
Dynamic updating of hippocampal object
representations reflects new conceptual knowledge
Michael L. Macka,1, Bradley C. Loveb,c,2, and Alison R. Prestond,e,f,2

aDepartment of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada; bExperimental Psychology, University College London, London WC1H
0AP, United Kingdom; cAlan Turing Institute, London WC1H 0AP, United Kingdom; dDepartment of Psychology, The University of Texas at Austin, Austin,
TX 78712; eCenter for Learning and Memory, The University of Texas at Austin, Austin, TX 78712; and fDepartment of Neuroscience, The University of Texas
at Austin, Austin, TX 78712

Edited by Francesco P. Battaglia, Radboud Universiteit, Nijmegen, The Netherlands, and accepted by Editorial Board Member Marlene Behrmann October 4,
2016 (received for review August 23, 2016)

Concepts organize the relationship among individual stimuli or
events by highlighting shared features. Often, new goals require
updating conceptual knowledge to reflect relationships based on
different goal-relevant features. Here, our aim is to determine how
hippocampal (HPC) object representations are organized and updated
to reflect changing conceptual knowledge. Participants learned two
classification tasks in which successful learning required attention to
different stimulus features, thus providing a means to index how
representations of individual stimuli are reorganized according to
changing task goals. We used a computational learning model to
capture how people attended to goal-relevant features and orga-
nized object representations based on those features during learning.
Using representational similarity analyses of functional magnetic
resonance imaging data, we demonstrate that neural representations
in left anterior HPC correspond with model predictions of concept
organization. Moreover, we show that during early learning, when
concept updating is most consequential, HPC is functionally coupled
with prefrontal regions. Based on these findings, we propose that
when task goals change, object representations in HPC can be
organized in new ways, resulting in updated concepts that highlight
the features most critical to the new goal.

category learning | attention | computational modeling | hippocampus |
fMRI

Concepts are organizing principles that define how items or
events are similar to one another. Goals are critical to shaping

concepts, by emphasizing some shared features over others. When
goals change, previously experienced events may be organized in
new ways, resulting in an updated concept that highlights the
features most critical to the new goal. For instance, consider pur-
chasing a home. One must learn which features make for the most
desirable home. A young couple seeking a cosmopolitan lifestyle
may organize potential houses based on trendy features like ex-
posed brick walls, a wet bar, and room for vintage record collec-
tions. However, with the news of a baby on the way, the couple’s
goals are likely to shift. After pouring through parenting books and
web forums to learn what makes for a child-friendly home, they
may look at those previously seen potential homes in a different
light. Instead, family-oriented features such as whether or not a
home has a bathtub, is within walking distance to a park, and is in a
well-respected school district may matter more resulting in a re-
organization of which homes are a good buy. At the core of this
example are the fundamental challenges we face in flexible goal-
directed learning. When learning new concepts (e.g., child-friendly
instead of a trendy house), attention changes focus to different
information and items that were conceptually dissimilar (e.g., two
houses with and without a wet bar) may become more similar (e.g.,
they both are close to a park) and vice versa (1). Understanding
how conceptual knowledge is created and updated during learning
is a central question for both cognitive psychology (1–3) and
neuroscience (4–7); however, few studies attempt to bridge these
domains. Here, we test a neurocomputational account of concept

formation by combining human functional MRI (fMRI) with a
computational model of learning.
We evaluate the proposal that during new learning, concept-

relevant features are preferentially encoded into object represen-
tations in the hippocampus (HPC). Recent findings suggest HPC
plays an important role in forming representations that integrate
across shared features of experiences (6, 8–10), yet there is little
understanding about how HPC representations evolve when con-
ceptual knowledge changes. Prominent computational theories
posit that concept formation in HPC is influenced by selective at-
tention mechanisms that favor goal-relevant features from our
experiences (1, 11, 12). When new goals arise, conceptual coding in
HPC is reorganized according to the newly-relevant features se-
lected by attention. Two lines of empirical evidence support this
theoretical view. First, HPC rapidly learns (13), an ability important
for updating conceptual representations in the face of changing
goals. Second, HPC has also been shown to activate representa-
tions that are goal relevant (14–19). A critical open question is how
the same experiences come to be represented differently in neural
terms as a function of changing conceptual knowledge. We test the
hypothesis that HPC coding, in concert with selective attention,
builds, and updates concepts, resulting in distinct representations
for the same stimuli across different learning contexts.
Participants were first exposed to images of insects, which had

three varying features (Fig. 1A and Table S1). During high-resolu-
tion fMRI scans, participants learned two categorization problems
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using the insect stimuli. For one categorization problem (referred to
as type 1) (20), participants learned to group the insects based on a
single feature. For instance, participants were asked to sort insects
into those that prefer warm or cool environments. Via trial and
error, participants learned that an insect’s preference could be
determined by attending to the width of the legs, with thick-legged
insects preferring warm environments and thin-legged insects
preferring cool environments. The other categorization problem
(termed type 2) required participants to attend to the other two
features (e.g., antennae and pincers) to perform correctly. For this
problem, participants might be asked to sort the insects according
to the hemisphere in which they are typically found, eastern or
western. The correct conceptual grouping takes the form of an
exclusive disjunction rule; eastern hemisphere insects comprised
the insects with thick antennae and scooped pincers or thin an-
tennae and sharp pincers, whereas western insects were those with
thick antennae and sharp pincers or thin antennae and scooped
pincers. The order in which participants experienced these tasks was
counterbalanced; half of participants learned the type 1 problem first,
and the remaining participants learned type 2 first. Thus, the same
stimuli were used in both learning tasks, but the conceptual map-
pings of the stimuli changed across tasks. To perform efficiently,
participants had to learn to attend to different features of the insects
and update their concepts when the task, and therefore the goal,
changed (Fig. 1B).
This manipulation thus allowed us to vary the relevancy of the

stimulus dimensions over time. By holding the stimuli constant and
varying which features should be attended to across tasks, the
features that were once relevant become irrelevant and the items
that were once conceptually similar may become very different. For
example, two insects that were considered similar in the first task
because they share thin legs may become conceptually dissimilar in
the second task because they have different antennae or mouths.
The change in feature relevancy therefore requires rapid updating
of conceptual representations, both initially after the exposure
phase and in the transition from one task to another. Using a

computational learning model named SUSTAIN (1), we created
formal predictions about how concepts were updated for each task.
This learning model (Fig. 2A) is based on two central mechanisms:
(i) attention weights to stimulus features and (ii) conceptual
knowledge stores, called clusters, that represent weighted combi-
nations of feature values and an association to a class label. A
classification decision is made by first weighting stimulus feature
values according to the attention weights and then comparing the
attention-weighted stimulus inputs to the stored clusters. The most
similar cluster is then used to drive a probabilistic decision. Im-
portantly, this model predicts learning behavior through a feed-
back-driven process that tunes the attention weights to select
features most informative for the current task. The clusters are also
adaptively updated to code for the similarities among the stimuli
that best represent the concepts needed for the current task. In
other words, the model optimizes the organization of cluster rep-
resentations over the course of learning based on changing task
goals and the stimulus features that are most task relevant.
A theory relating SUSTAIN’s operation to the brain (11, 21, 22)

hypothesizes that HPC forms and alters cluster representations.
This notion is similar to computational models of episodic
memory that link HPC computations to forming conjunctions of
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Fig. 1. Experiment schematic and behavioral performance. (A) Participants
learned to classify eight insect images according to two rules through feed-
back-based learning. On every trial, an insect image was presented (3.5 s) and
participants made classification responses according to the current task. After
a delay (0.5–4.5 s), feedback consisting of the insect image, accuracy, and the
correct response was shown (2 s). The next trial began after a variable delay
(4–8 s). For both tasks, participants responded to all eight stimuli over 16
repetitions. (B) The stimuli consisted of insects with three binary features
(thick/thin legs, thick/thin antennae, and pincer/shovel mouths). The stimulus
set consisted of eight images representing all combinations of the three bi-
nary features. The two classification tasks required attention to different
features: the type 1 problem was based on one feature (e.g., the antennae)
and the type 2 problem was an exclusive disjunction classification based on a
combination of two features (e.g., the mouth and legs). The feature-to-task
mappings and order of the learning tasks were counterbalanced across par-
ticipants. (C) The average probability of a correct response across the 16
learning repetitions is plotted for both tasks. Error bars represent 95% CIs
around the inflection point of the bounded logistic learning curves. The
shaded ribbons represent 95% CIs of the mean.
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Fig. 2. Schematic of learning model and model predictions. (A) The learning
model consists of three main components (see SI Experimental Procedures,
Computational Learning Model for model formalism). First, the sensory input
of the three features is attenuated by receptive fields tuned according to at-
tention weights (λi). The attention component alters the perceptual repre-
sentation of the stimulus toward task-diagnostic information. Second, stored
knowledge represented by clusters of weighted features compete to be acti-
vated by the attention-biased input. The cluster most similar to the attention-
biased input wins and activates the class unit. Third, the activated class unit
serves as input to a decision component that generates a response. Trial-to-
trial, the model learns through feedback by updating the attention weights
and the weights connecting clusters to the class unit and whether an existing
cluster is updated or a new cluster is recruited. (B) The model was fit to par-
ticipants’ learning performance (Fig. 1C) and the final attention weights (λi) for
each dimension were extracted for both tasks. The relative attention weights
for each task are depicted in the radar plots (dotted lines show participant
weights, bold lines show group means). (C) Matrices depict the average model
predictions for the pairwise similarities between the stimuli for the two tasks.
Task-specific similarity predictions for each participant were generated by
extracting cluster activations for each stimulus at the end of learning. Pearson
correlations were then calculated for each stimulus pair, and averaged across
participants. The similarity matrices characterize the task-specific conceptual
representations underlying classification decisions. Stimuli in the same class for
a given task are marked by text color on the matrix axes.
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experiences (12, 23). Prefrontal cortex (PFC) is proposed to tune
selective attention to features (24–26), as well as direct encoding
and retrieval of HPC cluster representations (9, 27–30). In par-
ticular, PFC monitors the similarity between the current stimulus
information and existing conceptual knowledge and biases HPC
functions in reorganizing clusters to reflect goal-relevant features.
In other words, what is attended to by PFC affects what is acti-
vated in HPC, and how HPC representations are updated impacts
how PFC-based attention is tuned. Here, we used the computa-
tional model to index each participant’s attentional strategies and
organization of object representations across the two learning
tasks. We then used these model-based predictions to test how
neural representations in HPC for the same experiences dynami-
cally evolve in the face of changing concepts.
An important aspect of our approach is that model-based pre-

dictions about dynamic changes in object representations were
tailored to each participant’s learning behavior. Using a model-
based representational similarity analysis (RSA) approach, for each
participant, we compared the similarity structure of the model-
predicted cluster representations (i.e., conceptual knowledge) to
the neural activation patterns elicited by the insect stimuli (Fig. 3).
We hypothesized that the organization of HPC object represen-
tations during learning would track how the model dynamically
updated its attention-weighted object representations across the
learning tasks. The theorized neural mechanism for such dynamic
HPC updating relies on communication between HPC and brain
regions important for evaluating sensory and internal mnemonic
information (11). Thus, we also predicted a functional coupling
between HPC and PFC, subregions of which have been implicated
in the formation of generalized knowledge (30, 31) and cognitive
control (32).

Results
Updating Concepts Changes Attention and Object Similarity. Partici-
pants successfully learned both classification problems across
learning trial repetitions (Fig. 1C; βrep = 0.431, SE = 0.046, z =
9.398, P < 1 × 10−16) with performance on type 1 reaching as-
ymptote sooner than type 2 (βtask = 0.928, SE = 0.363, z = 2.556,
P = 0.011). Type 2 learning was relatively slower for participants
that learned type 1 first (βtask*order = −1.218, SE = 0.551, z =
−2.209, P = 0.027). No other group level effects on performance
reached significance. The learning model was fit separately to each
participant’s learning curves and the attention weight parameters
(λ) were extracted at the end of learning for both tasks (Fig. 2B).
According to model predictions, participants allocated attention
to the features that were most diagnostic for the given learning

task. For the type 1 task, attention was allocated more to the di-
agnostic dimension λ1 than the other two dimensions (Zs > 4.40,
Ps < 8 × 10−6). For the type 2 task, attention was allocated more to
the two diagnostic dimensions λ2 and λ3 (Zs > 5.80, Ps < 6 × 10−9).
This behavioral pattern replicates previous findings (1, 20, 33) and
allows us to quantitatively index attention’s influence on HPC
conceptual coding.
We also examined the object representations as predicted by

the learning model after the concepts had been acquired. For each
participant, we extracted the model-based cluster representations
for the same stimuli in both learning tasks, operationalized as a
vector of values representing the degree that each model cluster
was activated by the stimuli. We then calculated the pairwise
correlations between these cluster representations (Fig. 2C).
Across the two tasks, the similarity structure differed strikingly,
reflecting the change in relevancy for the stimulus features; for
instance, some stimuli that were less similar in the type 1 problem
were more similar in the type 2 problem (e.g., stimuli 1 and 5).
This difference in similarity structure across the tasks was con-
firmed with a randomization test of the matrices’ exchangeability
(Z = 3.42, P = 0.0024). Moreover, not all stimuli within a category
show the same level of similarity (e.g., in type 2, stimuli 1 and 4 are
predicted to be very dissimilar despite belonging to the same
category). Thus, any neural representations that are found to be
consistent with this structure cannot be due simply to the associ-
ation between stimuli and a category response. Collectively, these
behavioral and modeling findings suggest participants learned the
tasks by attending to diagnostic information and updating object
representations to reflect the distinct attentional strategies re-
quired by each task. The similarity structure reflecting model-
based object representations were used to test how conceptual
coding in HPC dynamically reflected changing task concepts.

Hippocampal Representations Change Dynamically with Model Predictions.
To evaluate the dynamic nature of HPC-based representations
across learning tasks, we measured model-brain consistency with
model-based RSA (34). This approach (Fig. 3) allowed us to
index the degree that the similarity structure of neural activation
patterns matched model-based predictions of conceptual orga-
nization. Specifically, we calculated neural similarity between
HPC activation patterns for each stimulus pair after the concepts
were established in both tasks (i.e., the second half of each task
when participants had reached asymptotic performance). The
resulting neural similarity matrices, one for each of the two
learning tasks, were concatenated and compared with the
SUSTAIN similarity matrices with Spearman correlation and a
randomization testing procedure. Using searchlight methods (35),
this entire process was repeated for all spheres of neural activity
(3-voxel radius) within HPC.
The group-level analysis of the model-based RSA (Fig. 4A)

revealed a cluster in left anterior HPC (voxelwise threshold P <
0.005, small volume cluster correction P < 0.05; cluster peak Z =
3.21; cluster peak location: x = −25, y = −15, z = −17; 161-cluster
extent) that exhibited significant consistency with the conceptual
representations as predicted by the learning model. To visualize
the conceptual organization within this HPC region, we derived
attention weight estimates from neural similarity measures and
projected these weights into stimulus feature space (Fig. 4B).
These spaces reflect the influence of attentional tuning with
changing task demands; whereas neural representations demon-
strated more attention allocated to the first feature dimension (λn1)
in the type 1 task, attention was tuned to the other two feature
dimensions (λn2 and λn3) in the type 2 task. This HPC region did
not vary in response magnitude across tasks (Z = 0.092, P = 0.927);
all task-related modulation was at the level of latent representa-
tion. An additional control analysis demonstrated that HPC rep-
resentational coding was not simply category based, but rather that

type 1
early

late

early

late

type 2

learning trials

. . .

rbrain,model

attentional weighting

neural similarity

Fig. 3. Schematic of model-based RSA. Model predictions and neural
measures of stimulus similarity were extracted from the second half of both
tasks. For each participant, the learning model was fit to behavior and used
to generate representational similarity spaces (Fig. 2C). A searchlight method
was used to generate corresponding neural similarity matrices within the
hippocampus (highlighted in green) by correlating voxel activation patterns
within each searchlight sphere (3-voxel radius) for all stimulus pairs from
fMRI data recorded during the latter half of the task. The correspondence
between model and neural similarity matrices across both tasks was assessed
with Spearman correlation.
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attention-weighting inherent to the model was critical to isolate
updating mechanisms within HPC (SI Experimental Procedures).

Hippocampal–Prefrontal Functional Connectivity Greater During
Updating. We next evaluated the hypothesis that dynamic updat-
ing of HPC representations is facilitated by interactions with PFC
(11). We predicted that such interactions would be critical early in
learning, when the need for dynamic updating of the conceptual
space is most prevalent and the learning model establishes goal-
relevant clusters. Specifically, we performed a whole-brain func-
tional connectivity analysis to test whether neural activity in left
anterior HPC (Fig. 4A) was coupled with PFC more so during early
relative to late learning. Group-level analyses of functional con-
nectivity revealed that both PFC and occipital regions showed
enhanced coupling with the HPC seed region in the early learning
phase relative to later in learning (Fig. 4C and Table S2).

Specifically, activation time courses in bilateral medial pre-
frontal (mPFC), right frontopolar (FPC), and right dorsolateral pre-
frontal (dlPFC) cortex were coupled with early learning-related
HPC BOLD activity.

Discussion
Using a model-based fMRI approach, we show that HPC object
representations are updated as new concepts are acquired; the
same object is represented differently when concepts shift to
emphasize new object features. When task demands change, HPC
representations are updated to reflect new concepts and when
such dynamic updating is occurring, HPC is distinctly coupled with
PFC. Furthermore, our approach goes beyond current model-
based fMRI methods that examine only the relationship between
brain response and individual model parameters. Specifically, we
assessed the organization of neural representations and how they
change as function of experience through the lens of a computa-
tional model and an a priori theory linking model to brain regions.
By doing so, our approach links formal psychological theory to the
neural dynamics of learning (11).
The current findings provide unique support for the hypothe-

sized role of the HPC in building conceptual knowledge (6, 12, 23).
Notably, the HPC region showing attention-weighted object rep-
resentations was predominantly localized to the dentate gyrus/
CA2,3 region. The intrinsic properties of this region (36, 37) makes
it ideal for integrating goal-relevant features into concept repre-
sentations (6). Although animal (38) and human (39) work has
shown support for HPC involvement in the binding of coarse event
elements such as items in context (40, 41), the current findings
implicate HPC coding at the level of individual stimuli and how
they are conceptually organized. Recent work has shed light on the
organization of over-learned conceptual representations of visual
objects (7, 34, 42); here we show that such conceptual organization
can evolve as a function of changing goals. Specifically, by
leveraging quantitative model predictions of how attention se-
lects stimulus features and impacts the similarity relations among
object representations during learning, we demonstrated that
HPC coding was sensitive to the stimulus features that were in-
formative to the task at hand.
Two recent human fMRI studies (16, 17) have demonstrated

that HPC representations, as evidenced in voxel activation pat-
terns, are distinct for different task states. In these studies,
searching through room images for a particular style of wall art
evoked distinct HPC patterns relative to searching the same room
images for a particular room layout. Although these findings offer
compelling evidence that attention enhances encoding of distinct
HPC representations, the current study extends beyond this work to
characterize how that modulation occurs and to show that attention
influences the neural representation of learned concepts. We
demonstrated that goal-diagnostic information is preferentially
encoded into HPC representations, with concept organization
evolving as goals change. These results, possible only by linking
model predictions to neural representations, provide a substantial
contribution toward understanding the computational mechanisms
that underlie HPC knowledge formation and updating.
Our findings also add to a growing body of literature suggesting

that HPC supports cognitive tasks beyond the domain of episodic
memory (43). The finding that anterior HPC forms concept-specific
representations speaks to the debate on HPC’s role in representing
complex visual objects (44) and classification learning (4). Although
findings from seminal rodent and patient studies suggest perirhinal
cortex rather than HPC is critical for processing objects composed
of multiple features (45–47), the current findings are consistent
with the account that HPC is important for organizing complex
object representations according to changing contexts (39, 41, 48).
Specifically, our results suggest that HPC plays an important role in
forming new concepts; these HPC-based concepts may then be
consolidated into long-term cortical representations of conceptual
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Fig. 4. Model-based RSA and learning-related connectivity results. (A) Neural
representations in left anterior HPC were consistent with model predictions of
attention-weighted conceptual coding (peak x = −25, y = −15, z = 17, 161-
voxel cluster extent; voxelwise thresholded at P < 0.005 and small volume
corrected at P < 0.05 for HPC). (B) Stimulus-specific neural representations from
the HPC region in A were used to estimate attention weights to the three
feature dimensions. These neurally derived attention weights were then pro-
jected into feature space to demonstrate the attentional tuning across tasks.
Each point represents a stimulus and is colored according to the class mem-
bership for the task. The attention-weighted spaces are a visual depiction of
the model-based RSA results (i.e., they are not an independent analysis) and
show how attention is tuned across tasks to reconfigure stimulus space into
task-relevant conceptual space. (C) Regions in PFC and occipital cortex showed
significantly greater functional coupling with the HPC region identified by
model-based RSA during early versus late learning (voxelwise thresholded at
P < 0.005, whole brain cluster extent corrected at P < 0.05).
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knowledge, as proposed by prominent memory theories (49, 50).
Indeed, the current study extends prior fMRI work implicating
HPC processes in classification learning (22, 51–53) to demonstrate
the influence of goal-relevant selective attention in HPC-based
conceptual representations. These results add support for the the-
oretical proposal from the episodic memory literature that the HPC
adaptively builds knowledge representations across episodes (11,
12). It is noteworthy that our findings were localized to the anterior
portion of the HPC. Recent rodent (38) and human (8, 54) evi-
dence suggests episodic memories are encoded according to a
gradient of generalization along the HPC anterior–posterior axis.
Posterior HPC has been shown to exhibit distinct representations
for individual episodes, whereas anterior HPC codes for integrated
representations that generalize across related episodes (8, 22, 38,
54). The current study builds on these observations to show that
anterior HPC representations are not limited to spatial contexts
(19, 38, 55, 56) or overlap between related episodes (8), but can
also integrate attention-weighted object information across ex-
tended learning experiences.
Our connectivity findings speculatively support the view that

PFC interacts with HPC when concepts are updated to reflect
changes in the learning context. In particular, left anterior HPC
showed greater functional connectivity during the early phase of
learning with regions of mPFC, a finding predicted by SUSTAIN’s
neural framework (11). These results are also consistent with
episodic memory findings that PFC biases encoding and retrieval
of mnemonic information in HPC (9, 27, 28) and a recent pro-
posal (29) that memories for individual experiences are updated
through HPC-mPFC interactions to create generalized knowledge
that supports complex behaviors like inference (8, 30). We also
found that early-learning HPC activation was coupled with regions
implicated in a neural hierarchy of cognitive control along the
rostral–caudal axis of lateral PFC (26, 57, 58). Speculatively, such
coupling may reflect processes that map stimulus features to goal-
specific response and context representations. Finally, that HPC
showed coupling with occipital cortex is consistent with previous
reports that neural representations in high-level visual areas
change as a function of experience (34, 59). Collectively, these
findings speculatively offer a potential learning network that
should be a target of future studies.
There are relevant parallels between the current study and the

extensive literature on task switching (25, 60). This literature seeks
to characterize the mechanisms underlying cognitive control in
switching between tasks with distinct attentional (61, 62) and re-
sponse strategies. Here, we tested how individuals engage similar
mechanisms of selective attention and control, but within a
learning context. By focusing on how participants learned to se-
lectively attend to the most relevant features across changing
tasks, we provide a formal account of how attention guides the
formation and updating of neural representations of concepts.
In conclusion, the model-based fMRI approach of the current

work provides a compelling demonstration that HPC-based object
representations are dynamically updated through attention biases.
This approach is a unique contribution to the expanding field of
computational model-based fMRI methods (63). In particular, the
model-based RSA method we propose is a fundamental departure
from the typical model-based fMRI approach (21, 64, 65) that
focuses on localizing time-varying model parameters to activation
timeseries of brain regions. Instead, we leverage the structure of
the conceptual representations predicted by a learning model to
reveal how neural representations of goal-specific concepts are
dynamically updated during learning. Furthermore, by marrying
computational modeling and neural measures through the shared
currency of similarity structure, we leverage RSA in a manner that
was an original proposed goal of the approach (66), but has seen
only limited empirical support (34, 42). With this multifaceted
approach, the current study demonstrates that, when goals change,
object representations in HPC can be organized in new ways,

resulting in updated concepts that highlight the features most
critical to the new goal.

Experimental Procedures
Subjects and Procedures. Twenty-three volunteers participated in the study; all
subjects were right handed, had normal or corrected-to-normal vision, and
were compensated $75 for participating. After consent in accordance with the
University of Texas Institutional Review Board, participants performed all tasks
in a 3-T Siemens Skyra MRI scanner. They were instructed to learn to classify
insect stimuli based on the combination of the insects’ three features. The rules
that defined the classification problems were not included in any of the in-
structions; rather, participants had to learn these rules through feedback-
based trial and error. Participants first performed a familiarization task to
familiarize participants with the insect stimuli and task procedures and to
eliminate any neural activation due to stimulus and task novelty during the
learning tasks. Participants then performed the type 1 and type 2 classification
tasks. For the type 1 task, class associations were defined by a rule depending
on the value of one dimension. For the type 2 task, class associations were
defined by an XOR logical rule that depended on the two dimensions that
were not relevant in the type 1 task. The order of the type 1 and 2 tasks was
counterbalanced across participants. The classification tasks consisted of
learning trials presented in an event-related design. On each trial, an insect
image was presented for 3.5s and participants responded with the insect’s
class. After a 0.5- to 4.5-s fixation, a 2-s feedback screen consisting of the insect
image, response accuracy, and the correct class was shown before a 4- to 8-s
fixation. Each of the eight insects was presented in four learning trials during
each fMRI run and participants completed four fMRI runs for each classifica-
tion task. Whole-brain fMRI data were acquired with 1.7-mm isotropic voxels
and a TR of 2 s. Full procedures andMRI data acquisition and processing details
are described in SI Experimental Procedures.

Model-Based Representational Similarity Analysis. We fit SUSTAIN, a compu-
tational learning model, to each participant’s learning performance. Stimuli
were presented to SUSTAIN in the same order as what the participants ex-
perienced and model parameters were optimized (67) to predict each partic-
ipant’s learning performance in the familiarization task and two learning
tasks. The optimized parameters were used to extract measures of attention
weights and stimulus representations (cluster activation vectors) during the
second half of learning in the two tasks. The pairwise similarities of the cluster
activation vectors were then calculated with Pearson correlation to generate
similarity matrices. Values from the upper triangle of the task-specific similarity
matrices were concatenated and served as the model-based prediction of at-
tention-biased representations. Neural similarity matrices for the stimuli were
calculated by first estimating activation patterns for each stimulus using an
event-specific univariate general linear model (GLM) approach (68, 69). The
neural similarity between stimulus-specific activation patterns from the second
half of learning was assessed with a searchlight method (35, 70) such that the
Pearson correlation was calculated for all pairwise stimulus-specific activation
patterns from a three-voxel radius sphere. Upper triangle values of the task-
specific neural similarity matrices were concatenated to serve as the neural
similarity between the stimuli across tasks. The correspondence between the
neural and model-based similarity matrices was assessed with Spearman cor-
relation and a randomization test. This searchlight method was applied to all
spheres within HPC. For more details, see SI Experimental Procedures, Model-
Based Representational Similarity Analysis.

Functional Connectivity Analysis. HPC functional connectivity with the rest of
the brain was assessed using voxelwise regression (71). Mean activation time
courses from the HPC region identified in themodel-based RSAwere extracted
for each participant and entered into a GLM with the time course as a re-
gressor. The resulting parameter estimates from the first two runs (early
learning) were contrasted with the last two runs (late learning). The resulting
contrast images were normalized to MNI space (72) and submitted to group
analysis (73). For more details, see SI Experimental Procedures, Functional
Connectivity Analysis.
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SI Experimental Procedures
Participants.Twenty-three volunteers (11 females; mean age, 22.3 y
old; age range, 18–31 y) participated in the experiment. All sub-
jects were right handed, had normal or corrected-to-normal vision,
and were compensated $75 for participating.

Stimuli. Eight color images of insects were used in the experiment
(Fig. 1B). The insect images consisted of one body with different
combinations of three features: legs, mouth, and antennae. There
were two versions of each feature (thick and thin legs, thick and
thin antennae, and shovel or pincer mouth). The eight insect
images included all possible combinations of the three features.
The stimuli were sized to 300 × 300 pixels.

Task Procedures. After an initial screening and consent in accor-
dance with the University of Texas Institutional Review Board,
participants were instructed on the classification learning tasks.
Participants then performed the tasks in the MRI scanner by
viewing visual stimuli back-projected onto a screen through a
mirror attached onto the head coil. Foam pads were used to
minimize head motion. Stimulus presentation and timing was
performed using custom scripts written inMatlab (Mathworks) and
Psychtoolbox (psychtoolbox.org) on an Apple Mac Pro computer
running OS X 10.7.
Participants were instructed to learn how to classify the insects

based on the combination of the insects’ features. They were in-
structed to learn by using the feedback displayed on each trial. As
part of the initial instructions, participants were made aware of the
three features and the two different values of each feature. Before
beginning each classification problem, additional instructions that
described the cover story for the current task and which buttons to
press for the two insect classes were presented to the participants.
One example of this instruction text is as follows: “Each insect
prefers either Warm or Cold temperatures. The temperature that
each insect prefers depends on one or more of its features. On
each trial, you will be shown an insect and you will make a re-
sponse as to that insect’s preferred temperature. Press the 1 but-
ton under your index finger for Warm temperatures or the 2
button under your middle finger for Cold temperatures.” The
other two cover stories involved classifying insects into those that
live in the eastern vs. western hemisphere and those that live in an
urban vs. rural environment. The cover stories were randomly
paired with the familiarization task and the two learning tasks for
each participant. After the instruction screen, the four fMRI
scanning runs for that task commenced, with no further task in-
structions. After all four scanning runs for a task finished, the next
task began with the corresponding cover story description. Im-
portantly, the rules that defined the classification problems were
not included in any of the instructions; rather, participants had to
learn these rules through trial and error.
Participants first performed a familiarization task, in which they

were presented with and learned class association responses to each
of the insect stimuli. This task had the same format as the classi-
fication learning tasks, but was structured such that all insect fea-
tures had to be attended to respond correctly. The familiarization
task was included to familiarize participants with the insect stimuli
and task procedures to eliminate any neural activation due to
stimulus and task novelty during the learning tasks. Data from the
familiarization task was not considered for analysis. In contrast to
the familiarization task, the type 1 and type 2 learning tasks were
structured such that perfect performance required attending only to
a subset of feature dimensions. For the type 1 task, class associations

were defined by a rule depending on the value of one dimension.
For the type 2 task, class associations were defined by an XOR
logical rule that depended on the value of the two dimensions that
were not relevant in the type 1 task (Fig. 1B). As such, different
dimensions were relevant to the two tasks and successfully learning
the classification tasks required a shift in attention to attend to
dimensions most relevant for the current task. The binary values of
the eight insect stimuli along with the class association for the type
1 and type 2 tasks are depicted in Table S1. The stimulus features
were randomly mapped onto the dimensions for each participant.
These feature-to-dimension mappings were fixed across the dif-
ferent classification learning tasks within a participant. After the
familiarization task, participants learned the type 1 and 2 tasks in
sequential order. The learning order of the type 1 and 2 tasks was
counterbalanced across participants.
The classification tasks consisted of learning trials (Fig. 1A)

during which an insect image was presented for 3.5 s. During
stimulus presentation, participants were instructed to respond to
the insect’s class by pressing one of two buttons on an fMRI-
compatible button box. Insect images subtended 7.3° × 7.3° of
visual space. The stimulus presentation period was followed by a
0.5- to 4.5-s fixation. A feedback screen consisting of the insect
image, text of whether the response was correct or incorrect, and
the correct class was shown for 2 s followed by a 4- to 8-s fixation.
The timing of the stimulus and feedback phases of the learning
trials was jittered to optimize general linear modeling estimation
of the fMRI data. Within one functional run, each of the eight
insect images was presented in four learning trials. The order of
the learning trials was pseudo randomized in blocks of 16 trials
such that the eight stimuli were each presented twice. One func-
tional run was 194 s in duration. Each of the learning problems
included four functional runs for a total of 16 repetitions for each
insect stimulus. The entire experiment lasted ∼65 min.

Behavioral Analysis. Learning performance during the classification
tasks was analyzed using a bounded logistic regression with random
effects of repetition, order, and task (Fig. 1C). This analysis was
performed using lme4 (version 1.1–12) and psyphy (version 0.1–9)
packages in R (version 3.2.5). Participant-specific learning curves
were also extracted for each task by calculating the average ac-
curacy across blocks of 16 learning trials. These learning curves
were used for the computational learning model analysis.

Computational Learning Model. Participant behavior was modeled
with an established mathematical learning model, SUSTAIN (1).
SUSTAIN is a network-based learning model (Fig. 2A) that
classifies incoming stimuli by comparing to memory-based knowl-
edge representations of previously experienced stimuli. Sensory
stimuli are encoded by SUSTAIN into perceptual representations
based on the value of the stimulus features. The values of these
features are biased according to attention weights operationalized
as receptive fields on each feature dimension. During the course of
learning, these attention weight receptive fields are tuned to give
more weight to diagnostic features. SUSTAIN represents knowl-
edge as clusters of stimulus features and class associations that are
built and tuned over the course of learning. New clusters are re-
cruited and existing clusters updated according to the current
learning goals.
To characterize the latent attention-biased representations

participants formed during learning, we fit SUSTAIN to each
participant’s learning performance. First, SUSTAIN was ini-
tialized with no clusters and equivalent attention weights across
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the stimulus dimensions. Then, stimuli were presented to SUSTAIN
in the same order as what the participants experienced and model
parameters were optimized to predict each participant’s learning
performance in the familiarization task and two learning tasks
through a maximum likelihood genetic algorithm optimization
method (65). In the fitting procedure, the model state from the end
of the familiarization task (in which attention to features was
equivalent) was used as the initial state for the first learning task,
and the model state at the end of the first learning task was used as
the initial state for the second learning task. In doing so, param-
eters were optimized to account for learning in the familiarization
task and both learning tasks with the assumption that attention
weights and knowledge clusters learned from the familiarization
task carried over to influence learning in the first task; and simi-
larly, model state from the first task carried over and influenced
early learning in the second task. The optimized parameters were
then used to extract measures of dimensional attention weights and
latent representations of the stimuli during the second half of
learning in the two tasks. Specifically, for each participant, the
model parameters were fixed to the optimized values and the
model was presented with the trial order experienced by the par-
ticipant. After the model was presented with the first half of trials,
the value of the dimensional attention weights, λi, were extracted
for each participant (Fig. 2b). Latent model representations were
also extracted for each stimulus. We did this by presenting the
model with each stimulus and saving out vectors of cluster acti-
vations, Hact

i (see SI Experimental Procedures, Computational
Modeling Methods for model formalism). The pairwise similarities
of these cluster activation vectors were then calculated with
Pearson correlation. The resulting similarity matrices served as
the model-based prediction of attention-biased representations
(Fig. 2C) used in the multivariate fMRI pattern analysis (Fig. 3).

Computational Modeling Methods. The following sections describe
SUSTAIN’s formalism, how the model learns, and how the model
was fit to each participant’s learning behavior.
Perceptual encoding.An input stimulus is presented to SUSTAIN as
a pattern of activation on input units that code for the different
stimulus features and possible values that these features can take.
For each stimulus feature, i (e.g., a beetle’s legs), with k possible
values (two in the present experiment; e.g., thick or thin legs),
there are k input units. Input units are set to one if the unit
represents the feature value or zero otherwise. The entire stimulus
is represented by Iposik, with i indicating the stimulus feature and k
indicating the value for feature i. “pos” indicates that the stimulus
is represented as a point in a multidimensional space. The dis-
tance μij between the ith stimulus feature and cluster j’s position
along the ith feature is

μij = 1=2
Xvi
k=1

���Iposik −Hposik
j

���, [S1]

wherein vi is the number of possible values that the ith stimulus
feature can take and Hposik

j is cluster j’s position on the ith feature
for value k. Distance μij is always between 0 and 1, inclusive.
Response selection. After perceptual encoding, each cluster is acti-
vated based on the similarity of the cluster to the input stimulus.
Cluster activation is given by

Hact
j =

Pna
i=1

ðλiÞγe−λiμij
Pna
i=1

ðλiÞγ
, [S2]

wherein Hact
j is cluster j’s activation, na is the number of stimulus

features, λi is the attention weight receptive field tuning for feature

i, and γ is the attentional parameter (constrained to be nonnega-
tive). Clusters compete to respond to an input stimulus through
mutual inhibition. The final output of each cluster j is given by

Hout
j =

�
Hact

j

�β

Pnc
i=1

�
Hact

j

�β
Hact

j , [S3]

wherein nc is the current number of clusters, and β is a lateral
inhibition parameter (constrained to be nonnegative) that controls
the level of cluster competition. The cluster that wins the compe-
tition, Hm, passes its output to the k output units of the unknown
feature dimension z

Cout
zk =wm,zkHout

m , [S4]

wherein Cout
zk is the output of the unit representing the kth feature

value of the zth feature, and wm,zk is the weight from the winning
cluster, Hm, to the output unit Czk. In the current simulations, the
class label is the only unknown feature dimension. Thus, Eq. S4 is
calculated for each of the two values of the class label. Finally, the
probability of making a response k for a queried dimension, z, on a
given trial is

PðkÞ= eðdCout
zk Þ

Pvz
j=1

eðdCout
zk Þ

. [S5]

Cluster recruitment. In the current study, SUSTAIN was initialized
with zero clusters. During learning, clusters are recruited in re-
sponse to a combination of the order of the stimuli presented in the
participant-specific trial orders and the error feedback received on
each trial. In the current study, SUSTAIN was presented with trial
orders from the familiarization task followed by the two learning
tasks. We included a cluster recruitment parameter, τ (constrained
to be between 0 and 1) that probabilistically determines whether
an error will lead to new cluster recruitment. If SUSTAIN makes
a prediction error, and τ exceeds q, wherein q is a randomly
generated value between 0 and 1, a new cluster is recruited.
Otherwise, the winning cluster from the cluster competition is
updated to reflect current stimulus features and class label ac-
cording to the learning rules explained next.
Learning. SUSTAIN’s learning rules determine how clusters are
updated during learning. Only the winning clusters are updated. If
a new cluster is recruited on a trial, it is considered the winning
cluster. Otherwise, the cluster that is most similar to the current
stimulus will be the winner. The winning cluster Hm, is adjusted by

ΔHposik
m = η

�
Iposik −Hposik

m

�
, [S6]

wherein η is the learning rate parameter. The result of the updat-
ing is that the winning cluster moves toward the current stimulus.
Over the course of learning, each cluster will tend toward the
center of its members. Attention weight receptive field tunings
for the different feature dimensions are updated according to

Δλi= ηe−λiμimð1− λiμimÞ, [S7]

wherein m indexes the winning cluster.
The weights from the winning cluster to the output units are

adjusted by a one layer delta learning rule

Δwm,zk = η
�
tzk −Cout

zk

�
Hout

m . [S8]

Simulations. For the current study, stimuli were presented to
SUSTAIN using the same trial order as the participants. To reflect
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the carryover of the previous learning task on the current learning
task, the attention weight receptive field tunings and clusters were
not reinitialized between tasks. Rather, model fits were such that a
single set of parameters were optimized to describe behavior on both
learning tasks. This methodology takes into account each partici-
pant’s learning experience and allows us to quantify how the first
task influenced learning on the second task. Thus, task order effects
are considered a natural consequence of our model fitting ap-
proach. The free parameters, γ, β, η, d, and τh, were fit to each
participant’s learning curve using a maximum likelihood genetic
algorithm optimization technique (65). Obtained mean parameter
values and 95% CIs were as follows: γ = 3.286 ± 2.064, β = 4.626 ±
0.220, η = 0.308 ± 0.145, d = 20.293 ± 5.724, and τh = 0.112 ± 0.039.

MRI Data Acquisition. Whole-brain imaging data were acquired on a
3.0-T Siemens Skyra system at the University of Texas at Austin
ImagingResearch Center. A high-resolution T1-weightedMPRAGE
structural volume (repetition time (TR) = 1.9 s, echo time (TE) =
2.43 ms, flip angle = 9°, field of view (FOV) = 256 mm, matrix =
256 × 256, voxel dimensions = 1-mm isotropic) was acquired for
coregistration and parcellation. Two oblique coronal T2-weighted
structural images were acquired perpendicular to the main axis of the
hippocampus (TR = 13,150 ms, TE = 82 ms, matrix = 384 × 384,
0.4 × 0.4-mm in-plane resolution, 1.5-mm thru-plane resolution,
60 slices, no gap). These images were coregistered and averaged to
generate a mean coronal image for each participant that was used to
localize peak voxels from the model-based RSA results to hippo-
campal subfields. High-resolution functional images were acquired
using a T2*-weighted multiband accelerated EPI pulse sequence
(TR = 2 s, TE = 31 ms, flip angle = 73°, FOV = 220 mm,
matrix = 128 × 128, slice thickness = 1.7 mm, number of slices =
72, multiband factor = 3) allowing for whole brain coverage with
1.7-mm isotropic voxels.

MRI Data Preprocessing and Statistical Analysis. MRI data were
preprocessed and analyzed using FSL 6.0 (66) and custom Python
routines. Functional images were realigned to the first volume of
the seventh functional run to correct formotion, spatially smoothed
using a 3-mm full-width-half-maximum Gaussian kernel, high-pass
filtered (128 s), and detrended to remove linear trends within each
run. Functional images were registered to theMPRAGE structural
volume using Advanced Normalization Tools, version 1.9 (70). All
analyses were performed in the native space of each participant.

Hippocampus Region of Interest. The hippocampus was delineated
by hand on the 1-mm MNI template brain and reverse-normalized
to each participant’s functional space using ANTS. Specifically, a
nonlinear transformation was calculated from the MNI template
brain to each participant’s T1-weighted MPRAGE volume. This
warp was then concatenated with the MPRAGE to functional
space transformation calculated using ANTS. Finally, the concat-
enated transformation was applied to the anatomical hippocampus
region of interest (ROI) to move the ROI into each participant’s
functional space.

Model-Based Representational Similarity Analysis. The goal of the
similarity analysis was to assess the extent that attention processes
bias neural representations of individual stimuli during the different
learning tasks. In contrast to classification techniques that are used
to decode activation patterns associated with relatively small
number of stimulus classes or conditions, pattern similarity methods
allow one to evaluate activation patterns at the level of single events
or stimuli (8, 65). In the current study, we used pattern similarity
methods to evaluate the similarity between neural patterns for each
of the insect stimuli under the different learning contexts.
Pattern similarity analyses were implemented using PyMVPA

(68) and custom Python routines and were conducted on pre-
processed and spatially smoothed functional data. First, whole brain

activation patterns for each stimulus within each runwere estimated
using an event-specific univariate GLM approach (67). In contrast
to the classification approach that leverages the variance in neural
patterns to learn voxel weights that best discriminate conditions,
pattern similarity analyses require stable estimates of neural rep-
resentations for the conditions of interest. In the current study, the
condition of interest was at the level of specific stimuli. Thus, we
took a GLM approach to model stable estimates of neural patterns
for each of the eight insect stimuli. For each classification task run, a
GLMwith separate regressors for stimulus presentation of the eight
insect stimuli, modeled as 3.5-s boxcar convolved with a canonical
hemodynamic response function (HRF), was conducted to extract
voxelwise parameter estimates to each of the stimuli. Additionally,
stimulus-specific regressors for the feedback period of the learning
trials (2-s boxcar) and responses (impulse function at the time of
response), as well as six motion parameters were included in the
GLM. Because the majority of participants had reached asymptotic
performance by the end of the second run, we focused on learned
representations present in the latter half of learning. Thus, a second
level GLM analysis was conducted to average the stimulus-specific
parameter estimates from the third and fourth runs of the two
classification tasks. This procedure resulted in, for each participant,
whole brain activation patterns during the later stages of learning
for each of the eight stimuli in both classification tasks.
We compared neural measures of stimulus representation during

learning to model predictions with a searchlight method (35). Using
a searchlight sphere with a radius of three voxels, we extracted a
vector of activation values across all voxels within a searchlight
sphere for each of the eight stimuli. The pairwise similarities be-
tween these activation vectors were calculated with Pearson cor-
relation. The resulting similarity matrices captured the similarity
structure among the neural representations of the stimuli during
learning. We then tested whether or not the neural representations
were consistent with model-based predictions of stimulus repre-
sentations by calculating the Spearman correlation between the
values in the upper triangles of the neural and model similarity
matrices. A reshuffling randomization test was performed on the
resulting correlation coefficient. For each iteration of the ran-
domization test, the rows of the model similarity matrix were
randomly shuffled and the Spearman correlation between the
shuffled model and neural similarity matrices was calculated. This
procedure was repeated 1,000 times to create a null distribution.
Finally, a test statistic defined as the probability that the correlation
coefficient between the actual model and neural similarity matrices
was larger than the null distribution was calculated. This entire
procedure was performed for each searchlight sphere location
resulting in statistical maps that characterized the consistency be-
tween attention-biased model predictions (i.e., attention weighting
hypothesis) and neural measures of learned stimulus representa-
tions for each participant in both tasks. A second analysis using the
same methods was also performed that compared the neural
measures of stimulus representations to similarity predictions based
only on class associations (i.e., associative mapping hypothesis).
Specifically, matrices representing whether or not pairs of stimuli
were in the same class were constructed and evaluated for con-
sistency with neural similarity matrices in the same manner as the
model similarity matrices (Fig. 3). In separate analyses, the search-
light method was applied to activation patterns present only in the
hippocampus ROI.
Group-level analyses were performed on the statistical maps

calculated with the pattern similarity searchlight procedure. Each
participant’s p-maps were transformed to z-scores and normalized
to MNI space using ANTs (70). We then performed a one-sample
randomization test on the correspondence between attention
weighting and neural similarity with voxelwise nonparametric
permutation testing (5,000 permutations) performed using FSL
Randomize (71). To evaluate our hypothesis that the hippocam-
pus builds representations consistent with attentional strategies,
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we performed a small volume cluster correction analysis restricted
only to the hippocampus. Specifically, the resulting statistical maps
from the hippocampal ROI (Fig. 4A) were voxelwise thresholded
at P = 0.005 and cluster corrected at P = 0.05, which corresponded
to a cluster extent threshold of greater than 149 voxels as de-
termined by AFNI 3dClustSim using the acf option, second-
nearest neighbor clustering, and two-sided thresholding. The
version of 3dClustSim used was compiled on 21 January 2016 and
included fixes for the recently discovered errors of failing to ac-
count for edge effects in simulations involving small regions and
improperly accounting for spatial autocorrelation in smoothness
estimates.
A control analysis was conducted to interrogate the response

magnitude across the learning tasks in the left anterior hippocampus
region identified in the model-based RSA results (Fig. 4). Specif-
ically, the average signal from the trial-by-trial beta series within a
region defined by the hippocampus cluster was extracted from the
stimulus presentation phase of each trial for each participant.
Response magnitude differences between the two tasks were
evaluated with Wilcoxon signed rank tests and revealed no signif-
icant differences between task across the full experiment (Z= 0.091,
P = 0.927), nor the early and late phases (early: Z = 0.183, P =
0.855; late: Z = 0.365, P = 0.715). There were also no significant
differences in response amplitude across the early and late phases
within the tasks (type 1: Z = 0.395, P = 0.693; type 2: Z = 0.760,
P = 0.447). These null findings suggest the task-related differences
in neural activity were not due to differences in overall engagement
of the hippocampus, but at the level of neural representations.
As an additional control analysis, we contrasted the model-based

RSA results with a separate analysis using a standard RSA ap-
proach (6, 8) wherein neural similarity is simply predicted to follow
class association. This standard RSA approach was operationalized
as a similarity matrix where pairs of stimuli in the same class had
maximum similarity and pairs in different classes had minimum
similarity. No HPC regions were consistent with simple class as-
sociation, and the left anterior HPC cluster revealed in the model-
based RSA remained significant when the model-based and stan-
dard RSA results were directly contrasted. These findings suggest
that HPC dynamically codes for attention-weighted conceptual
representations that are optimized for current learning goals.

Neurally Derived Attention Weights. To visualize attentional tuning
in the hippocampus region identified in the model-based RSA, we
estimated attention weights from stimulus-specific neural repre-
sentations. It is important to note that this analysis is not in-
dependent of theRSA findings. To be clear, we are not presenting it
as additional evidence, but as a method for visually representing the
conceptual coding in the hippocampal activation patterns identified

by the RSA. Neurally derived attention weights (λn) were estimated
by first extracting the stimulus-specific neural representations from
the left anterior hippocampal region from the late phase of
learning in both tasks for each participant. These neural repre-
sentations were extracted from the trial-by-trial beta series used for
the model-based RSA. For each of the three stimulus feature di-
mensions, the average pairwise similarity between stimuli that
shared the same value on the feature (e.g., both had thick legs or
both had thin legs) was divided by the average similarity between
stimuli that did not share the same value (e.g., one had thick legs,
the other thin legs). This ratio served as a neural estimate of the
attention weight for that feature. Pairwise similarity was calculated
as the exponential of the negative Euclidean distance between
stimulus representations. For each participant, neurally derived
attention weights were estimated for each feature dimension in the
two learning tasks separately. These attention weights were nor-
malized for each task to sum to 1 (λn mean and 95% CIs for type 1:
0.409 ± 0.062, 0.289 ± 0.040, 0.302 ± 0.25; type 2: 0.277 ± 0.035,
0.322 ± 0.043, 0.402 ± 0.059). Finally, the attention weights for the
two tasks were averaged across participants and projected into
stimulus feature space (as defined in Table S1) to demonstrate
how attentional tuning changed across tasks (Fig. 4B).

Functional Connectivity Analysis. The goal of the functional con-
nectivity analysis was to evaluate the functional coupling between
the hippocampal region showing attention-biased representations
(Fig. 4) and the rest of the brain. In particular, wewere interested in
investigating how connectivity with the hippocampus ismediated by
early vs. late learning. We investigated connectivity with a psy-
chophysiological interaction (PPI) analysis (69). Seed time courses
from the left anterior hippocampal region identified in the pattern
similarity analysis were extracted for each participant by averaging
mean BOLD signal across the region separately for each time
point. These seed time courses were then entered into a voxelwise
GLM analysis of the functional data across the whole brain. A
second level GLM analysis was conducted to contrast voxel time
course connectivity with the hippocampal seed region time course
in early vs. late learning. Specifically, separately for the two tasks,
first level parameter estimates from the first two functional runs
were labeled as early learning and contrasted with parameter es-
timates from the last two functional runs. The resulting contrast
images were normalized to MNI space using ANTS and submitted
to a group analysis using FSL Randomize nonparametric ran-
domization tests (5,000 repetitions). The resulting statistic maps
(Fig. 4C) were voxelwise thresholded at P < 0.005 and cluster
corrected at P < 0.05 with a cluster extent threshold of 791 voxels
as determined by 3dClustStim using the acf option, second-nearest
neighbor clustering, and two-sided thresholding (Table S2).
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Table S1. Stimulus features and class associations

Stimulus

Feature dimension Class

1 2 3 Type 1 Type 2

1 0 0 0 A C
2 0 0 1 A D
3 0 1 0 A D
4 0 1 1 A C
5 1 0 0 B C
6 1 0 1 B D
7 1 1 0 B D
8 1 1 1 B C

Each of the eight stimuli are represented by the binary values of the three
feature dimensions and their class associations for the type 1 and type 2
classification tasks.

Table S2. Results of functional connectivity analysis

Anatomical region Peak z-value Extent (voxels) Peak location

Bilateral medial prefrontal cortex 4.34 2,836 10, 43, −6
Right inferior lateral occipital cortex 4.44 2,386 35, −82, −11
Right frontopolar cortex 4.12 1,806 36, 57, −10
Right dorsolateral prefrontal cortex 6.00 1,155 58, −13, 48

Clusters that survived statistical thresholding are described according to their corre-
sponding anatomical region, peak z-value in the group-level statistical maps, cluster ex-
tent in voxels, and the location of the peak z-value in MNI coordinates.
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