bird  would not work either 
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because a pillow filled with feathers is not a bird. Eventually, a more complex rule 
might be discovered like  if it has feathers and wings, then it is a bird .  

 For decades, psychologists have conducted experiments to characterize the relative 
difficulty people have in learning various types of rules. (Bruner, Goodnow, & 
AustinBruner,   1956  , Shepard, Hovland, & Jenkins,   1961  ) These studies have provided 
the primary data used to develop and validate models of hypothesis testing. Some 
models, like RULEX, (Nosofsky et al.   1994  ) embody the hypothesis-testing procedure 
described above. RULEX starts with simple hypotheses and progresses towards more 
complex hypotheses until a set of rules and exceptions is discovered that properly 
discriminates between the categories. 

 As discussed in the Chapter 3 in this book, the term  rule  has various, somewhat 
conflicting, interpretations. Here, we focus on rule-based models, like RULEX, that 
engage in explicit, hypothesis testing. RULEX’s mechanistic approach (i.e. algorithmic 
in the sense of Marr,   1982  ) contrasts with other approaches that aim to predict how 
difficult learning should be based on calculations of how complex the correct hypoth-
esis is (Feldman,   2000  ). The latter approaches, which are not concerned with the 
actual process of learning, have more in common with measures of complexity and 
compression (Pothos & Chater   2002  ). Yet other approaches, such as general recogni-
tion theory (Maddox & Ashby,   1993  ), aim to assess and compactly describe people’s 
performance rather than characterize the learning process. Unlike these more abstract 
approaches, mechanistic models of hypothesis testing, such as RULEX, largely imple-
ment the strategic and conscious thought processes that we feel (by introspection) that 
we are carrying out when solving classification problems. 

     Fig. 4.1    Examples of category  A  and category  B . A simple rule on shape discriminates 
between the two categories.    

Category A Category B
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 Although rules can in principle provide a concise representation of a concept, often 
more elaborate representations would serve us better. Concept representation needs 
to be richer than a simple rule because we use concepts for much more than simply 
classifying objects we encounter. For instance, we often use concepts to support infer-
ence (e.g. a child infers that members of the category stove can be dangerously hot). 
Using categories to make inferences is a very important use of concepts (Markman & 
Ross,   2003  ). Knowing something is an example of a concept tells us a great deal about 
the item. For example, after classifying a politician from the USA as a Republican, one 
can readily infer the politician’s position on a number of issues. The point is that our 
representations of concepts must include information beyond what is needed to clas-
sify items as examples of the concept. For example, the rule  if square, then in category A  
correctly classifies all members of category  A  in  Figure  4.1  , but it does not capture the 
knowledge that all category  A  members are  dark . One problem with rule representa-
tions of concepts is that potentially useful information is discarded. In fact, even when 
people explicitly use rules to classify items, performance is heavily influenced by rule-
irrelevant information (Allen & Brooks,   1991  ; Lacroix, Giguere, & Larochelle,   2005  ; 
Sakamoto & Love,   2004  ), which is inconsistent with rules serving as the sole basis for 
category representations. 

 Perhaps the biggest problem with the rule approach to concepts is that most of our 
everyday categories do not seem to be describable by a tractable rule. To demonstrate 
this point, Wittgenstein (  1953  ) noted that the concept game lacks a defining property. 
Most games are fun, but Russian roulette is not fun. Most games are competitive, but 
ring around the roses is not competitive. While most games have characteristics in 
common, there is not a rule that unifies them all. Rather, we can think of the members 
of the category game as being organized around a family-resemblance structure (anal-
ogous to how members of your family resemble one another). Rosch and colleagues 
(Rosch & Mervis,  1975  ) in their seminal work, demonstrated the psychological reality 
of many of Wittgenstein’s intuitions. Even some paradigmatic examples of rule-based 
classification reveal a non-rule-based underbelly (see Love, Tomlinson, & Gureckis, 
  2008  , for a review). Hahn and Ramscar (  2001  ) offer one such example. Tigers are 
defined as having tiger DNA, which is a seemingly rule-based category definition. 
However, determining whether an animal has tiger DNA amounts to assessing the 
similarity of the animal’s DNA to known examples of tiger DNA. 

 A related weakness of the rule account of concepts is that examples of a concept 
 differ in their typicality (Barsalou,   1985  ; Posner & Keele,   1968  ; Reed,   1972  ; Rosch & 
Mervis,   1975  ). If all a concept consisted of was a rule that determined membership, 
then all examples should have equal status. According to the rule account, all that 
should matter is whether an item satisfies the rule. Our concepts do not seem to have 
this definitive flavour. For example, some games are better examples of the category 
game than others. Basketball is a very typical example of the category games. Children 
play basketball in a playground, it is competitive, there are two teams, each team 
 consists of multiple players, you score points, etc. Basketball is a typical example of the 
category of games because it has many characteristics in common with other games. 
On the other hand, Russian roulette is not a very typical game – it requires a gun and 
one of the two players dies. Russian roulette does not have many properties in  common 
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with other games. In terms of family-resemblance structure, we can think of basketball 
as having a central position and Russian roulette being a distant cousin to the other 
family members. These findings extend to categories in which a simple classification 
rule exists. For example, people judge the number three to be a more typical odd 
number than the number forty-seven even though membership in the category odd 
number can be defined by a simple rule (Gleitman, Gleitman, Miller, & Ostrin,   1996  ). 

 The fact that category membership follows a gradient as opposed to being all or 
none affords us flexibility in how we apply our concepts. Of course, this flexibility can 
lead to ambiguity. Consider the concept mother (see Lakoff,   1987  , for a thorough 
analysis). It is a concept that we are all familiar with that seems straightforward – a 
mother is a woman who becomes pregnant and gives birth to a child. But what about 
a woman who adopts a neglected infant and raises it in a nurturing environment? Is 
the birth mother who neglected the infant a mother? What if a woman is implanted 
with an embryo from another woman? Court cases over maternity arise because the 
concept of motherhood is ambiguous. The concept exhibits greater flexibility and 
productivity than is even indicated above. For example, is it proper to refer to an 
architect as the mother of a building? All the above examples of the concept mother 
share a family-resemblance structure (i.e. they are organized around some common-
alities), but the concept is not rule based. Some examples of the concept mother are 
better than others. 

 We do not want to imply that rule-based approaches do not have their place. For 
example, rule-based approaches might be viable for some socially defined categories. 
For example, determining whether currency is legal tender might largely involve 
applying a series of rules (Hampton,   2001  ). Moreover, as we will see later in this chap-
ter, rule-based approaches figure prominently in multiple systems accounts. While 
rule-based approaches might not provide a sufficient explanation of human learning 
in isolation, such approaches might prove viable in certain domains or as components 
of multiple system models.     

   Prototype-based models   
 The prototype approach to concept learning and representation was developed by 
Rosch and colleagues to address some of the shortcomings of the rule approach. 
Prototype models represent information about all the possible properties (i.e. stimu-
lus dimensions), instead of focusing on only a few properties like rule models do. The 
prototype of a category is a summary of all of its members (Posner & Keele,   1968  : 
Reed,   1972  ; Smith & Minda,   2001  ). Mathematically, the prototype is the average or 
central tendency of all category members.  Figure  4.2   displays the prototypes for two 
categories, simply named categories  A  and  B . Notice that all the items differ in size and 
luminance (i.e. there are two stimulus dimensions) and that the prototype is located 
amidst all of its category members. The prototype for each category has the average 
value on both the stimulus dimensions of size and luminance for the members of its 
category.  

 The prototype of a category is used to represent the category. According to the pro-
totype model, a novel item is classified as a member of the category whose prototype 
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it is most similar to. For example, a large, bright item would be classified as a member 
of category  B  because category  B ’s prototype is large and bright (see  Figure  4.2  ). The 
position of the prototype is updated when new examples of the category are encoun-
tered. For example, if one encountered a very small and dark item that is a member of 
category  A , then category  A ’s prototype would move slightly towards the bottom left 
corner in  Figure  4.2  . As an outcome of learning, the position of the prototype shifts 
towards the newest category member in order to take it into account. A prototype can 
be very useful for determining category membership in domains where there are many 
stimulus dimensions that each provide information useful for determining category 
membership, but no dimension is definitive. For example, members of a family may 
tend to be tall, have large noses, a medium complexion, brown eyes, and good muscle 
tone, but no family member possesses all of these traits. Matching on some subset of 
these traits would provide evidence for being a family member. 

 Notice the economy of the prototype approach. Each cloud of examples in  Figure  4.2   
can be represented by just the prototype. The prototype is intended to capture the 
critical structure in the environment without having to encode every detail or example. 
It is also fairly simple to determine which category a novel item belongs to by determin-
ing which category prototype is most similar to the item. 

 Unlike the rule approach, the prototype model can account for typicality effects. 
According to the prototype model, the more typical category members should be 
those members that are most similar to the prototype. In  Figure  4.2  , similarity can be 
viewed in geometric terms – the closer items are together in the plot, the more similar 
they are. Thus, the most typical items for categories  A  and  B  are those that are closest 
to the appropriate prototype. Accordingly, the prototype approach can explain why 
robins are more typical birds than penguins. The bird prototype represents the average 
bird: has wings, has feathers, can fly, can sing, lives in trees, lays eggs, etc. Robins share 

     Fig. 4.2    Two categories and their prototypes.    
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all of these properties with the prototype, whereas penguins differ in a number of ways 
(e.g. penguins cannot fly, but do swim). Extending this line of reasoning, the best 
example of a category should be the prototype, even if the actual prototype has never 
been viewed (or does not even exist). Indeed, numerous learning studies support this 
conjecture. After viewing a series of examples of a category, human participants are 
more likely to categorize the prototype as a category member (even though they never 
actually viewed the prototype) than they are to categorize an item they have seen 
before as a category member (Posner & Keele,   1968  ). 

 As the prototype approach does not represent concepts in terms of a logical rule that 
is either satisfied or not, it can explain how category membership has a graded struc-
ture that is not all or none. Some examples of a category are simply better examples 
than other examples. Moreover, categories do not need to be defined in terms of logi-
cal rules, but are rather defined in terms of family resemblance to the prototype. In 
other words, members of a category need not share a common defining thread, but 
rather can have many characteristic threads in common with one another. 

 The prototype approach, while preferable to the rule approach for the reasons just 
discussed, does fail to account for important aspects of human concept learning. The 
main problem with the prototype model is that it does not retain enough information 
about examples encountered in learning. For instance, prototypes do not store any 
information about the frequency of each category; yet people are sensitive to  frequency 
information. If an item was about equally similar to the prototype of two different 
categories and one category was one hundred times larger than the other, people 
would be more likely to assign the item to the more common category (under most 
circumstances, see Kruschke,   1996  ). Of course, some of these concerns could be 
addressed by expanding the information that a prototype encodes. 

 However, other concerns seem fundamental to the prototype approach. Prototypes 
are not sensitive to the correlations and substructure within a category. For example, 
a prototype model would not be able to represent that spoons tend to be large and made 
of wood or small and made of steel. These two subgroups would simply be averaged 
together into one prototype. This averaging makes some categories unlearnable with a 
prototype model. One example of such a category structure is shown in  Figure  4.3  . Each 
category consists of two subgroups. Members of category  A  are either  small  and  dark,  
or they are  large  and  light , whereas members of category  B  are either  large  and  dark  or 
they are  small  and  light . The prototypes for the two categories are both in the centre of 
the stimulus space (i.e. medium size and medium luminance). Items cannot be classified 
correctly by which prototype they are most similar because the prototypes provide 
little guidance. 

 In general, prototype models can only be used to learn category structures that are 
linearly separable. A learning problem involving two categories is linearly separable 
when a line or plane can be drawn that separates all the members of the two categories. 
The category structure shown in  Figure  4.2   is linearly separable because, a diagonal 
line can be drawn that separates the category  A  and  B  members (i.e. the category  A  
members fall on one side of the line and the category  B  members fall on the other side 
of the line). Thus, this category structure can be learned with a prototype model. The 
category structure illustrated in  Figure  4.3   is nonlinear – no single line can be drawn 

04-Mareschal-Chap-04.indd   6004-Mareschal-Chap-04.indd   60 8/19/2009   3:36:48 PM8/19/2009   3:36:48 PM



BRADLEY C. LOVE AND MARC TOMLINSON 61

to segregate the category  A  and  B  members. Mathematically, a category structure is 
linearly separable when there exists a weighting of the feature dimensions that yields 
an additive rule that correctly indicates one category when the sum is below a chosen 
threshold and the other category when the sum is above the threshold. 

 The inability of the prototype model to learn nonlinear category structures detracts 
from its worth as a model of human concept learning because people are not biased 
against learning nonlinear category structures. While the extent to which natural cat-
egories deviate from linear structures is contended (Murphy,  2002  ), the general con-
sensus is that people in the laboratory do not show a preference for linear structures in 
supervised learning (Medin & Schwanenflugel,   1981  ), though they might in unsuper-
vised learning (Love,   2002  ). Some nonlinear category structures may actually be easier 
to acquire than linear category structures. For example, it seems quite natural that 
small birds sing, whereas large birds do not sing. Many categories have subtypes within 
them that we naturally pick out. One way for the prototype model to address this 
learnability problem is to include complex features that represent the presence of mul-
tiple simple features (e.g. large and blue). Unfortunately, this approach quickly becomes 
unwieldy as the number of stimulus dimensions increases (e.g. Gluck & Bower,  1988  ). 

 Related to the prototype model’s inability to account for substructure within cate-
gories is its inadequacy as a model of item recognition. Unlike exemplar models con-
sidered in the following section (Medin & Schaffer,   1978  ; Nosofsky,   1986  ), prototypes 
models do not readily account for how people recognize specific items because the 
category prototype averages away item distinguishing information that people retain 
in some situations.     

   Exemplar-based models   
 Exemplar models store every training example in memory instead of just the proto-
type (i.e. the summary) of each category. Perhaps surprising upon first consideration, 

     Fig. 4.3    Two categories and their prototypes.    
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exemplar models can account for findings marshaled in support of prototype models, 
such as sensitivity to family-resemblance structure. At the same time, by retaining all 
of the information from training, exemplar models address many of the shortcomings 
of prototype model. Exemplar models are sensitive to the frequency, the variability, 
and the correlations among items. In this section, we discuss how exemplar-based 
models can display these behaviors. 

 Unlike prototype models, exemplar models can master category structures that 
contain substructure. For the learning problem illustrated in Figure   4.3  , an exemplar 
model would store every training example. New items are classified by how similar 
they are to all items in memory (not just the prototype). For the category structure 
illustrated in  Figure  4.3  , the pairwise similarity of a novel item and every stored item 
would be calculated. If the novel item tended to be more similar to the category  A  
members (i.e. the item was small and dark) than the category  B  members, then the 
novel item would be classified as a member of category  A . 

 One aspect of exemplar models that seems counterintuitive is their lack of any 
abstraction in category representation. It seems that humans do learn something more 
abstract about categories than a list of examples. Surprisingly, exemplar models are 
capable of displaying abstraction. For instance, exemplar models can correctly predict 
that humans more strongly endorse the underlying prototype (even if it has not been 
seen) than an actual item that has been studied (a piece of evidence previously cited in 
favour of the prototype model). How could this be possible without the prototype 
actually being stored? It would be impossible if exemplar models simply functioned by 
retrieving the exemplar in memory that was most similar to the current item and 
 classified the current item in the same category as the retrieved exemplar (this is essen-
tially how processing works in a prototype model, except that a prototype is stored in 
memory instead of a bunch of exemplars). 

 Instead, exemplar models engage in more sophisticated processing and calculate the 
similarity between the current item (the item that is to be classified) and every item in 
memory. Some exemplars in memory will be very similar to the current item, whereas 
others will not be very similar. The current item is classified in the category in which 
the sum of its similarities to all the exemplars is greatest. When a previously unseen 
prototype is presented to an exemplar model, it can be endorsed as a category member 
more strongly than a previously seen item. The prototype (which is the central ten-
dency of the category) will tend to be somewhat similar to every item in the category, 
whereas any given non-prototype item will tend to be very similar to some items (espe-
cially itself!) in memory, but not so similar to other items. Overall, the prototypical 
item can display an advantage over an item that has actually been studied. Abstraction 
in an exemplar model is indirect and results from processing (i.e. calculating and sum-
ming pairwise similarities), whereas abstraction in a prototype model is rather direct 
(i.e. prototypes are stored). 

 By and large, exemplar models can mimic all the behaviours of prototype models, 
but the opposite is not true. There are some subtle behaviours that the prototype 
model can display that versions of exemplar models cannot. For example, prototype 
and exemplar models predict slightly different category-endorsement gradients 
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(i.e. probability of membership) as one moves towards the centre of a category (see 
Nosofsky & Zaki,   2002  ; and Smith,   2002  , for a recent debate). 

 Although exemplar models are decent models of recognition, they do have some 
fundamental shortcomings. Exemplar models calculate recognition strength as the 
sum of similarity to all items stored in memory. Thus, the pairwise similarity relations 
among items governs recognition. However, humans often appear to build schema-
like structures in memory and store items preferentially that deviate from these struc-
tures (see Sakamoto & Love,   2004  , for a review). Thus, exemplar models do not 
correctly predict enhanced recognition for items that violate salient rules or patterns 
(Palmeri & Nosofsky,   1995  ). Exemplar models do not capture these results because 
exception items that violate these patterns are not exceptional in terms of their pair-
wise similarity relations to other items. Exception items are exceptional in terms of 
violating a knowledge structure stored in memory (Sakamoto & Love,   2004  ,   2006  ). 

 At a more philosophical level, exemplar models seem to make some questionable 
assumptions. For example, exemplar models store every training example which 
seems excessive. Moreover, every exemplar is retrieved from memory every time an 
item is classified (though see Nosofsky & Palmeri,   1997  , for an exception). In addition 
to these assumptions, one worries that the exemplar model does not make strong-
enough theoretical commitments because it retains all information about training and 
contains a great deal of flexibility in how it processes information. In support of this 
conjecture, Sakamoto, Matsuka, and Love (  2004  ) built an exemplar model that effec-
tively built distributed knowledge structures and could account for exception recogni-
tion findings (also see Rodrigues & Murre,   2007  ). While their model did not explicitly 
build schema or exception representations, the model did learn to selectively tune 
exemplars (broad tunings for rule-following items and tight-tunings for exception 
items) and properly weight these exemplars to give rise to an exemplar model that 
functionally contained exception and schema-like knowledge structures. If there are 
no constraints on how items are processed, then in principle an exemplar model can 
account for any pattern of results thereby reducing the exemplar models’ theoretical 
utility. However, in practice, exemplar models often follow previously published 
 formalisms and serve as valuable theoretical tools.    

   Exemplar-based relational learning   
 One favourable property of exemplar models is their transparency. Their predictions 
are purely governed by the weighting of experienced examples. This property makes 
them ideally suited for computational explorations of new domains, such as relational 
category learning. In this subsection, we consider an exemplar model of how people 
learn seemingly abstract concepts by analogy to exemplars. The model, BRIDGES, 
provides an account of how animals (and people) learn to respond relationally 
(Tomlinson & Love,   2006  ). BRIDGES differs from other exemplar models by being 
sensitive to relational information. 

 Many of our categories are relational and therefore it is important to develop mod-
els that explain how such categories are acquired. For example, membership in the 
category  thief  is defined by playing the appropriate relational role in the relation  steals  
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rather than exhibiting some combination of concrete features (Markman & Stilwell, 
  2001  ). Differences in ability to classify relationally is often taken as a key marker of the 
relative mental capacities of animals, children, and adults (Thompson & Oden,   2000  ). 

 BRIDGES combines two popular approaches to cognition, exemplar-based category 
learning (Kruschke,   1992  ) and structure mapping theory (Gentner,  1983  ). Structure 
mapping theory suggests that similarity is determined between two scenes by aligning 
the objects and relations present within one scene with the objects and relations in the 
other scene (Markman & Gentner,   1993  ). The similarity of two scenes is then a meas-
ure of how well they align. This alignment is traditionally done using an unweighted 
graph-matching algorithm.  Figure  4.4   provides an overview of BRIDGES.  

 BRIDGES extends the notion of similarity used in exemplar models to an attention-
weighted form of structure-mapping theory. This allows relational similarity, the 
degree to which mapped objects play the same role in their corresponding relations 
(Jones & Love,   2007  ), to play a variable role in the alignment process. Attention can 
shift between the features (e.g.  red ) and the relations (e.g.  redder ). This allows for 
abstraction away from the features and to the relations, but only so far as the statistics 
of the environment warrant. Attention is updated according to a supervised or unsu-
pervised gradient-descent algorithm. The result is that BRIDGES is able to learn to 
respond differentially to the presence of relations, but its response is still affected by 

     Fig. 4.4    A depiction of the BRIDGES model. The structured graphs represent the input 
and exemplars. These graphs encode features and their relations (e.g. man biting dog 
and dog biting man would have different graphs****). The luminance of the circles 
within the graphs represent attention to individual relations and features in the model. 
Node density reflects similarity-based activation of the nodes following the analogical 
match process. These activations are passed across connections weights to the category 
nodes.    

Input Exemplar
nodes

Category
nodes
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the features of the stimuli.  Figure  4.5   illustrates how attentional weighting can disam-
biguate between competing interpretations.  

 Previous simulations of same–different learning in pigeons (Young & Wasserman, 
  1997  ) and infant grammar learning (Marcus et al.  1999  ) have demonstrated that 
BRIDGES is capable of learning a variety of different relational behaviors without 
resorting to rules or symbol systems (Tomlinson & Love,   2006  ). Just like the partici-
pants in these experiments, BRIDGES generalizes to presentations of the relations 
with novel objects. Moreover, these relations are still clouded by the featural similarity 
of the individual stimuli because attention shifting is rarely complete, consistent with 
behavioural shifts seen in human development and acquired expertise(Chi, Feltovich, 
& Glaser,   1981  ; Gentner & Ratterman,   1991  ). 

 Other explanations for same–different learning centre on measures of display 
entropy or variability (Young, Ellefson, & Wasserman,   2003  ). These explanations and 
BRIDGES are indistinguishable with a simple goodness-of-fit measure. However, 
BRIDGES makes a testable prediction different from the variability model; the 
responses in a same–different task should not just be based on the sameness and dif-
ferentness of the array but also on the featural similarity between the test array and 
previous arrays the animal has been trained with, because some attention should still 
be on the features. Gibson and Wasserman (  2004  ) provide just such a test and confirm 
BRIDGE’s prediction. 

 In Gibson and Wasserman (  2004  ), pigeons are trained on stimuli consisting of 
arrays of 16 icons drawn from one of two sets of icons,  a  and  b .  Same  arrays always 
contain 16 identical  a  icons, whereas  different  arrays always contain different arrange-
ments of the 16 unique  b  icons. When pigeons are tested with novel arrays with icons 
from set  c , they behave based on the relations within the array, but when shown  differ-
ent  arrays containing  a  icons, the pigeons are more likely to respond  same , and 
 vice-versa for  same  arrays formed with  b  icons. The pigeons learn to respond to the 
novel relations, but their responses are still tied to the features of the exemplars used 
in training. 

     Fig. 4.5    An example comparison between two graphs is shown. There are two possible 
ways to map the elements in these corresponding relations. The example on the left 
preserves parallel connectivity by mapping elements that play the same role in each 
relation to one another. This solution is high in relational match, but low in featural 
match because the corresponding elements differ in shape features. The situation is 
reversed in the mapping shown in the right example. Attention weighting of 
mismatches determines which of these two possible mappings will be preferred by 
BRIDGES. BRIDGES chooses the mapping that minimizes attention-weighted mismatch.    

  Left_of  )(      ,   Left_of        )(      ,mapLeft_of  )(      ,   Left_of (      ,map )

Attention on relation
preserves parallel connectivity

Attention on features 
preserves featural match
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 These simulations provide insight into the differences among animals, infants, 
 children, and adults. For the simulations just described, the exemplars were only rep-
resented with simple features and a type–token relationship. The type–token relation-
ship assumes that the individual is able to recognize objects present in the input as 
members of the same type. In other words, when pigeons are presented with an array 
of shapes, they realize that all of the squares are members of an abstract type, square. 
This assumption is sufficient for an array of simple relational learning tasks. However, 
when modelling more complex behaviour, in children or adults, a more complex 
 representation is often required. BRIDGES provides a tool to talk about these and 
other differences in a quantitative way. 

 Animals might not be able to succeed at complex relational reasoning tasks, but they 
can compare current examples to previous examples in a structured way, and from 
this respond in a manner consistent with an understanding of abstract relations. 
BRIDGES is a computational model of how this relation-like behaviour can be learned. 
By comparing concrete examples of the relations in a structured manner, one can 
learn to respond in a manner consistent with the relations, without true abstract 
knowledge. BRIDGES extends this core idea of exemplar models that all abstraction 
occurs as a result of online processing to relational categorization. BRIDGES’s account 
serves to highlight the transparency and clarity of exemplar-based explanations.      

   Hybrid models   
 Prototype and exemplar models can be seen as opposite ends of a continuum of cate-
gory representation. On one extreme, prototype models store every category member 
together in memory. At the other extreme, exemplar models store every category 
member separately in memory. Between these two extremes lie a wealth of possibili-
ties. Categories in the real world contain multiple subtypes and exceptions. For exam-
ple, the category mammals contains subcategories like cats, dogs, horses, and bats. 
Ideally, our mental representations would reflect this structure. Both prototype and 
exemplar models are inflexible in that they treat the structure of each category as pre-
determined. These models do not let the distribution of category members influence 
the form category representations take. For example, prototype models assume that 
categories are always represented by one node (i.e. the prototype) in memory, whereas 
exemplar models assume that categories are always represented by one node in mem-
ory for every category example encountered. 

 One reasonable intuition is that similar items should cluster together in memory 
(Anderson,   1991  ; Love, Medin, & Gureckis,   2004  ; Vampaemel & Storms, in press). 
For example, a person walking down Congress Avenue in Austin in the fall will 
encounter thousands of seemingly identical grackles. The rationale for storing each of 
these birds separately in memory is unclear. At the same time, someone walking down 
the street probably would mentally note unusual or otherwise surprising birds. 

 Hybrid models embody these intuitions about memory. For example, Anderson’s 
(  1991  ) rational model computes the probability that an item belongs to an existing 
cluster (a prototype can be thought of as a cluster that encodes all category members). 
If this probability is sufficiently high, the cluster is updated to reflect its new member. 
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However, if the item is more likely from a new cluster, then a new cluster is created. 
The overarching goal of Anderson’s model is to create clusters that are maximally 
predictive. 

 Love et al.’s SUSTAIN model operates along similar lines in that it incrementally 
adds clusters as it learns, but its recruitment process is somewhat different from that 
of the the rational model. SUSTAIN recruits new clusters in response to surprising 
events. What counts as a surprising event depends on the learner’s current goals. 
When the learner’s goals are somewhat diffuse as in unsupervised learning, SUSTAIN’s 
operation is very similar to that of the rational model. In such cases, items that are 
dissimilar from existing clusters result in a new cluster being recruited to encode the 
item. However, in supervised learning situations, such as in classification learning (the 
learner’s goal is to properly name the stimulus’s category), items are recruited when a 
surprising error results. For example, upon encountering a bat for the first time and 
being asked to name it, a child surprised to learn that a bat is not a bird would recruit 
a new cluster to capture this example. If the child activates this cluster in the future 
to successfully classify other bats, then the cluster would come to resemble a bat 
 prototype. 

 Both the rational model and SUSTAIN can be viewed as multiple prototype models 
in which the number of prototypes is determined by the complexity of the category 
structure. When categories are very regular, these models will function like prototype 
models. When categories are very irregular (i.e. there is no discernable pattern linking 
members to one another), these models will tend to function like exemplar models. 
SUSTAIN’s sensitivity to a learner’s goal allows it to capture performance differences 
across different induction tasks. For example, people learning through inference (e.g. 
 This is a mammal. Does it have fur? ) tend to focus on the internal structure of catego-
ries, whereas people learning through classification (e.g.  This has fur. Is it a mammal? ) 
tend to focus on information that discriminates between categories (see Markman & 
Ross,   2003  , for a review). 

 Hybrid models, like exemplar and prototype models, can be coupled with selective-
attention mechanisms that can learn to emphasize critical-stimulus properties. For 
example, in learning to classify car makes, SUSTAIN would learn to weight shape 
more than colour because shape reliably indicates model-type whereas colour varies 
idiosyncratically. The motivation for selective attention comes from the observation 
that people can only process a limited number of stimulus properties simultaneously. 
Selective-attention mechanisms have been developed through consideration of human 
and animal learning data (see Kruscke,   2003  , for a review). In tasks that require people 
to actively sample stimulus dimensions, selective-attention mechanisms predict which 
dimensions are fixated (Rehder & Hoffman,   2005  ). 

 Importantly, selective-attention mechanisms allow non-rule models to display rule-
like behaviours (see Chapter 3 in this book). When a prototype, exemplar, or hybrid 
model places all of its attention on one stimulus dimension, a model’s operation is 
indistinguishable from the application of a simple rule. In terms of accounting for 
human data, SUSTAIN outperforms RULEX in some respects on learning problems 
that require acquiring a simple rule and storing exceptions to these rules (Sakamoto & 
Love,   2004  ). SUSTAIN creates a small set of clusters that encode items that follow the 
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rules and stores exception in their own clusters. Attention is heavily biased to the 
 rule-relevant dimensions. This allows SUSTAIN to show enhanced recognition for 
exceptions and rule-like behaviour for rule-following items, while maintaining some 
sensitivity to non-rule relevant dimensions like human subjects do. In our review of 
exemplar models, we discussed how selective-attention mechanisms allow BRIDGES 
to achieve similar ends in terms of balancing the importance of featural and relational 
match. 

 The incorporation of selective-attention mechanisms into non-rule models invites a 
number of theoretical questions. It is not entirely clear whether these selective-attention 
mechanisms should be viewed as an integral part of non-rule models or as rule mech-
anisms grafted onto non-rule models. One possibility is that people are relying on rule 
and non-rule systems, thus necessitating the need for selective-attention mechanisms 
in non-rule models.     

   Multiple systems models   
 Determining the best psychological model can be difficult as one model may perform 
well in one situation but be bested by a competing model in a different situation. One 
possibility is that there is not a single  true  model. In category learning, this line of 
reasoning has led to the development of models containing multiple learning systems. 
These more complex models hold that category learning behaviour reflects the contri-
butions of different systems organized around discrepant principles that utilize quali-
tatively distinct representations. The idea that multiple learning systems support 
category learning behaviour enjoys widespread support in the cognitive neuroscience 
of category learning (see Ashby and O’Brien,   2005  , for a review and Nosofsky and Zaki, 
  1998  , for a dissenting opinion). 

 Multiple system models of category learning detail the relative contributions of the 
component learning systems. Some multiple system models combine the outputs of 
the individual systems together (Ashby et al.  1998  ). Over time, one system might prove 
more useful and dominate responding. Alternatively, the modeler can predetermine the 
timing of the shift from one system to another. This is sensible in cases where there is 
good evidence for predictable shifts, such as the shift from rule-based to exemplar-based 
responding in classification learning (Johansen & Palmeri,   2002  ). 

 Both of these multiple system approaches are somewhat inadequate in that they do 
not allow the current situation to dictate which system is operable. For example, when 
trying to learn how to operate a new piece of machinery, a person might use a hypothesis 
(i.e. rule) system, but when riding a bicycle, a more procedural system might govern 
responding and be updated. In some models, like ATRIUM (Erickson & Kruschke,
  1998  ), the relative contributions of divergent systems can depend on the circum-
stances (cf., Yang & Lewandowsky,  2004  ). ATRIUM contains a rule and exemplar 
learning system. Which system is operable is determined by a gating system, allowing 
different classification procedures to be applied to different parts of the stimulus 
space. For example, familiar items could be classified by the exemplar system whereas 
rules could be applied to unfamiliar items. The power to apply qualitatively different 
procedures to different stimuli is the hallmark of multiple systems models. 
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 Somewhat muddying the waters, ostensibly single-system models have been devel-
oped that also manifest this ability. In CLUSTER (Love & Jones,   2006  ), clusters can 
tune themselves (i.e. attend) to different stimulus properties and encode concepts at 
various levels of granularity. This allows CLUSTER to apply different procedures to 
different parts of the stimulus space, like ATRIUM does. For example, clusters would 
heavily weight colour in the domain of clothing and processor type in the domain of 
laptops. This tuning is accomplished by minimizing an error term that reflects the 
model’s predictive accuracy, a technique commonly used in connectionist modelling. 
Tunable parameters that encode each cluster’s specificity and attentional weighting of 
different properties are shaped by experience. 

 Models like CLUSTER are very rich. Consideration of such models leads to the 
question of what constitutes or defines a system. As previously discussed, one could 
even construe the selective-attention mechanism of various models as being a separate 
system. Fortunately, models are mathematically well specified and allow researchers to 
make predictions and state their theories clearly without having to be overly concerned 
with the semantics of what constitutes a system. The mathematical specification of 
models can free researchers from some potentially thorny debates. 

 The notion of a system perhaps takes on greater significance when considered in the 
context of the brain (see Chapter 5 in this book). Within cognitive neuroscience, it is 
generally accepted that there is a hypothesis testing system that relies on frontal circuity 
(Ashby et al.   1998  ), a dopamine-mediated procedural learning system that involves the 
striatum (Ashby et al.   1998  ), a repetition priming system that involves early visual areas 
(Reber et al.   2003  ), and a hippocampal learning system that maps onto exemplar- or 
cluster-based learning (Love & Gureckis,   2007  ). For each system, there are behavioural 
manipulations that tend to emphasize the system over the other systems. Lesion, patient, 
and imaging studies provide compelling evidence for the multiple systems view.    

   General discussion   
 In this chapter, we reviewed the relative merits of a variety of category learning  models, 
including rule-, prototype-, and exemplar-based models, as well as hybrid models and 
multiple system models that combine two or more of the aforementioned model 
types. We also considered how inclusion of selective-attention mechanisms can 
increase the capabilities of these models by endowing them with the ability to manifest 
rule-following behaviour. 

 To review briefly each model family’s merits, rule-based models conform to our 
intuition that we effortfully search for patterns that we can verbally communicate to 
others. In contrast to rule models, prototype models successfully reflect the graded 
nature of category membership. Exemplar models address deficiencies in the proto-
type model and can model that categories often have internal correlations. Exemplar 
models also capture aspects of recognition memory performance. Hybrid models suc-
cessfully transition between prototype- and exemplar-like representations depending 
on the complexity of the category structure. Finally, multiple system models align with 
emerging findings from cognitive neuroscience and intuitions that there are multiple 
paths or mechanisms available to categorize stimuli. 
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 All of these models have played a critical role in driving advances in theory and in 
the design of key experiments. The development of new models is informed by the 
failings of preceding models. The history of model development is marked by the 
arrival of models with increasingly sophisticated processing mechanisms that can 
manifest the behaviours of previous models as well as additional human behaviours 
beyond the reach of existing models. Of course, the value in models lie more in pre-
dicting unanticipated behaviours than in simply accounting for observed behaviours. 
Thus, it is important for models to be somewhat constrained to have theoretical 
value. 

 We would like to end by encouraging researchers to consider conducting model-
directed research. All experimenters are driven by theoretical considerations and 
models are ideally suited to bring these issues into focus and unite seemingly discrep-
ant findings. In the exemplar-based model section, we described how a relatively 
simple model brought together powerful ideas from the analogy and category learning 
literatures to address learning across species and development. These kinds of advances 
and connections can be facilitated through model-driven explorations. 

 To return to one of the main themes of this book, the work reviewed in this chapter 
largely supports the notion that cognition is continuous across development and 
 species. The basic mechanisms discussed in this chapter appear to apply equally well 
across species and development. For example, the SUSTAIN model of category learn-
ing has been successfully applied to infants and older adults (Love & Gureckis,   2007  ). 
In fact, for certain tasks, data collected from 10-month-old infants and young adults 
are successfully fit with the same parameter values (Gureckis & Love,   2004  ). Likewise, 
in situations where one looks at performance across species, one will likely find 
 evidence for common representations and processes. In our discussion of BRIDGES, 
the same exemplar-based relational learning mechanism captures performance data 
from pigeons, human infants, and adults. 

 Does this mean there are no differences in learning across development and species? 
In our opinion, the answer to this question is clearly no. The convergence we observe 
is likely a function of the task domain. The tasks considered here can all be modelled 
as a process of activating past experiences in memory (represented as exemplars or 
clusters). It may well be that differences in such tasks are minimal across development 
and species. Even for this family of tasks, differences can be observed across species, 
particularly for cases in which task factors emphasize strategic or attentional proc-
esses, which likely rely on prefrontal regions of the brain that are most prominent in 
adult humans (Smith, Minda, & Washburn,   2004  ). In such cases, models like SUSTAIN 
and BRIDGES can still prove useful in quantifying differences between populations in 
terms of best-fitting attentional parameters. Finally, it may very well be that we under-
estimate the extent to which our behaviours are governed by memory-based proc-
esses. As the work reviewed in this chapter indicates, such processes can support a 
variety of behaviours, especially when the learning and retrieval processes are sensitive 
to relational match (Tomlinson & Love,   2008  )       
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