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[-] Abstract and Keywords

People have a remarkable ability to acquire categories, whether they are defined over internal features (e.g.,
shape) or conceptual relations (e.qg., predator/prey). Models have played a prominent role in shaping our
understanding of human category learning. Accordingly, proposed mechanisms are diverse, including rule-,
prototype-, and exemplar-based models, as well as hybrid models and models that contain multiple systems. One
general trend is toward models with increasingly sophisticated processing mechanisms that can mimic the
behaviors of existing models, as well as address behaviors outside the scope of previous models. This chapter
considers what these various models reveal about the nature of human categorization.
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Introduction

Judging a person as a friend or foe, a mushroom as edible or poisonous, or a sound as an/ or r are examples of
categorization problems. Because people never encounter the same exact stimulus twice, they must develop
categorization schemes that capture the useful regularities in their environment. These regularities can reside in
the features of objects (e.g., color, shape, size, etc.) or in objects’ relations with other objects (e.g., predator/prey,
rests upon, magnitude comparisons, etc.). One challenge for psychological research is to determine how humans
acquire and represent categories.

The focus of this chapter is on proposed category learning mechanisms. We focus on models that attempt to
explain how people acquire categories from observed examples as opposed to verbal instruction. Most of the
models discussed in this chapter were developed to account for adult human performance, but many of these
models have also been successfully applied to studies involving humans of all ages and to other species. Category
learning is a theory- and model-rich area within cognitive psychology. Models have played a prominent role in
shaping our understanding of human category learning. Accordingly, proposed mechanisms are diverse, including
rule-, prototype-, and exemplar-based models, as well as hybrid models and models that contain multiple systems.
One general trend is toward models with increasingly sophisticated processing mechanisms that can mimic the
behaviors of existing models, as well as address behaviors outside the scope of previous models.

In the course of reviewing these various models, we emphasize what the relative merits of each model reveal

about the nature of human learning. When we discuss exemplar models, we devote special attention to a model of
category learning that attempts to bridge work in the analogy and category learning literatures. The model, Building
Relations through Instance-Driven Gradient Error Shifting (BRIDGES), successfully accounts for findings in the child
and animal learning literatures (Tomlinson & Love, 2006). We choose to showcase this particular model because it
is well-matched to the overarching goals of this volume, and the focus should help the reader understand the basis
for all the models reviewed, which is the primary goal of this chapter. Related work examining how conceptual
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relationships influence categorization are also considered.

In the remainder of this chapter, we will briefly review several models of human category learning. Presentation
order is organized chronologically from oldest to most recent accounts of category learning. Although more recent
models offer some advantages over their ancestors, it would be a mistake to view ancestral models as being
supplanted by their descendants. Each model class addresses some key aspects of human category learning and
serves an important theoretical role. In fact, many older models have taken on new life as components in recently
proposed multiple systems models. One common component in these multiple systems models is a rule-based
system, which is the first model class that we consider.

Rule-Based Models

The classical view of concepts holds that categories are defined by logical rules. This view has a long history
dating back to Aristotle. In Figure 1, any itemthatis a square is a member of category A. This simple rule
determines category membership. According to the rule view, our concept of category A can be represented by
this simple rule. Discovering this rule would involve a rational hypothesis-testing procedure. This procedure
attempts to discover a rule that is satisfied by all of the positive examples of a concept, but none of the negative
examples of the concept (i.e., items that are members of other categories). In trying to come up with such a rule for
category A, one might first try the rule if dark, then in category A. After rejecting this rule (because there are
counterexamples), other rules would be tested (starting with simple rules and progressing toward more complex
rules) until the correctrule is eventually discovered. For example, in learning about birds, one might first try the
rule ifit flies, then it is a bird. This rule works pretty well, but not perfectly (penguins do not fly and bats do).
Another simple rule like if it has feathers, then it is a bird would not work either because a pillow filled with feathers
is not a bird. Eventually, a more complex rule might be discovered like if it has feathers and wings, then it is a
bird.

For decades, psychologists have conducted experiments to characterize the relative difficulty people have in
learning various types of rules (Bruner, Goodnow, & Austin, 1956; Shepard, Hovland, & Jenkins, 1961). These
studies have provided the primary data used to develop and validate models of hypothesis testing. Some models,
like RULEX (Nosofsky, Palmeri, & McKinley, 1994), embody the hypothesis-testing procedure just described. RULEX
starts with simple hypotheses and progresses toward more complex hypotheses until a set of rules and exceptions
is discovered that properly discriminates between the categories.

Category A Category B

= /N
A

Click to view larger

Figure 1 . Examples of category A and category B. A simple rule on shape discriminates between the two
categories.

The term “rule” has various somewhat conflicting interpretations (Close, Hahn, Hod- gets, & Pothos, 2010). Here,
we focus on rule-based models, like RULEX, that engage in explicit hypothesis testing. RULEX’s mechanistic
approach (i.e., algorithmic in the sense of Marr, 1982) contrasts with other approaches that aim to predict how
difficult learning should be based on calculations of how complex the correct hypothesis is (Feldman, 2000;
Goodman, Tenenbaum, Feldman, & Griffiths, 2008). The latter approaches, which are not concerned with the
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actual process of learning, have more in common with measures of complexity and compression (Pothos & Chater,
2002). Yet other approaches, such as General Recognition Theory (Maddox & Ashby, 1993), aim to assess and
compactly describe people’s performance rather than characterize the learning process. Unlike these more
abstract approaches, mechanistic models of hypothesis testing, such as RULEX, largely implement the strategic
and conscious thought processes that we feel (by introspection) that we are carrying out when solving
classification problems. Although not a focus here, Jones and Love (2011) propose how to integrate mechanistic
approaches (e.g., RULEX) and more abstract modeling approaches that are not concerned with process.

Although rules can in principle provide a concise representation of a concept, often more elaborate
representations would serve us better. Concept representation needs to be richer than a simple rule because we
use concepts for much more than simply classifying objects we encounter. For instance, we often use concepts to
support inference (e.g., a child infers that members of the category stove can be dangerously hot). Using
categories to make inferences is a very important use of concepts (Markman & Ross, 2003). Knowing something is
an example of a concept tells us a great deal about the item. For example, after classifying a politician from the
United States as a Republican, one can readily infer the politician’s position on a number of issues. The pointis that
our representations of concepts must include information beyond what is needed to classify items as examples of
the concept. For example, the rule if square, then in category A correctly classifies all members of category A in
Figure 1, but it doesn’t capture the knowledge that all category A members are dark. One problem with rule
representations of concepts is that potentially useful information is discarded. In fact, even when people explicitly
use rules to classify items, performance is heavily influenced by rule-irrelevant information (Allen & Brooks, 1991;
Lacroix, Giguere, & Larochelle, 2005; Sakamoto & Love, 2004), which is inconsistent with rules serving as the sole
basis for category representations.

Perhaps the biggest problem with the rule approach to concepts is that most of our everyday categories do not
seem to be describable by a tractable rule. To demonstrate this point, Wittgenstein (1953) noted that the concept
game lacks a defining property. Most games are fun, but Russian roulette is not fun. Most games are competitive,
but ring-around-the-roses is not competitive. Although most games have characteristics in common, there is not a
rule that unifies them all. Rather, we can think of the members of the category game as being organized around a
family resemblance structure (analogous to how members of your family resemble one another). Rosch and
colleagues’ (Rosch & Mervis, 1975) seminal work demonstrated the psychological reality of many of Wittgenstein’s
intuitions. Even some paradigmatic examples of rule-based classification reveal a non-rule-based underbelly (see
Love, Tomlinson, & Gureckis, 2008, for a review). Hahn and Ramscar (2001) offer one such example. Tigers are
defined as having tiger DNA, which is a seemingly rule-based category definition. However, determining whether
an animal has tiger DNA amounts to assessing the similarity of the animal’s DNA to known examples of tiger DNA.

A related weakness of the rule account of concepts is that examples of a concept differ in their typicality (Barsalou,
1985; Posner & Keele, 1968; Reed, 1972; Rosch & Mervis, 1975). If all a concept consisted of was a rule that
determined membership, then all examples should have equal status. According to the rule account, all that should
matter is whether an item satisfies the rule. Our concepts do not seem to have this definitive flavor. For example,
some games are better examples of the category game than others. Basketball is a very typical example of the
category game. Children play basketball in a playground; itis competitive; there are two teams; each team
consists of multiple players; you score points, and so on. Basketball is a typical example of the category of games
because it has many characteristics in common with other games. On the other hand, Russian roulette is not a
very typical game—it requires a gun and one of the two players dies. Russian roulette does not have many
properties in common with other games. In terms of family resemblance structure, we can think of basketball as
having a central position and Russian roulette being a distant cousin to the other family members. These findings
extend to categories in which a simple classification rule exists. For example, people judge the number three to be
a more typical odd number than the number forty-seven even though membership in the category odd number can
be defined by a simple rule (Gleitman, Gleitman, Miller, & Ostrin, 1996).

The fact that category membership follows a gradient as opposed to being all or none affords us flexibility in how
we apply our concepts. Of course, this flexibility can lead to ambiguity. Consider the concept “mother” (see Lakoff,
1987, for a thorough analysis). It is a concept that we are all familiar with and it seems straightforward—a mother is
a woman who becomes pregnant and gives birth to a child. But what about a woman who adopts a neglected infant
and raises it in a nurturing environment? Is the birth mother who neglected the infant a mother? What if a woman is
implanted with an embryo from another woman? Court cases over maternity arise because the concept of
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motherhood is ambiguous. The concept exhibits greater flexibility and productivity than is even indicated here. For
example, is it proper to refer to an architect as the mother of a building? All these examples of the concept mother
share a family resemblance structure (i.e., they are organized around some commonalities), but the conceptis not
rule based. Some examples of the concept mother are better than others.

We don’t want to imply that rule-based approaches do not have their place. For example, rule-based approaches
might be viable for some socially defined categories. For example, determining whether currency is legal tender
might largely involve applying a series of rules (Hampton, 2001). Also, as we will see later in this chapter, rule-
based approaches figure prominently in multiple systems accounts. Although rule-based approaches might not
provide a sufficient explanation of human learning in isolation, such approaches might prove viable in certain
domains or as components of multiple system models.

Prototype-Based Models

The prototype approach to concept learning and representation was developed by Rosch and colleagues to
address some of the shortcomings of the rule approach. Prototype models represent information about all the
possible properties (i.e., stimulus dimensions), instead of focusing on only a few properties like rule models do. The
prototype of a category is a summary of all of its members (Posner & Keele, 1968; Reed, 1972; Smith & Minda,
2001). Mathematically, the prototype is the average or central tendency of all category members. Figure 2 displays
the prototypes for two categories, simply named categories A and B. Notice that all the items differ in size and
luminance (i.e., there are two stimulus dimensions) and that the prototype is located amid all of its category
members. The prototype for each category has the average value on both the stimulus dimensions of size and
luminance for the members of its category.
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Figure 2 . Two categories and their prototypes.

The prototype of a category is used to represent the category. According to the prototype model, a novel itemis
classified as a member of the category whose prototype it is most similar to. For example, a large bright item would
be classified as a member of category B because category B's prototype is large and bright (see Figure 2). The
position of the prototype is updated when new examples of the category are encountered. For example, if one
encountered a very small and dark item that is a member of category A, then category A’s prototype would move
slightly toward the bottom left corner in Figure 2. As an outcome of learning, the position of the prototype shifts
toward the newest category member in order to take it into account. A prototype can be very useful for determining
category membership in domains where there are many stimulus dimensions that each provide information useful
for determining category membership, but no dimension is definitive. For example, members of a family may tend to
be tall, have large noses, a medium complexion, brown eyes, and good muscle tone, but no family member
possesses all of these traits. Matching on some subset of these traits would provide evidence for being a family
member.

Notice the economy of the prototype approach. Each cloud of examples in Figure 2 can be represented by just the
prototype. The prototype is intended to capture the critical structure in the environment without having to encode
every detail or example. Itis also fairly simple to determine which category a novel item belongs to by determining
which category prototype is most similar to the item.
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Unlike the rule approach, the prototype model can account for typicality effects. According to the prototype model,
the more typical category members should be those members that are most similar to the prototype. In Figure 2,
similarity can be viewed in geometric terms—the closer items are together in the plot, the more similar they are.
Thus, the most typical items for categories A and B are those that are closest to the appropriate prototype.
Accordingly, the prototype approach can explain why robins are more typical birds than are penguins. The bird
prototype represents the average bird: has wings, has feathers, can fly, can sing, lives in trees, lays eggs, and the
like. Robins share all of these properties with the prototype, whereas penguins differ in a number of ways (e.g.,
penguins can’t fly, but do swim). Extending this line of reasoning, the best example of a category should be the
prototype, even if the actual prototype has never been viewed (or doesn’t even exist). Indeed, numerous learning
studies support this conjecture. After viewing a series of examples of a category, human participants are more
likely to categorize the prototype as a category member (even though they never actually viewed the prototype)
than they are to categorize an item they have seen before as a category member (Posner & Keele, 1968).

Because the prototype approach does not represent concepts in terms of a logical rule that is either satisfied or
not, it can explain how category membership has a graded structure that is not all or none. Some examples of a
category are simply better examples than other examples. Also, categories do not need to be defined in terms of
logical rules, but are rather defined in terms of family resemblance to the prototype. In other words, members of a
category need not share a common defining thread, but rather can have many characteristic threads in common
with one another.

The prototype approach, although preferable to the rule approach for the reasons just discussed, does fail to
account for important aspects of human concept learning. The main problem with the prototype model is that it
does not retain enough information about examples encountered in learning. For instance, prototypes do not store
any information about the frequency of each category, yet people are sensitive to frequency information. If an item
was about equally similar to the prototype of two different categories, and one category was 100 times larger than
the other, people would be more likely to assign the item to the more common category (under most
circumstances; see Kruschke, 1996). Of course, some of these concerns could be addressed by expanding the
information that a prototype encodes.
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Figure 3 . Two categories and their prototypes.

However, other concerns seem fundamental to the prototype approach. Prototypes are not sensitive to the
correlations and substructure within a category. For example, a prototype model would not be able to represent
that spoons tend to be large and made of wood or small and made of steel. These two subgroups would simply be
averaged together into one prototype. This averaging makes some categories unlearnable with a prototype model.
One example of such a category structure is shown in Figure 3. Each category consists of two subgroups.
Members of category A are either smal | and dark or they are large and light, whereas members of category B are
either large and dark or they are smal | and light. The prototypes for the two categories are both in the center of
the stimulus space (i.e., medium size and medium luminance). ltems cannot be classified correctly by which
prototype to which they are most similar because the prototypes provide little guidance.

In general, prototype models can only be used to learn category structures that are linearly separable. A learning
problem involving two categories is linearly separable when a line or plane can be drawn that separates all the

Page 5 of 16

PRINTED FROM OXFORD HANDBOOKS ONLINE (www.oxfordhandbooks.com). (c) Oxford University Press, 2014. All Rights
Reserved. Under the terms of the licence agreement, an individual user may print out a PDF of a single chapter of a title in Oxford
Handbooks Online for personal use (for details see Privacy Policy).

Subscriber: OUP-Reference Gratis Access; date: 05 February 2015



Concepts, Meaning, and Conceptual Relationships

members of the two categories. The category structure shown in Figure 2 is linearly separable because a diagonal
line can be drawn that separates the category A and B members (i.e., the category A members fall on one side of
the line and the category B members fall on the other side of the line). Thus, this category structure can be learned
with a prototype model. The category structure illustrated in Figure 3 is nonlinear—no single line can be drawn to
segregate the category A and B members. Mathematically, a category structure is linearly separable when there
exist a weighting of the feature dimensions that yields an additive rule that correctly indicates one category when
the sum s below a chosen threshold and the other category when the sum s above the threshold.

The inability of the prototype model to learn nonlinear category structures detracts fromits worth as a model of
human concept learning because people are not biased against learning nonlinear category structures. Although
the extent to which natural categories deviate from linear structures is contended (Murphy, 2002), the general
consensus is that people in the laboratory do not show a preference for linear structures in supervised learning
(Medin & Schwanenflugel, 1981), although they might in unsupervised learning (Love, 2002). Some nonlinear
category structures may actually be easier to acquire than linear category structures. For example, it seems quite
natural that small birds sing, whereas large birds do not sing. Many categories have subtypes within them that we
naturally pick out. One way for the prototype model to address this learnability problem s to include complex
features that represent the presence of multiple simple features (e.g., large and blue). Unfortunately, this approach
quickly becomes unwieldy as the number of stimulus dimensions increases (e.g., Gluck & Bower, 1988).

Related to the prototype model’s inability to account for substructure within categories is its inadequacy as a model
of item recognition. Unlike exemplar models considered in the following section (Medin & Schaffer, 1978; Nosofsky,
1986), prototype models do not readily account for how people recognize specific items because the category
prototype averages away item-distinguishing information that people retain in some situations.

Exemplar-Based Models

Exemplar models store every training example in memory instead of just the prototype (i.e., the summary) of each
category. Perhaps surprising upon first consideration, exemplar models can account for findings marshaled in
support of prototype models, such as sensitivity to family resemblance structure. At the same time, by retaining all
the information from training, exemplar models address many of the shortcomings of prototype models. Exemplar
models are sensitive to the frequency, variability, and correlations among items. In this section, we discuss how
exemplar-based models can display these behaviors.

Unlike prototype models, exemplar models can master category structures that contain substructure. For the
learning problem illustrated in Figure 3, an exemplar model would store every training example. New items are
classified by how similar they are to all items in memory (not just the prototype). For the category structure
illustrated in Figure 3, the pairwise similarity of a novel item and every stored item would be calculated. If the novel
item tended to be more similar to the category A members (i.e., the item was small and dark) than the category B
members, then the novel item would be classified as a member of category A.

One aspect of exemplar models that seems counterintuitive is their lack of any abstraction in category
representation. It seems that humans do learn something more abstract about categories than a list of examples.
Surprisingly, exemplar models are capable of displaying abstraction. For instance, exemplar models can correctly
predict that humans more strongly endorse the underlying prototype (even if it has not been seen) than an actual
item that has been studied (a piece of evidence previously cited in favor of the prototype model). How could this
be possible without the prototype actually being stored? It would be impossible if exemplar models simply
functioned by retrieving the exemplar in memory that was most similar to the current item and classified the current
item in the same category as the retrieved exemplar (this is essentially how processing works in a prototype model,
except that a prototype is stored in memory instead of a bunch of exemplars).

Instead, exemplar models engage in more sophisticated processing and calculate the similarity between the
current item (the item that is to be classified) and every itemin memory. Some exemplars in memory will be very
similar to the current item, whereas others will not be very similar. The current item is classified in the category in
which the sum of its similarities to all the exemplars is greatest. When a previously unseen prototype is presented
to an exemplar model, it can be endorsed as a category member more strongly than a previously seen item. The
prototype (which is the central tendency of the category) will tend to be somewhat similar to every itemin the
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category, whereas any given nonprototype item will tend to be very similar to some items (especially itself!) in
memory, but not so similar to other items. Overall, the prototypical item can display an advantage over an item that
has actually been studied. Abstraction in an exemplar model is indirect and results from processing (i.e.,
calculating and summing pairwise similarities), whereas abstraction in a prototype model is rather direct (i.e.,
prototypes are stored).

By and large, exemplar models can mimic all the behaviors of prototype models, but the opposite is not true. There
are some subtle behaviors that the prototype model can display that versions of exemplar models cannot. For
example, prototype and exemplar models predict slightly different category endorsement gradients (i.e., probability
of membership) as one moves toward the center of a category (see Nosofsky & Zaki, 2002, and Smith, 2002, for a
recent debate).

Although exemplar models are decent models of recognition, they do have some fundamental shortcomings.
Exemplar models calculate recognition strength as the sum of similarity to all items stored in memory. Thus, the
pairwise similarity relations among items governs recognition. However, humans often appear to build schema-like
structures in memory and store items preferentially that deviate from these structures (see Sakamoto & Love,
2004, for a review). Thus, exemplar models do not correctly predict enhanced recognition for items that violate
salient rules or patterns (Palmeri & Nosofsky, 1995). Exemplar models do not capture these results because
exception items that violate these patterns are not exceptional in terms of their pairwise similarity relations to other
items. Exception items are exceptional in terms of violating a knowledge structure stored in memory (Sakamoto &
Love, 2004, 2006).

At a more philosophical level, exemplar models seem to make some questionable assumptions. For example,
exemplar models store every training example, which seems excessive. Also, every exemplar is retrieved from
memory every time an item is classified (but see Nosofsky & Palmeri, 1997, for an exception). In addition to these
assumptions, one worries that the exemplar model does not make strong enough theoretical commitments because
it retains all information about training and contains a great deal of flexibility in how it processes information. In
support of this conjecture, Sakamoto, Matsuka, and Love (2004) built an exemplar model that effectively built
distributed knowledge structures and could account for exception recognition findings (also see Rodrigues &
Murre, 2007). Although their model did not explicitly build schema or exception representations, the model did learn
to selectively tune exemplars (broad tunings for rule-following items and tight tunings for exception items) and
properly weight these exemplars to give rise to an exemplar model that functionally contained exception and
schema-like knowledge structures. If there are no constraints on how items are processed, then, in principle, an
exemplar model can account for any pattern of results thereby reducing the exemplar models’ theoretical utility.
However, in practice, exemplar models often follow previously published formalisms and serve as valuable
theoretical tools.

Exemplar-Based Relational Learning

One favorable property of exemplar models is their transparency. Their predictions are purely governed by the
weighting of experienced examples. This property makes them ideally suited for computational explorations of new
domains, such as relational category learning. In this subsection, we consider an exemplar model of how people
learn seemingly abstract concepts by analogy to exemplars. The model, Building Relations through Instance Driven
Gradient Error Shifting (BRIDGES), provides an account of how animals (and people) learn to respond relationally
(Tomlinson & Love, 2006). BRIDGES differs from other exemplar models by being sensitive to relationally
information.

Many of our categories are relational, and therefore it is important to develop models that explain how such
categories are acquired. For example, membership in the category thiefis defined by playing the appropriate
relational role in the relation steals rather than exhibiting some combination of concrete features (Markman &
Stilwell, 2001). Similarities that are relational in nature play an important role in real-world categorization decisions
(Gentner & Kurtz, 2005). In addition to complex relational similarities, simple magnitude comparisons (which are
relational) influence categorization (Stewart, Brown, & Chater, 2002). Differences in ability to classify relationally is
often taken as a key marker of the relative mental capacities of animals, children, and adults (Thompson & Oden,
2000), although, in some cases, people can learn relational categories more readily than featural categories
(Tomlinson & Love, 2010). These observations suggest the need for a model that can explain both featural and
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relational category learning.

BRIDGES addresses this challenge by combining two popular approaches to cognition: exemplar-based category
learning (Kruschke, 1992) and structure mapping theory (Gentner, 1983). Structure mapping theory suggests that
similarity is determined between two scenes by aligning the objects and relations present within one scene with the
objects and relations in the other scene (Markman & Gentner, 1993). The similarity of two scenes is then a
measure of how well they align. This alignment is traditionally done using an unweighted graph-matching algorithm.
Figure 4 provides an overview of BRIDGES.

Exemplar
Nodes

Click to view larger

Figure 4 . A depiction of the BRIDGES model. The structured graphs represent the input and exemplars.
These graphs encode features and their relations (e.g., man biting dog and dog biting man would have
different graphs). The luminance of the circles within the graphs represent attention to individual relations
and features in the model. Node density reflects similarity-based activation of the nodes following the
analogical match process. These activations are passed across connection weights to the category nodes.

Attention on Relation Attention on Features
Preserves Parallel Connectivity Preserves Featural Match
Left_of ((J, A) map Left_of (A, J) Left_of (LJ, A) map Left_of (A, )

Click to view larger

Figure 5 . An example comparison between two graphs. There are two possible ways to map the elements in
these corresponding relations. The example on the left preserves parallel connectivity by mapping elements
that play the samerole in each relation to one another. This solution is high in relational match, but low in
featural match because the corresponding elements differ in shape features. The situation is reversed in the
mapping shown in the right example. Attention weighting of mismatches determines which of these two
possible mappings will be preferred by BRIDGES. BRIDGES chooses the mapping that minimizes attention-
weighted mismatch.

BRIDGES extends the notion of similarity used in exemplar models to an attention- weighted form of structure
mapping theory. This allows relational similarity, the degree to which mapped objects play the same role in their
corresponding relations (Jones & Love, 2007), to play a variable role in the alignment process. Attention can shift
between the features (e.g., red) and the relations (e.g., redder). This allows for abstraction away from the features
and to the relations, but only so far as the statistics of the environment warrant. Attention is updated according to a
supervised or unsupervised gradient descent algorithm. The result is that BRIDGES is able to learn to respond
differentially to the presence of relations, but its response is still affected by the features of the stimuli. Figure 5
illustrates how attentional weighting can disambiguate between competing interpretations.

Previous simulations of same-different learning in pigeons (Young & Wasserman, 1997) demonstrated that BRIDGES
is capable of learning a variety of different relational behaviors without resorting to rules or symbol systems
(Tomlinson & Love, 2006). Just like the participants in these experiments, BRIDGES generalizes to presentations of
the relations with novel objects. Also, these relations are still clouded by the featural similarity of the individual
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stimuli because attention shifting is rarely complete, which is consistent with behavioral shifts seen in human
development and acquired expertise (Chi, Feltovich, & Glaser, 1981; Gentner & Ratterman, 1991).

Other explanations for same-different learning center on measures of display entropy or variability (Young,

Ellefson, & Wasserman, 2003). These explanations and BRIDGES are indistinguishable with a simple goodness-of-fit
measure. However, BRIDGES makes a testable prediction different from the variability model: the responses in a
same-different task should not only be based on the sameness and differentness of the array, but also on the
featural similarity between the test array and previous arrays the animal has been trained with because some
attention should still be on the features. Gibson and Wasserman (2004) provide just such a test and confirm
BRIDGE’s prediction.

In Gibson and Wasserman (2004), pigeons are trained on stimuli consisting of arrays of 16 icons drawn from one of
two sets of icons, a and b. Same arrays always contain 16 identical a icons, whereas different arrays always
contain different arrangements of the 16 unique b icons. When pigeons are tested with novel arrays with icons
from set ¢, they behave based on the relations within the array, but when shown different arrays containing a
icons, the pigeons are more likely to respond same—and vice versa for same arrays formed with b icons. The
pigeons learn to respond to the novel relations, but their responses are still tied to the features of the exemplars
used in training.

These simulations provide insight into the differences among animals, infants, children, and adults. For the
simulations just described, the exemplars were only represented with simple features and a type-token relationship.
The type-token relationship assumes that the individual is able to recognize objects presentin the input as
members of the same type. In other words, when pigeons are presented with an array of shapes, they realize that
all of the squares are members of an abstract type, square. This assumption is sufficient for an array of simple
relational learning tasks. However, when modeling more complex behavior, in children or adults, a more complex
representation is often required. BRIDGES provides a tool to talk about these and other differences in a quantitative
way.

Animals might not be able to succeed at complex relational reasoning tasks, but they can compare current
examples to previous examples in a structured way and, from this, respond in a manner consistent with an
understanding of abstract relations. BRIDGES is a computational model of how this relation-like behavior can be
learned. By comparing concrete examples of the relations in a structured manner, one can learn to respond in a
manner consistent with the relations, without true abstract knowledge. BRIDGES extends this core idea of exemplar
models—that all abstraction occurs as a result of online processing—to relational categorization. BRIDGES's
account serves to highlight the transparency and clarity of exemplar-based explanations.

Hybrid Models

Prototype and exemplar models can be seen as opposite ends of a continuum of category representation. At one
extreme, prototype models store every category member together in memory. At the other extreme, exemplar
models store every category member separately in memory. Between these two extremes lie a wealth of
possibilities. Categories in the real world contain multiple subtypes and exceptions. For example, the category
mammals contains subcategories like cats, dogs, horses, and bats. Ideally, our mental representations would
reflect this structure. Both prototype and exemplar models are inflexible in that they treat the structure of each
category as predetermined. These models do not let the distribution of category members influence the form
category representations take. For example, prototype models assume that categories are always represented by
one node (i.e., the prototype) in memory, whereas exemplar models assume that categories are always
represented by one node in memory for every category example encountered. (Anderson, 1991; Love, Medin, &
Gureckis, 2004; Sanborn, Griffiths, & Navarro, 2010; Vampaemel & Storms, 2008). For example, a person walking
through a park might encounter thousands of seemingly identical pigeons. The rationale for storing each of these
birds separately in memory is unclear. At the same time, someone walking through a park probably would mentally
note unusual or otherwise surprising birds.

Hybrid models embody these intuitions about memory. For example, Anderson’s (1991) rational model computes
the probability that an item belongs to an existing cluster (a prototype can be thought of as a cluster that encodes
all category members). If this probability is sufficiently high, the cluster is updated to reflect its new member.
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However, if the item is more likely from a new cluster, then a new cluster is created. The overarching goal of
Anderson’s model is to create clusters that are maximally predictive.

Love et al.’s SUSTAIN model operates along similar lines in that it incrementally adds clusters as it learns, but its
recruitment process is somewhat different from the rational model’s. SUSTAIN recruits new clusters in response to
surprising events. What counts as a surprising event depends on the learner’s current goals. When the learner’s
goals are somewhat diffuse, as in unsupervised learning, SUSTAIN’s operation is very similar to that of the rational
model. In such cases, items that are dissimilar from existing clusters result in a new cluster being recruited to
encode the item. However, in supervised learning situations, such as in classification learning (the learner’s goal is
to properly name the stimulus’s category), items are recruited when a surprising error results. For example, on
encountering a bat for the first time and being asked to name it, a child surprised to learn that a batis not a bird
would recruit a new cluster to capture this example. If the child activates this cluster in the future to successfully
classify other bats, then the cluster would come to resemble a bat prototype.

Both the rational model and SUSTAIN can be viewed as multiple prototype models in which the number of
prototypes is determined by the complexity of the category structure. When categories are very regular, these
models will function like prototype models. When categories are very irregular (i.e., there is no discernable pattern
linking members to one another), these models will tend to function like exemplar models. SUSTAIN’s sensitivity to a
learner’s goal allows it to capture performance differences across different induction tasks. For example, people
learning through inference (e.g., This is a mammal. Does it have fur?) tend to focus on the internal structure of
categories, whereas people learning through classification (e.qg., This has fur. Is it a mammal?) tend to focus on
information that discriminates between categories (see Markman & Ross, 2003, for a review).

Hybrid models, like exemplar and prototype models, can be coupled with selective attention mechanisms that can
learn to emphasize critical stimulus properties. For example, in learning to classify car makes, SUSTAIN would learn
to weight shape more than color because shape reliably indicates model type whereas color varies
idiosyncratically. The motivation for selective attention comes from the observation that people can only process a
limited number of stimulus properties simultaneously. Selective attention mechanisms have been developed
through consideration of human and animal learning data (see Krushcke, 2003, for a review). In tasks that require
people to actively sample stimulus dimensions, selective attention mechanisms predict which dimensions are
fixated (Rehder & Hoffman, 2005).

Importantly, selective attention mechanisms allow nonrule models to display rule-like behaviors (Close et al., 2010).
When a prototype, exemplar, or hybrid model places all of its attention on one stimulus dimension, the model’s
operation is indistinguishable from the application of a simple rule. In terms of accounting for human data, SUSTAIN
outperforms RULEX in some respects on learning problems that require acquiring a simple rule and storing
exceptions to these rules (Sakamoto & Love, 2004). SUSTAIN creates a small set of clusters that encode items that
follow the rules, and it stores exception in their own clusters. Attention is heavily biased to the rule-relevant
dimensions. This allows SUSTAIN to show enhanced recognition for exceptions and rule-like behavior for rule-
following items while maintaining some sensitivity to nonrule-relevant dimensions as human subjects do. In our
review of exemplar models, we discussed how selective attention mechanisms allow BRIDGES to achieve similar
ends in terms of balancing the importance of featural and relational match.

The incorporation of selective attention mechanisms into nonrule models invites a number of theoretical questions.
It is not entirely clear whether these selective attention mechanisms should be viewed as an integral part of
nonrule models or as rule mechanisms grafted onto nonrule models. One possibility is that people are relying on
rule and nonrule systems, thus necessitating the need for selective attention mechanisms in nonrule models.

Multiple Systems Models

Determining the best psychological model can be difficult because one model may perform well in one situation but
be bested by a competing model in a different situation. One possibility is that there is not a single “true” model. In
category learning, this line of reasoning has led to the development of models containing multiple learning systems.
These more complex models hold that category learning behavior reflects the contributions of different systems
organized around discrepant principles that utilize qualitatively distinct representations. The idea that multiple
learning systems support category learning behavior enjoys widespread support in the cognitive neuroscience of
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category learning (see Ashby & O’Brien, 2005, for a review, and Nosofsky & Zaki, 1998, for a dissenting opinion).

Multiple system models of category learning detail the relative contributions of the component learning systems. For
each categorization decision, some multiple system models select which individual system governs the response
(Ashby, Alfonso-Reese, Turken, & Waldron, 1998). Over time, one system might prove more useful and dominate
responding. Alternatively, the modeler can predetermine the timing of the shift from one system to another. This is
sensible in cases where there is good evidence for predictable shifts, such as the shift from rule-based to
exemplar-based responding in classification learning (Johansen & Palmeri, 2002).

Both of these multiple system approaches are somewhat inadequate in that they do not allow the current situation
to dictate which system s operable. For example, when trying to learn how to operate a new piece of machinery, a
person might use a hypothesis (i.e., rule) system, but when riding a bicycle a more procedural system might
govern responding and be updated. In some models, like ATRIUM (Erickson & Kruschke, 1998), the relative
contributions of divergent systems can depend on the circumstances (cf. Yang & Lewandowsky, 2004). ATRIUM
contains a rule and exemplar learning system. Which system s operable is determined by a gating system, thus
allowing different classification procedures to be applied to different parts of the stimulus space. For example,
familiar items could be classified by the exemplar system, whereas rules could be applied to unfamiliar items. The
power to apply qualitatively different procedures to different stimuli is the hallmark of multiple systems models.

Somewhat muddying the waters, ostensibly single-system models have been developed that also manifest this
ability. In CLUSTER (Love & Jones, 2006), clusters can tune themselves (i.e., attend) to different stimulus properties
and encode concepts at various levels of granularity. This allows CLUSTER to apply different procedures to
different parts of the stimulus space, as ATRIUM does. For example, clusters would heavily weight color in the
domain of clothing and processor type in the domain of laptops. This tuning is accomplished by minimizing an error
term that reflects the model’s predictive accuracy, a technique commonly used in connectionist modeling. Tunable
parameters that encode each cluster’s specificity and attentional weighting of different properties are shaped by
experience.

Models like CLUSTER are very rich. Consideration of such models leads to the question of what constitutes or
defines a system. As previously discussed, one could even construe the selective attention mechanism of various
models as being a separate system. Fortunately, models are mathematically well specified and allow researchers to
make predictions and state their theories clearly without having to be overly concerned with the semantics of what
constitutes a system. The mathematical specification of models can free researchers from some potentially thorny
debates.

The notion of a system perhaps takes on greater significance when considered in the context of the brain (see
Ashby & Crossley, 2010, and Love, 2012, for a review). Within cognitive neuroscience, itis generally accepted
that there is a hypothesis testing system that relies on frontal circuity (Ashby et al., 1998), a dopamine-mediated
procedural learning system that involves the striatum (Ashby et al., 1998), a repetition priming system that involves
early visual areas (Reber, Gitelman, Parrish, & Mesulam, 2003), and a hippocampal learning system that maps onto
exemplar- or cluster-based learning (Davis, Love, & Preston, 2012a, 2012b; Love & Gureckis, 2007). For each
system, there are behavioral manipulations that tend to emphasize one system over another systems. Lesion,
patient, and imaging studies provide compelling evidence for the multiple systems view.

Conclusion

In this chapter, we reviewed the relative merits of a variety of category learning models, including rule-, prototype-,
and exemplar-based models, as well as hybrid models and multiple-system models that combine two or more of the
aforementioned model types. We also considered how inclusion of selective attention mechanisms can increase
the capabilities of these models by endowing them with the ability to manifest rule-following behavior.

To review briefly each model family’s merits, rule-based models conform to our intuition that we effortfully search
for patterns that we can verbally communicate to others. In contrast to rule models, prototype models successfully
reflect the graded nature of category membership. Exemplar models address deficiencies in the prototype model
and can model that categories often have internal correlations. Exemplar models also capture aspects of
recognition memory performance. Hybrid models successfully transition between prototype- and exemplar-like
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representations depending on the complexity of the category structure. Finally, multiple-systems models align with
emerging findings from cognitive neuroscience and intuitions that there are multiple paths or mechanisms available
to categorize stimuli.

All of these models have played a critical role in driving advances in theory and in the design of key experiments.
The development of new models is informed by the failings of preceding models. The history of model development
is marked by the arrival of models with increasingly sophisticated processing mechanisms that can manifest the
behaviors of previous models, as well as additional human behaviors beyond the reach of existing models. Of
course, the value in models lie more in predicting unanticipated behaviors than in simply accounting for observed
behaviors. Thus, itis important for models to be somewhat constrained to have theoretical value.

Future Directions

We would like to end by encouraging researchers to consider conducting model-directed research. All
experimenters are driven by theoretical considerations, and models are ideally suited to bring these issues into
focus and unite seemingly discrepant findings. In the exemplar-based model section, we described how a relatively
simple model brought together powerful ideas from the analogy and category learning literatures to address
learning across species and development. These kinds of advances and connections can be facilitated through
model-driven explorations.

As a final thought, the work reviewed in this chapter largely supports the notion that cognition is continuous across
development and species. The basic mechanisms discussed in this chapter appear to apply equally well across
species and development. For example, the SUSTAIN model of category learning has been successfully applied to
both infants and older adults (Love & Gureckis, 2007). In fact, for certain tasks, data collected from 10-month-old
infants and young adults are successfully fit with the same parameters values (Gureckis & Love, 2004). Likewise,
in situations where one looks at performance across species, one will likely find evidence for common
representations and processes. In our discussion of BRIDGES, the same exemplar-based relational learning
mechanism captures performance data from pigeons, human infants, and adults.

Does this mean there are no differences in learning across development and species? In our opinion, the answer to
this question is clearly no. The convergence we observe is likely a function of the task domain. This issue is worthy
of further exploration. The tasks considered here can all be modeled as a process of activating past experiences
in memory (represented as exemplars or clusters). It may well be that differences in such tasks are minimal across
development and species. Even for this family of tasks, differences can be observed across species, particularly
for cases in which task factors emphasize strategic or attentional processes, which likely rely on prefrontal regions
of the brain that are most prominent in adult humans (Smith, Minda, & Washburn, 2004). In such cases, models like
SUSTAIN and BRIDGES can still prove useful in quantifying differences between populations in terms of best-fitting
attentional parameters. Finally, it may very well be that we underestimate the extent to which our behaviors are
governed by memory-based processes. As the work reviewed in this chapter indicates, such processes can
support a variety of behaviors, especially when the learning and retrieval processes are sensitive to relational
match (Tomlinson & Love, 2008).
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