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Abstract— Prefrontal cortex (PFC) is thought to support the 
ability to focus on goal-relevant information by filtering out 
irrelevant information, a process akin to dimensionality reduction. 
Here, we find direct evidence of goal-directed data compression 
within medial PFC during learning, such that the degree of neural 
compression predicts an individual’s ability to selectively attend to 
concept-specific information. These findings suggest a domain-
general mechanism of learning through compression in mPFC. 
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I. INTRODUCTION 
Prefrontal cortex (PFC) is sensitive to the complexity of 

incoming information [1] and theoretical perspectives suggest 
that a core function of PFC is to focus representation on goal-
relevant features by filtering out irrelevant content [2], [3]. In 
particular, medial PFC (mPFC) is thought to represent the latent 
structures of experience [4], [5], coding for causal links [6] and 
task-related cognitive maps [7]. At the heart of these accounts is 
the hypothesis that during learning, mPFC performs data 
reduction on incoming information, compressing features that 
do not matter to emphasize encoding of goal-relevant 
information structures. Although emerging evidence suggests 
structured representations occur in the rodent homologue of 
mPFC [8], such coding in human PFC remains poorly 
understood. Here, we directly assess the data reduction 
hypothesis by leveraging an information-theoretic approach in 
human neuroimaging to measure how learning is supported by 
mPFC compression processes. 

II. METHODS 

A. Participants 
Twenty-three volunteers (11 females, mean age 22.3 years 

old, ranging from 18 to 31 years) participated in the experiment. 
All subjects were right handed, had normal or corrected-to-
normal vision, and were compensated $75 for participating. One 

participant did not perform above chance in one of the learning 
problems, thus was excluded from analysis.  

B. Stimuli  
Eight color images of insects were used in the experiment 

(Fig. 1A). The insect images consisted of one body with 
different combinations of three features: legs, mouth, and 
antennae. There were two versions of each feature (thick or thin 
antennae, thick or thin legs, and shovel or pincer mandible). The 
eight insect images included all possible combinations of the 
three features.  

C. Procedures for learning problems 
We focused on concept learning, given the recent findings 

that mPFC represents conceptual information in an organized 
fashion [9]. Participants learned to classify the same insect 
images across three different problems [10] (Fig. 1A). These 
learning problems were defined by rules for which a different 
number of features had to be consider to successfully classify 
(see Table 1): the low category complexity problem was 
unidimensional (e.g., insects living in warm climates have thick 
legs, cold climate insects have thin legs), the medium category 
complexity problem depended on two features (e.g., insects 
from rural environments have thick antennae and shovel 
mandible or thin antennae and pincer mandible, urban insects 
have thick antennae and pincer mandible or thin antennae and 
shovel mandible), and the high category complexity problem 
required all three features (i.e., each insect’s class was uniquely 
defined by a combination of features).  

This design allowed us to manipulate the complexity of the 
conceptual space needed represent each problem (see Fig 1A). 
Complexity and compression have an inverse relationship; the 
lower the complexity of a conceptual space, the higher the 
degree of compression. For instance, in learning the 
unidimensional problem, variance along the two irrelevant 



 

 

feature dimensions can be compressed resulting in a lower 
complexity conceptual space. In contrast, learning the high 
complexity problem requires less compression because all three 
feature dimensions must be represented, resulting in a relatively 
more complex conceptual space.  

TABLE I.  STIMULUS FEATURES AND CLASS ASSOCIATIONS 

 feature attribute problem complexity 

stimulus 1 2 3 low medium high 
1 0 0 0 A A B 
2 0 0 1 A B A 
3 0 1 0 A B A 
4 0 1 1 A A B 
5 1 0 0 B A A 
6 1 0 1 B B B 
7 1 1 0 B B B 
8 1 1 1 B A A 

 

Differences in complexity across the three learning problems 
thus provide a means for testing how learning shapes the 
dimensionality of neural concept representations. Namely, brain 
regions involved in data compression should learn to represent 
less complex problems with fewer dimensions. To test this 
prediction, we recorded functional magnetic resonance imaging 
(fMRI) data while participants learned the three problems and 
measured the degree that multivoxel activation patterns were 
compressed through learning using principal component 
analysis (PCA; Fig 1B), a method for low-rank approximation 
of multidimensional data [11].  

III. RESULTS 

A. Neural compression 
We assessed the representational complexity of the neural 

measures of stimulus representation during learning with a 
searchlight method [13]. Using a searchlight sphere with a 
radius of 4 voxels (voxels per sphere: 242 mean, 257 mode, 76 
minimum, 257 maximum), we extracted a vector of activation 
values across all voxels within a searchlight sphere for all 32 
trials within a problem run. These activation vectors were then 
submitted to PCA to assess the degree of correlation in voxel 
activation across the different trials. PCA was performed using 
the singular value decomposition method as implemented in the 
decomposition.PCA function of the scikit-learn (version 0.17.1) 
Python library. To characterize the amount of dimensional 
reduction possible in the neural representation, we calculated the 
number of principal components that were necessary to explain 
90% of the variance (k) in the activation vectors. We scaled this 
number into a compression score, 1-k/n, where n is equal to 32, 
the total number of activation patterns submitted to PCA. By 
definition, 32 PCs will account for 100% of the variance, but no 
compression. With this definition of neural compression, larger 
compression scores indicated fewer principal components were 
needed to explain the variance across trials in the neural data 
(i.e., neural representations with lower dimensional 
complexity). In contrast, smaller compression scores indicated 
more principal components were required to explain the 
variance (i.e., neural representations with higher dimensional 
complexity). This neural compression searchlight was 

performed across the whole brain separately for each participant 
and each run of the three learning problems in native space.  

Throughout the entire brain, only mPFC showed the 
predicted relationship between compression and conceptual 
complexity (peak F=14.4; peak coordinates -5, 51, -20; 1257 
voxels; Fig. 1C). Importantly, mPFC compression emerged over 
learning blocks (F6,126=3.27, MSE=0.002, p=0.005, hp

2=0.135). 
Because the stimuli were identical across the three problems, 
this finding demonstrates that learning-related compression is 
goal-specific, with mPFC requiring fewer dimensions for less 
complex goals. 

B. Relating neural compression to selective attention 
To assess whether mPFC compression tracked changes in 

attentional allocation, we characterized the participant-specific 
attentional weights given to each stimulus feature across the 

Fig. 1. Experimental schematic and neural compression analysis. A) The 
learning problems differed in rule complexity (see Table 1). Low complexity 
was unidimensional (e.g., antennae size), medium complexity required a 
conjunction of two features (e.g., leg size and mandible shape), and high 
complexity required all three features. B) Principal component analysis (PCA) 
was performed on neural patterns evoked for each of n trial within a learning 
block. The number of principal components (PC) required to explain 90% of 
the variance (k) was used to calculate a neural compression score (1-k/n). We 
quantified neural compression as a function of learning problem and repetition; 
this interaction reflects changes in the complexity of neural representations that 
emerge with learning. C) A wholebrain searchlight revealed an mPFC region 
that showed an interaction between learning block and problem complexity 
(i.e., compression for low > medium > high). Error bars represent 95% 
confidence intervals. (N=22). 



 

 

three problems using a computational learning model, 
SUSTAIN [14]. SUSTAIN is a network-based learning model 
that classifies incoming stimuli by comparing them to memory-
based knowledge representations of previously experienced 
stimuli. Sensory stimuli are encoded by SUSTAIN into 
perceptual representations based on the value of the stimulus 
features. The values of these features are biased according to 
attention weights operationalized as receptive fields on each 
feature attribute. During the course of learning, these attention 
weight receptive fields are tuned to give more weight to 
diagnostic features. SUSTAIN represents knowledge as clusters 
of stimulus features and class associations that are built and 
tuned over the course of learning. New clusters are recruited and 
existing clusters updated according to the current learning goals. 
A full mathematical formulization of SUSTAIN is provided in 
its introductory publication [14].  

To assess attentional strategy during the learning problems, 
we fit each participant’s learning performance with SUSTAIN 
and extracted the attention weights at the end of learning in each 
problem. We then calculated the entropy across the attention 
weights for each problem. Attention weight entropy indexed 
changes in attentional allocation; high entropy indicates 
equivalent weighting to all three features, whereas low entropy 
indicates attention directed to only one feature. We found that 
across the learning problems, attention weight entropy increased 
with conceptual complexity (c2

2=33.17, p=6.26´10-8; Fig. 2B). 
Importantly, the increase in attention weight entropy mirrored 
the decrease in mPFC neural compression (c2

2=24.82, 
p=4.08´10-6; Fig. 2A), suggesting a link between the behavioral 
and neural signatures of dimensionality reduction. 

To assess this relationship, we evaluated whether 
participants’ attention weights were predicted by mPFC neural 
compression at the individual participant level. We first 
calculated the degree of change in neural compression and 
attention weight entropy across the three problems. We did this 
by fitting separate linear regression models to each participant’s 
neural compression scores (average compression score within 
the participant-specific mPFC cluster mask as described above) 
and attention weight entropy values. This resulted in neural 

compression and attention entropy slopes for each participant 
(plotted in Fig. 2C). Specifically, for neural compression, a more 
negative slope reflects decreasing compression (and increasing 
representational complexity) across the low, medium, and high 
complexity problems. A flat slope would suggest no change in 
representational complexity across the problems. For attention 
weight entropy, a more positive slope reflects increasing entropy 
in attention weights across low, medium, and high problems. 
Such a slope would be found when attention is optimally 
deployed across the three problems: one feature in low, two 
features in medium, and all three features in high. A flat slope 
would suggest attention was equivalently deployed across the 
problem types.  

 If the ability to compress neural representations in a 
problem-appropriate fashion is related to participants’ ability to 
attend to problem-relevant features, the prediction follows that 
participants with changes in neural compression across problem 
(i.e., more negative neural compression slopes) will also show 
the greatest change in selective attention (i.e., more positive 
attention entropy slopes). Our analysis confirmed this 
hypothesis (r20=-0.486, p=0.022; see Fig. 2C).  

To assess the reliability of this finding and evaluate the 
influence of potential outliers, we performed three additional 
analyses. First, we analyzed the relationship between neural 
compression and attention entropy with robust regression using 
a logistic weighting function. Robust regression accounts for 
potential outlier observations by down weighting observations 
that individually influence the estimation of a linear regression 
model between two variables. Consistent with the correlation 
results, the robust regression results showed evidence of a linear 
relationship between neural compression and attention weight 
entropy (b = -4.019, SE = 1.657, t = -2.427, p = 0.025). The 
weighting of each observation estimated in the robust regression 
analysis is depicted in Figure 2C as the relative size of the data 
points. Second, we identified and removed potential outliers by 
evaluating the standardized difference in fit statistic (DFFITS) 
for each observation. Using the standard DFFITS threshold [15], 
one observation was identified as an outlier (noted as a grey data 
point in Fig. 2C). This observation was excluded from a linear 
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Fig. 2. Relationship between mPFC compression and model-based attention weighting (N=22). A) mPFC neural compression decreased across problems, consistent 
with the complexity demands. B) Attention weight entropy (i.e., dispersion in attention weights) mirrored neural compression, showing attentional strategies 
consistent with the feature relevancy across the problems. Error bars represent 95% CI. C) Changes in mPFC compression (indexed as the slope of compression 
across problems) predicted the degree of problem-specific attention weighting (indexed as the attention entropy slope) across participants. The size of the scatterplot 
points depicts the weighting from a robust regression analysis; the dashed line depicts the best-fitting regression line. D) A bootstrapping procedure confirmed the 
relationship between neural compression and attention entropy. 



 

 

regression analysis between neural compression and attention 
weight entropy. The results of this analysis showed that even 
with this potential outlier observation removed a strong 
relationship remained (b = -4.568, SE = 1.379, t = -3.312, p = 
0.004, R2 = 0.366). Third, we performed a nonparametric 
bootstrap analysis to assess the robustness of the correlation 
between neural compression and attention entropy. We 
randomly sampled with replacement from the slope pair 
observations 5000 times, calculating and storing the Pearson 
correlation coefficient on each iteration. The resulting 
distribution of correlation coefficients revealed a significant 
relationship (see Fig. 2D; median r = -0.497, p = 0.024, 95% CI 
[-0.788, -0.002]). 

In a final analysis, we assessed the direct relationship 
between neural compression and attention weight entropy. To 
do this, we performed a mixed effects linear regression using the 
lme4 package (version 1.1-12) in R (version 3.3.2). The mixed 
effects model was defined such that the attention weight entropy 
values were directly predicted by mPFC neural compression 
with participants as a random factor. Consistent with the slope-
based analyses, the direct model revealed a significant 
relationship between neural compression and attention entropy 
(b=-0.776, SE=0.329, t=-2.358, p=0.024). We confirmed this 
effect with a bootstrap procedure to generate a distribution of 
regression coefficients, bboot. This consisted of 5000 iterations in 
which participants were randomly sampled with replacement 
and the regression model was re-estimated. The results of this 
analysis demonstrated a robust relationship between mPFC 
compression and attention entropy (median bboot=-0.770, 
p=0.011, 95% CI [-1.431, -0.117]). Collectively, these findings 
suggest that the degree of problem-specific neural compression 
in mPFC predicted participants’ attentional strategies. 

IV. DISCUSSION 
By focusing on a mechanism by which mPFC forms and 

represents concepts through goal-sensitive dimensionality 
reduction, we show that activation patterns within mPFC code 
for the complexity of concepts. Critically, by evaluating 
behavior through the lens of a computational model, we also 
demonstrate that concept-specific mPFC coding is related to 
learning. These findings support the view that mPFC builds 
cognitive maps [7], [9], [16], structuring representations to 
highlight goal-specific features and compress irrelevant 
information. Such a mechanism could be critical for many 
processes associated with mPFC including schema 
representation [17], latent casual models [7], grid-like 
conceptual maps [9], and value coding [18], [19]. 
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