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Abstract 22 

Categorization requires a balance of mechanisms that can generalize across common features and 23 

discriminate against specific details. A growing literature suggests that the hippocampus may 24 

accomplish these mechanisms by using fundamental mechanisms like pattern separation, pattern 25 

completion, and memory integration. Here, we assessed the role of the rodent dorsal 26 

hippocampus (HPC) in category learning by combining inhibitory DREADDs (Designer 27 

Receptors Exclusively Activated by Designer Drugs) and simulations using a neural network 28 

model. Using touchscreens, we trained rats to categorize distributions of visual stimuli 29 

containing black and white gratings that varied along two continuous dimensions. Inactivating 30 

the dorsal HPC impaired category learning and generalization, suggesting that the rodent HPC 31 

plays an important role during categorization. Hippocampal inactivation had no effect on a 32 

control discrimination task that used identical trial procedures as the categorization tasks, 33 

suggesting that the impairments were specific to categorization. Model simulations were 34 

conducted with variants of a neural network to assess the impact of selective deficits on category 35 

learning. The hippocampal inactivation groups were best explained by a model that injected 36 

random noise into the computation that compared the similarity between category stimuli and 37 

existing memory representations. This model is akin to a deficit in mechanisms of pattern 38 

completion, which retrieves similar memory representations using partial information.   39 



Introduction 40 

Categorization involves grouping objects together according to perceptual or relational 41 

similarity. This requires mechanisms that can simultaneously generalize across within-category 42 

differences (e.g., different dog breeds vary in head shape, body size, and fur) and discriminate 43 

against between-category similarities (e.g., dogs and cats have similar body structure). Balancing 44 

generalization and discrimination can be accomplished by the hippocampus, which has been 45 

shown to 1) link experiences together according to overlapping features and 2) amplify 46 

differences between relatively similar memory traces (McNaughton & Morris, 1987; O’Reilly & 47 

McClelland, 1994; Hunsaker, 2013).  48 

Early theories of categorization minimized the importance of the hippocampus in 49 

category learning (Ashby et al., 1998). This was largely because patients with amnesia did not 50 

show reliable learning impairments across multiple categorization tasks (Knowlton & Squire, 51 

1993; Knowlton, Mangels, & Squire, 1996; Filoteo, Maddox, & Davis, 2001; Haslam, 1997; but 52 

see Zaki, 2004). However, more recent evidence from neuroimaging (Zeithamova, Dominick, & 53 

Preston, 2012; Kumaran, Summerfield, Hassabis, & Maguire, 2009; Mack, Love, & Preston, 54 

2016), neurophysiology (Hampson, Pons, Stanford, & Deadwyler, 2004; Kraskov, Quiroga, 55 

Reddy, Fried, & Koch, 2007; Kreiman, Koch, & Fried, 2000), and rodent inactivation studies 56 

(Kim, Castro, Wasserman, & Freeman, 2018) have challenged this idea and argue that the 57 

hippocampus is central to categorization. Now, it is predicted that the hippocampus builds and 58 

maintains flexible category representations (Mack et al., 2018; Bowman & Zeithamova, 2018). 59 

This function mirrors the role of the hippocampus in maintaining structured memory 60 

representations, called ‘schemas’ (Tse et al., 2007; Baraduc, Duhamel, & Wirth, 2019; Guo, 61 

Chen, & Yang, 2023).  62 



This new view has led to the development of theoretical frameworks that describe how 63 

well-documented mechanisms of the hippocampus could be leveraged during category learning. 64 

For example, EpCon (Episodes-to-Concepts), describes how pattern separation (i.e., separating 65 

similar memory traces to avoid interference; Marr, 1969; Leutgeb, Leutgeb, Moser, & Moser, 66 

2007; Bakker, Kirwan, Miller, & Stark, 2008; Yassa & Stark, 2011; Kirwan et al., 2012), pattern 67 

completion (i.e., using partial information to retrieve memory traces; Horner, et al., 2015; Gold 68 

& Kesner, 2005; Guzman, Schlögl, Frotscher, & Jonas, 2016), and memory integration (i.e., 69 

integrating new memory traces into existing representations; Dusek & Eichenbaum, 1997; 70 

Eichenbaum, 2001; Backus, Schoffelen, Szebenyi, Hanslmayr, & Doeller, 2016; Schlichting & 71 

Preston, 2015; Pajkert et al., 2017) could all be relevant for learning new categories (Mack, 72 

Love, & Preston, 2018). EpCon posits that the hippocampus 1) retrieves memory representations 73 

that are similar to the stimulus being categorized (i.e., pattern completion), 2) integrates new 74 

stimuli into existing representations (i.e., memory integration), and 3) forms new representations 75 

after encountering surprising stimuli (i.e., pattern separation). Frameworks like EpCon are 76 

intuitive in that they build on decades of research. Nevertheless, few experiments have tested 77 

these predictions directly.  78 

One approach to test the EpCon framework is to utilize a computational model of 79 

categorization that encompasses fundamental mechanisms of the hippocampus. One such model 80 

is SUSTAIN (Fig. 1; Supervised and Unsupervised STratified Adaptive Incremental Network; 81 

Love, Medin, & Gureckis, 2004; Love & Gureckis, 2007). SUSTAIN assumes that similar 82 

training experiences tend to cluster together in memory (Fig. 1A). Categories are represented by 83 

single or multiple ‘clusters’, where each cluster reflects a learned group of similar training 84 

experiences (Fig. 1B). Categorizing a new stimulus involves retrieving cluster representations 85 



that are perceptually similar to that stimulus (i.e., pattern completion; Fig. 1C). After receiving 86 

feedback, the cluster representations are updated by 1) integrating the new stimulus into existing 87 

clusters (i.e., memory integration; Fig. 1D) and/or 1) forming a new cluster (i.e., pattern 88 

separation; Fig. 1E). We posit that SUSTAIN is a desirable model to bridge the fundamental 89 

mechanisms of the hippocampus with principles of category learning.  90 

Indeed, there is growing evidence that activity in the hippocampus is functionally similar 91 

to the clustering mechanism of SUSTAIN. Multiple studies have demonstrated that the 92 

hippocampus creates ‘cognitive maps’ (Tolman 1948; Behrens et al., 2018) of non-spatial, 93 

multidimensional feature spaces (Eichenbaum & Cohen, 2014; Theves, Fernandez & Doeller, 94 

2019; Solomon, Lega, Sperling, & Kahana, 2019; Constantinesceu, O’Reilly, & Behrens, 2016; 95 

Morton, Sherill, & Preston, 2017). These representations emphasize category-relevant stimulus 96 

information and reflect task goals (Theves, Fernandez & Doeller, 2020; Mack et al., 2016). 97 

Furthermore, Mok & Love, 2019 showed that a clustering model could simulate neural activity 98 

of place cells and grid cells as a rat navigated an environment. This suggests that similar 99 

mechanisms may be recruited to mediate both spatial navigation and concept learning. 100 

Expanding the investigation of the hippocampus to non-spatial paradigms like categorization 101 

may provide key insight regarding generalized hippocampal mechanisms that go beyond spatial 102 

navigation.  103 

In the current experiment, we used inhibitory DREADDs (Designer Receptors 104 

Exclusively Activated by Designer Drugs; Roth, 2016) to examine the role of the dorsal 105 

hippocampus (HPC) in category learning. Using a touchscreen apparatus, rats were trained to 106 

categorize distributions of controlled visual stimuli derived from classic human paradigms that 107 

have been used for decades (Ashby et al., 1998). The category stimuli contained black and white 108 



gratings that varied along two continuous dimensions (i.e., spatial frequency and orientation; Fig. 109 

2A; Broschard, Kim, Love, Wasserman, & Freeman, 2019; Ashby et al., 1998). For some rats, 110 

categorizing the stimuli encouraged a shift of attention to a single stimulus dimension (i.e., 1D 111 

tasks; spatial frequency or orientation). For other rats, categorizing the stimuli required attention 112 

to both stimulus dimensions (i.e., 2D tasks; spatial frequency and orientation). Inactivation of the 113 

HPC impaired category learning and generalization for both the 1D tasks and 2D tasks. We then 114 

fit SUSTAIN to the learning data to test the role of the HPC in storing and retrieving category 115 

representations.  116 

 117 

Material & Methods 118 

Subjects 119 

Thirty-eight Long Evans rats (twenty female; n = ~9 per group) were used for the following 120 

experiment. After arriving in the animal colony, rats were given ad libitum access to food and 121 

water and put on a 12-hour light/dark cycle. Food was restricted after a week of acclimating to 122 

the new environment. Weights were recorded daily so that the rats did not go below 85% of their 123 

free feeding weight. All procedures were approved by the Institutional Animal Care and Use 124 

Committee at the University of Iowa. 125 

 126 

Touchscreen Apparatus 127 

All experimental sessions were conducted in custom-built chambers outfitted with a touchscreen 128 

(36 × 41 × 36 cm). A computer monitor (Model 1550V, NEC, Melville, NY) was mounted on 129 

the right wall of each chamber and presented visual stimuli to the rats. A touchscreen (15-in, Elo 130 

Touch Systems, Fremont, CA) overlaid the computer monitor and allowed the rats to interact 131 



with the screen. A food tray (6.5 × 13 × 4.5 cm) was positioned on the left wall of each chamber 132 

and delivered food pellets to the rats via a rotary pellet dispenser (Med Associates Inc., Georgia, 133 

VT, model ENV-203IR) that was controlled by an electrical board (Model RS-232, National 134 

Control Devices, Osceola, MO). A house light above the food tray was always on during 135 

experimental sessions. White noise was used in the experimental room to minimize distractions. 136 

All experimental sessions and procedures were controlled by custom-written MATLAB scripts 137 

(MathWorks, Natick, MA). Finally, a camera (model ELP-USB100W05MT-RL36) was mounted 138 

to the ceiling of each chamber to observe the rats’ behavior.  139 

 140 

Pre-Training Procedures 141 

After acclimating to the animal colony, each rat was handled daily for one week to reduce the 142 

stress of interacting with experimenters. Then, each rat was placed on a laboratory cart and was 143 

encouraged to forage for 45-mg pellets scattered on the cart’s surface. This procedure has been 144 

shown to accelerate habituation to the lab environment (Kim et al., 2018) and primes the rats to 145 

search for food pellets within the touchscreen chambers. This procedure was repeated daily until 146 

the rats consumed at least twenty pellets within fifteen minutes. Finally, each rat underwent a 147 

daily shaping procedure within the touchscreen chambers to learn to interact with the 148 

touchscreen (for details, see Broschard, Kim, Love, & Freeman, 2020). This procedure included 149 

four separate phases; each phase was incrementally similar to the trial sequence used during 150 

category training and testing sessions. All shaping procedures took about 14 days. 151 

 152 

Surgery 153 



After all pre-training procedures, each rat underwent stereotaxic surgery. Under isoflourane (1% 154 

- 4%) anesthesia, either AAV5-CaMKIIa-hM4D(Gi)-mCherry or AAV5-CaMKIIa-EGFP (Roth, 155 

2016) was infused bilaterally into the HPC (1 µL per hemisphere; AP: -3.8; ML: ±2.5; DV: -3.2) 156 

using a Hamilton syringe (1 µL; 26 gauge). Viral constructs contained a CaMKIIα promoter that 157 

targeted excitatory neurons within the HPC. The inhibitory DREADD construct contained DNA 158 

for a GPCR (hM4Di; G Protein-Coupled Receptor) that hyperpolarizes neurons when activated 159 

by the synthetic ligand, clozapine-N-oxide (CNO). The control virus did not contain DNA for 160 

hM4Di. Viral constructs also contained a fluorescent tag (i.e., inhibitory virus: mCherry; control 161 

virus: GFP) so that viral expression and location could be observed after data collection was 162 

completed. Meloxicam (1 mg/ml) was administered during and 24 hours after surgery as an 163 

analgesic. Rats were placed on a heat pad immediately after surgery to prevent hypothermia. 164 

Rats were given one week to recover. Category training sessions began no sooner than three 165 

weeks after surgery to ensure adequate transduction of the viral construct. 166 

 167 

Category Tasks 168 

Across multiple training and testing sessions, rats categorized abstract visual stimuli into two 169 

categories (i.e., category ‘A’ and category ‘B’). Briefly, on each trial, a unique stimulus was 170 

presented to the rat, and the rat decided the category membership of the stimulus by choosing 171 

one of two report keys. Food pellets were delivered after correct responses to reinforce the rats’ 172 

behavior.  173 

The visual stimuli (239 x 239 pixels; Fig. 2A) contained black and white gratings that, 174 

across stimuli, varied along two continuous dimensions: spatial frequency (0.2532 cycles per 175 

visual degree to 1.2232 cpd) and orientation (0 radians to 1.75 radians). The ranges of these 176 



1.Humans typically learn the 1D tasks faster than the 2D tasks. This learning advantage has been attributed to 

humans’ propensity for testing unidimensional strategies (Ashby et al., 1998), which is governed by the lateral 

prefrontal cortex (Wallis & Miller, 2001). Rats, on the other hand, typically learn the 1D tasks and the 2D 

tasks at the same rate, suggesting that rats have a smaller capacity for rule-based learning. Nevertheless, rats 

seem to learn the 1D tasks by orienting attention to the relevant stimulus dimension (Broschard et al., 2019). 

This form of selective attention is mediated by the rodent prelimbic prefrontal cortex (Broschard et al., 2021).  

dimensions are within the perceptual limits of Long Evans rats using touchscreens (Crijns 177 

& Op de Beeck, 2019) and were determined to have roughly equal salience (Broschard et al., 178 

2019). A two-dimensional stimulus space was created by performing linear transformations of 179 

these dimensions so that both dimensions had a common scale (i.e., 0 to 100; Broschard et al., 180 

2019). 181 

Category tasks were created by placing bivariate normal distributions on this stimulus 182 

space (Fig. 2A; Category A: µX = 30, σX = 2.5, µY = 50, σY = 20; Category B: µX = 70, σX = 2.5, 183 

µY = 50, σY = 20; Broschard et al., 2019). Each distribution constituted a category, and each point 184 

within a distribution represented a unique category stimulus. Three additional tasks were created 185 

by rotating these distributions in 45-degree increments (Fig. 2A). This rotation does not affect 186 

any physical property of the distributions (e.g., standard deviation, mean between-category 187 

distance, etc.; Ashby, Smith, & Rosedahl, 2020); however, it does affect how the distributions 188 

are oriented relative to the axes of the stimulus space. The 1D tasks had distributions that were 189 

perpendicular to a stimulus axis. For these tasks, only one dimension (i.e., the perpendicular 190 

dimension) was category-relevant, and the other dimension (i.e., the parallel dimension) could be 191 

ignored. 1D tasks are typically learned by shifting attention towards the category-relevant 192 

dimension (Broschard et al., 2019). Conversely, the 2D tasks had distributions that were not 193 

aligned with either stimulus axis. For these tasks, both dimensions were category-relevant. 2D 194 

tasks are typically learned by combining information from both stimulus dimensions1.  195 

 196 
Category Training 197 

Rats were randomly assigned to learn one of the four category tasks (Broschard et al., 2019; 198 

Broschard et al., 2020) and were given ten training sessions to learn their respective task. Each 199 



session included eighty training trials. On each trial, a star stimulus was presented at the center of 200 

the screen (Fig. 2B; Star Phase). After one touch of the star, a category stimulus was randomly 201 

selected from one of the training distributions and was presented at the center of the screen (Cue 202 

Phase). After three observing touches of this stimulus, copies of the stimulus were presented on 203 

the left and right sides of the screen, acting as report keys (Choice Phase). The rat touched either 204 

report key, depending on the category membership of the stimulus during the Cue Phase. The 205 

categories were mapped spatially such that members of category ‘A’ required a touch to the left 206 

report key and members of category ‘B’ required a touch to the right report key. If the rat chose 207 

the correct side, a white box appeared; one touch of this box delivered a food pellet (Reward 208 

Phase). If the rat chose the incorrect side, a correction trial was initiated. Here, the trial repeated 209 

from the Cue Phase after a five to ten second timeout. Correction trials continued without food 210 

reinforcement until the correct side was selected or after three consecutive correction trials. Inter-211 

trial intervals ranged from five to ten seconds. IP injections of CNO (1.0 mg/ml) were 212 

administered thirty minutes before each training session to activate the GPCRs. All sessions were 213 

completed within two hours to ensure that the CNO was effective throughout the session. The 214 

CNO was dissolved in DMSO and was suspected in sterile saline. Remaining CNO was placed in 215 

an -4 degree C freezer and was used for up to seven days.  216 

 217 

Category Generalization 218 

After category training, rats were given five testing sessions to examine category generalization 219 

(Broschard et al., 2019; Fig. 6A). The testing stimuli had a grid configuration that spanned the 220 

entire stimulus space. Each testing session sampled from each point in the grid once (i.e., 84 221 

trials). A third of the testing stimuli overlapped with the training distributions (i.e., Trained; 222 



within two standard deviations), a third of the testing stimuli were closer to the category 223 

boundary relative to the training distributions (i.e., Proximal), and a third of the testing stimuli 224 

were farther from the category boundary relative to the training distributions (i.e., Distal). 225 

Generally, accuracy improves for stimuli farther from the boundary (Broschard et al., 2019). The 226 

trial sequence was identical to training sessions except that correction trials were not 227 

administered after incorrect responses. Therefore, all choices during the testing sessions were 228 

reinforced. IP injections of CNO (1.0 mg/ml) were administered thirty minutes before each 229 

session to activate the GPCRs. All sessions were completed within two hours to ensure that the 230 

CNO was effective throughout the session. 231 

 232 

Simple Discrimination 233 

Finally, rats underwent training sessions to learn a control discrimination task. Instead of 234 

categories of stimuli, only two images were presented during training sessions (i.e., a light box 235 

and a dark box; both images contained a common pattern of dots to add perceptual complexity 236 

Fig. 7A; Kim et al., 2018). The light stimulus was mapped to the left report key, and the dark 237 

stimulus was mapped to the right report key. All other training procedures were identical to the 238 

categorization sessions; therefore, this task acted a control to ensure that group differences were 239 

not caused by deficits in functions unrelated to categorization (e.g., movement, motivation, 240 

perception, spatial learning, etc.). Each training session contained 72 training trials. Sessions 241 

continued until the rat reached a learning criterion (i.e., at least 75% accuracy for both images on 242 

two consecutive sessions). IP injections of CNO (1.0 mg/ml) were administered thirty minutes 243 

before each session. All sessions were completed within two hours. 244 

 245 



Statistical Analysis 246 

Multiple dependent measures quantified the rats’ performance during training and testing 247 

sessions. Session accuracy was defined as the proportion of correct responses during the Choice 248 

phase. Reaction time was calculated during the Cue phase and Choice phase to quantify the 249 

amount of time to 1) observe the stimulus and 2) make a category decision. Reaction times from 250 

incorrect trials were excluded from all analyses. Additionally, reaction times that exceeded two 251 

standard deviations of the mean were excluded from all analyses, a criterion that is commonly 252 

used to eliminate outliers (O’Donoghue et al., 2020). These outliers rarely occurred.  253 

 These dependent measures were analyzed using linear mixed effects modeling (R, 254 

version 3.4.2). Models used for training sessions included fixed effects for experimental group, 255 

training session, and a quadratic function across training sessions, as well as random effects for 256 

slope, intercept, and the quadratic function. Models for testing sessions included fixed effects for 257 

experimental group, trial type (Distal, Trained, and Proximal), and a quadratic function across 258 

trial types, as well as random effects for slope, intercept, and the quadratic function. Quadratic 259 

functions were used because they best fit the data, and higher order terms did not significantly 260 

improve these fits. Sex was added as a covariate for all models to check whether there were any 261 

significant differences between male and female rats. To find the simplest model that fit the data, 262 

we used a model simplification strategy (Crawley, 2007). We started with the full model and 263 

then systematically removed random effects one at a time. This continued until the estimates 264 

were significantly different from the larger model before it. Finally, a covariate for sex was 265 

added to each model to examine differences in performance between male and female rats.  266 

 267 

Histology 268 



After all behavioral testing was complete, rats were perfused to verify viral expression and 269 

placement. Rats were given a lethal dose of euthanasia solution (sodium pentobarbital) and then 270 

perfused with ~150 mL PBS and ~150 mL of 4% paraformaldehyde. Brains were covered in foil 271 

and stored at 4°C. Then, a sliding microtome made coronal sections (50 µm) of the target region. 272 

Slides were cover slipped and stored in a dark, cold environment. Sections were observed under 273 

a fluorescent microscope to ensure that viral expression was contained within the HPC. The 274 

boundary of the HPC was defined according to Paxinos & Watson, 1998. Rats with viral 275 

expression largely outside of the HPC were excluded from all analyses.  276 

 277 

SUSTAIN Modeling 278 

The network SUSTAIN has been useful in multiple contexts for mapping neural activity to 279 

specific cognitive processes (Love et al., 2004; Mack et al., 2016; Mack et al., 2020; Broschard 280 

et al., 2021; Fig. 8A). The current analysis used SUSTAIN to assess potential functions of the 281 

HPC during category learning (Fig. 1). This was accomplished by designing multiple model 282 

variants. Each model variant simulated the effect of the inhibitory DREADDs by disrupting a 283 

single computation of the network. A model comparison approach was used, such that the 284 

function of the HPC was inferred by determining which model variant produced the best fit of 285 

the learning data. This approach provided a top-down framework by which we could test the 286 

impact of selective learning deficits. The first three models tested whether the HPC is critical for 287 

maintaining category representations (i.e., Model 1: retrieving representations; Model 2: 288 

updating representations; Model 3: recruiting new representations; Mack et al., 2018; Love & 289 

Gureckis, 2007). Model 4 tested whether the HPC is critical for selective attention, presumably 290 

through interactions with the prefrontal cortex (Mack et al., 2020; Broschard et al., 2021). 291 



Finally, Model 5 was a control model and assumed that the HPC was not critical for category 292 

learning.  293 

 SUSTAIN represents categories through single or multiple ‘clusters’; each cluster reflects 294 

a learned group of similar training experiences (Love et al., 2004). On each training trial, the 295 

current stimulus is compared to existing clusters, and each cluster is activated according to its 296 

similarity to the stimulus. The cluster with the highest activation, the ‘winning’ cluster, sends its 297 

activation to an output layer, which makes a probabilistic decision regarding the category 298 

membership of the stimulus. Model 1 (Pattern Completion) assumed that the HPC is critical for 299 

retrieving the winning cluster by comparing the similarity between the current stimulus and each 300 

cluster. In this model, hippocampal inactivation was simulated by adding a normal distribution of 301 

noise to the activation of each cluster, thereby increasing the probability that the model retrieved 302 

a cluster that was dissimilar to the current stimulus. The mean of this distribution was zero, and 303 

the standard deviation of this distribution was a positive free parameter. 304 

 After making a category decision, SUSTAIN receives feedback on its decision and 305 

updates the cluster representations accordingly. This is accomplished by moving the position of 306 

the winning cluster towards the position of the current stimulus. Model 2 assumed that the HPC 307 

is critical for updating cluster representations (Memory Integration). For this model, 308 

hippocampal inactivation was simulated by moving the position of the winning cluster in a 309 

random direction (instead of towards the current stimulus). SUSTAIN can also update the 310 

representations by recruiting a new cluster. SUSTAIN contains a single cluster at the beginning 311 

of training and recruits new clusters after encountering ‘surprising’ stimuli (e.g., discovering that 312 

a bat is a mammal and not a bird). A cluster is recruited when the cluster activations exceed a 313 

threshold value, indicating that the model was especially confident in an incorrect decision. 314 



Typically, 1D tasks are learned by recruiting a single cluster per category, and 2D tasks are 315 

learned by recruiting multiple clusters per category (~4-5; Broschard et al., 2020). Model 3 316 

(Pattern Separation) assumed that the HPC is critical for recruiting new clusters. In this model, 317 

hippocampal inactivation was simulated by increasing the threshold value, thereby limiting 318 

cluster recruitment.  319 

Finally, SUSTAIN contains an attention mechanism that modulates the current stimulus 320 

before it is compared to the cluster representations. This mechanism allows stimulus information 321 

from category-relevant dimensions to contribute more to the cluster activations (and therefore the 322 

category decision). Model 4 (Selective Attention) assumed that the HPC is critical for this 323 

mechanism, presumably through interactions with the prefrontal cortex. Hippocampal 324 

inactivation was simulated by shuffling the proportion of attention towards each stimulus 325 

dimension before each trial, thereby increasing the probability that attention was directed 326 

towards category-irrelevant dimensions. These models were compared to Model 5 (Control), 327 

which assumed that the HPC was not necessary for category learning. 328 

Using the MATLAB function fmincon, SUSTAIN was first fit to the average learning 329 

curves of the control groups by optimizing SUSTAIN’s free parameters. This provided a baseline 330 

model that learned the category tasks at the same rate as a typical rat. The experimental models 331 

were derived from the baseline model; each experimental model was fit to the average learning 332 

curves of the inactivation groups. The quality-of-fit was determined for each experimental model 333 

by calculating the Bayesian Information Criterion (BIC; Neath & Cavanaugh, 2011). The 334 

experimental model that best fit the inactivation groups (i.e., the lowest BIC value) was used to 335 

infer the function of the HPC during category learning.  336 

 337 

Perceptual Recency Effects 338 



With the current experimental design, each rat completed a large number of training trials, which 339 

allowed us to track category learning on a trial-by-trial basis. This sensitivity was leveraged to 340 

observe how category performance was influenced by the identity of the most recent training 341 

exemplar (i.e., perceptual recency effects; Jones, Love, & Maddox, 2006). Recency effects often 342 

interact with the perceptual similarity between exemplars. For example, performance is 343 

facilitated if the exemplar is perceptually similar to the most recent exemplar (Jones et al., 2006). 344 

Therefore, we binned the accuracy of training trials according to the perceived similarity 345 

between the current exemplar (n) and the most recent exemplar (n-1; Nosofsky, 1986). 346 

Perceptual similarity between exemplars i and j was calculated as: 347 

𝑠𝑖𝑗 =  𝑒−𝑑𝑖𝑗, 348 

where d is the psychological distance between exemplars i and j. Psychological distance was 349 

defined as,  350 

𝑑𝑖𝑗 =  ∑  𝑤𝑚 ∗ |𝑥𝑖 − 𝑥𝑗|

𝑀

𝑚=1

 351 

where wm was SUSTAIN’s estimated attention weight for dimension m on trial n, and x was the 352 

physical value of the exemplar along dimension m. Trial effects were isolated by subtracting the 353 

binned accuracies by the average of 1,000 permutations where trial order was shuffled. 354 

Therefore, positive recency scores indicate increased accuracy due to trial order, negative scores 355 

indicate decreased accuracy due to trial order, and 0 indicates no effect of trial order.  356 

 357 

CNO Control Experiment 358 

Thirty-two rats (16 females; n = ~8 per group) were used for a control experiment to ensure that 359 

IP injections of CNO do not affect categorization by interacting with non-target receptor types. 360 



For this experiment, rats were given ten training sessions and five testing sessions on either a 1D 361 

task or a 2D task. All procedures were the same as before except the rats did not undergo 362 

stereotaxic surgery. IP injections of either CNO (1.0 mg/ml) or PBS were administered 30 363 

minutes before each session and each session did not exceed two hours. Accuracy and reaction 364 

time were measured to examine any effect of CNO on categorization. 365 

 366 

DREADDs Verification 367 

A control experiment was conducted such that in vivo single units were recorded in the HPC to 368 

verify that the inhibitory DREADD effectively suppressed neural activity. For this experiment, 369 

AAV was infused into the HPC of a male rat during stereotaxic surgery. Critically, the inhibitory 370 

DREADD (AAV5-CaMKIIa-hM4D(Gi)-mCherry; 1 µL) was infused into one hippocampal 371 

hemisphere (AP: -3.8; ML: -2.5; DV: -3.2) and the control DREADD (AAV5-CaMKIIa-EGFP; 372 

1 µL) was infused into the other hemisphere (AP: -3.8; ML: +2.5; DV: -3.2). Meloxicam (1 373 

mg/ml) was administered during and after the surgery as an analgesic. After a week of recovery, 374 

the rat underwent a second surgery to implant a custom-built microdrive supporting movable 375 

tetrodes (8 recording tetrodes, 2 reference tetrodes; final impedance of each wire was adjusted to 376 

150-300 kΩ using a gold solution) that targeted both hippocampal hemispheres. Two exit tips 377 

were positioned over the HPC, and each tetrode was lowered 1.0 mm into the brain. Meloxicam 378 

was administered to increase recovery. 379 

After recovery, the tetrodes were slowly lowered in 0.25 mm increments. The recording 380 

tetrodes were lowered to their target site (DV: -3.2 mm) and small adjustments were made until 381 

neural recordings were stable on the majority of the recording tetrodes. The reference tetrodes 382 

(one per hemisphere) were lowered until no single units were detectable (i.e., ~1.0 mm above the 383 



HPC). Data were amplified and digitized using data acquisition software (Neuralynx). Single 384 

unit activity was sampled at 32 kHz. Spikes from single units were isolated off-line through 385 

cluster cutting software (MClust 4.4). Multiple parameters, including peak, width, height, and 386 

energy associated with the waveforms as well as the interspike interval histograms, were used to 387 

isolate single units. 388 

Once single units were stable, an IP injection of CNO was administered to examine its 389 

effect on neural activity of each hemisphere. Spiking activity was recorded thirty minutes before 390 

the injection and three hours post injection. This procedure was repeated for several days. Once 391 

complete, the position of each individual tetrode was marked by electrolytic lesions (10 µA 392 

current for 10 s). The rat was then perfused, and hippocampal sections (50 µm) were observed 393 

under a fluorescent microscope to observe the spread of the AVV as well as the position of the 394 

tetrodes.  395 

 396 

Results 397 

Hippocampal inactivation impairs category learning 398 

All rats had adequate viral expression within the HPC, as described by Paxinos & Watson, 1998 399 

(see Fig. 3 for representative examples of the AAV position and spread). Therefore, data from all 400 

rats were included in the following analyses. AAV did not extend into the ventral hippocampus 401 

and was contained within AP: -2.8 and -4.9. For the majority of rats, AAV extended into each 402 

hippocampal subfield (i.e., CA1, CA3, and the DG). For a small subset of rats (three males and 403 

two females), AAV did not extend into the CA3. Accuracy and reaction time were not different 404 

for these rats. 405 



We first examined session accuracy during category training. Accuracy significantly 406 

increased across the ten training sessions (Fig. 4; t(34.45) = 7.95, p < .001), suggesting that the 407 

rats reliably learned the 1D and 2D tasks. There were no significant differences between sexes 408 

(males vs. females: t(35.20) = -1.94, p = .061), as well as between task types (1D tasks vs. 2D 409 

tasks: t(45.42) = -0.24, p = .981), suggesting that all groups learned the tasks at the same rate and 410 

to equal levels. For both task types, rats with hippocampal inactivations had impaired accuracy 411 

compared to the controls (1D tasks: t(68.12) = -3.30, p = .002; 2D tasks: t(96.74) = -2.35, p = 412 

.021), suggesting that the rat HPC is critical for category learning.  413 

 414 

The effect of hippocampal inactivation on reaction time 415 

We next examined whether the hippocampal inactivations affected reaction time during each trial 416 

event (i.e., the Cue phase and the Choice phase). Across the training sessions, Choice RT 417 

decreased significantly (Fig. 5B; t(34.55) = -2.92, p = .006), but Cue RT did not change (Fig. 418 

5A; t(37.18) = 0.47, p = .644). This suggests that the amount of time required to make each 419 

category decision decreased across training sessions, but the average time to observe each 420 

stimulus was consistent across training. Reaction time did not differ between the task types (1D 421 

tasks vs. 2D tasks; Cue RT: t(52.83) = 0.37, p = .712; Choice RT: t(49.70) = .89, p = .376). 422 

Interestingly, reaction time was significantly faster for the males compared to the females (Cue 423 

RT: t(36.27) = 3.00, p = .005; Choice RT: t(34.91) = -2.86, p = .008). 424 

Compared to the control groups, rats with hippocampal inactivations had longer Choice 425 

RT (1D tasks: t(96.35) = 2.32, p = .022; 2D tasks: t(109.10) = 2.07, p = .041). This difference in 426 

Choice RT was present throughout training for rats learning the 1D tasks but emerged during 427 

later training sessions for rats learning the 2D tasks. Cue RT was significantly longer for the 428 



inactivated rats learning the 1D tasks (t(60.17) = 3.20, p = .002), but not rats learning the 2D 429 

tasks (t(52.83) = 0.37, p = .712). Taken together, these results suggest that without the HPC, rats 430 

required more time to examine each stimulus and make category decisions. These differences 431 

were pervasive in rats learning the 1D tasks and emerged later in training in rats learning the 2D 432 

tasks.  433 

 434 

Hippocampal inactivation impairs category generalization 435 

The rats were then given five testing sessions to examine category generalization (Figs. 6A). 436 

Stimuli were configured into a grid that spanned the entire stimulus space. We first examined 437 

how accuracy changed across the space by generating heatmaps of the rats’ accuracy (Fig. 6B). 438 

Each grid was rotated so that all category tasks had the same orientation (i.e., the x-axis was 439 

perpendicular to the category boundary and the y-axis was parallel to the category boundary). 440 

Accuracy was largely affected by distances along the relevant axis, such that accuracy increased 441 

for stimuli farther from category boundary and decreased for stimuli closer to the category 442 

boundary. Accuracy was unaffected by distances along the other, irrelevant axis. For rats with 443 

hippocampal inactivations, accuracy was impaired across the entire stimulus space. 444 

We quantified these patterns by separating the stimuli into three trial types: 1) ‘Trained’ 445 

stimuli overlapped with the training distributions, 2) ‘Distal’ stimuli were farther from the 446 

category boundary, and 3) ‘Proximal’ stimuli were closer to the category boundary. As expected, 447 

accuracy was related to the distances between the testing stimuli and the category boundary. 448 

Compared to the Trained stimuli, accuracy was impaired for the Proximal stimuli (t(74.97) = -449 

13.80, p < .001), and accuracy improved for the Distal stimuli (t(74.97) = 5.32, p < .001). 450 

Accuracy was not significantly different between task types (t(110.00) = -0.48, p = .636) or 451 



between sexes (t(21.84) = -0.91, p = .375), replicating the training results. Compared to the 452 

controls, inactivating the hippocampus impaired category generalization for both task types (1D 453 

tasks: t(110.00) = -2.17, p = .032; 2D tasks: t(110.00) = -3.42, p < .001). There were no 454 

significant interactions across trial types (all p > .05), suggesting that performance was equally 455 

impaired across the stimulus space.  456 

Finally, we examined reaction time during the testing sessions. Choice RT was 457 

significantly slower for Proximal stimuli compared to Trained stimuli (Proximal vs. Trained: 458 

t(74.99) = 3.06, p = .003; Distal vs. Trained: t(74.99) = -0.06, p = .954), suggesting that the rats 459 

perceived the Proximal stimuli as more difficult. Conversely, Cue RT did not differ across trial 460 

types (Proximal vs. Trained stimuli: t(74.94) = 1.51, p = .135; Distal vs. Trained stimuli: t(74.94) 461 

= 1.26, p = .212), suggesting that the rats required an equal amount of time to view each 462 

stimulus. There were no significant differences in reaction time between task types (Cue RT: 463 

t(35.82) = 1.69, p = .100; Choice RT: t(36.86) = -0.35, p = .732) or between sexes (Cue RT: 464 

t(29.30) = 1.55, p = .101; Choice RT: t(30.05) = -0.12, p = .907). The hippocampal inactivations 465 

had no effect on Cue RT (1D tasks: t(107.75) = 1.21, p = .201; 2D tasks: t(31.85) = -0.14, p = 466 

.892) or Choice RT (1D tasks: t(98.99) = 1.55, p = .124; 2D tasks: t(33.93) = 1.29, p = .205), 467 

suggesting that the HPC’s contribution to decision-making is specific to early training sessions.  468 

 469 

Hippocampal inactivation does not affect learning a control discrimination task 470 

After category generalization, all rats were trained on a control discrimination task and learned to 471 

differentiate between a white stimulus and a black stimulus (both stimuli contained a common 472 

pattern of dots to add perceptual complexity; Fig 7A). Training sessions continued until each rat 473 

reached a learning criterion (i.e., at least 75% accuracy for both stimuli on two consecutive 474 



sessions). Using a 2x2 ANOVA, there were no significant differences in the number of sessions 475 

to reach this criterion across experimental groups (Fig. 7B; F(3,34) = .59, p = .626). This 476 

suggests that the observed impairments during the category sessions were not related to deficits 477 

in irrelevant factors such as perception, motivation, movement, and stimulus-spatial response 478 

mapping.  479 

 480 

Hippocampal impairments are best simulated by a deficit in pattern completion mechanisms 481 

SUSTAIN was used to further examine the role of the HPC in category learning. This was 482 

accomplished by designing and fitting multiple experimental models to the learning data. Each 483 

model assumed that inactivating the HPC produced a unique deficit during learning. We inferred 484 

the role of the HPC according to the model that best fit the data (Fig. 8A; a complete description 485 

of each model can be found in Materials & Methods). Models 1-3 assumed that the HPC was 486 

critical for maintaining category representations (i.e., Pattern Completion, Memory Integration, 487 

and Pattern Separation, respectively). Model 4 (Selective Attention) assumed that the HPC was 488 

critical for selective attention. Model 5 (Control Model) served as a control and assumed that 489 

inactivating the HPC had no effect on category learning.  490 

Figure 8B shows the BIC values of each model variant. First, all models produced a 491 

better fit of the data than the control model. Second, the models that targeted SUSTAIN’s cluster 492 

layer (i.e., Models 1-3) produced a better fit of the data than the Selective Attention model, 493 

which failed to predict a learning impairment in the 2D tasks. This supports the general 494 

prediction that the HPC is important for maintaining abstract category representations (Mack et 495 

al., 2016; Love & Gureckis, 2007). Model 1 (Pattern Completion) produced the best fit of the 496 

learning data (Figs. 8B&C). This model assumed that the HPC was critical for retrieving 497 



appropriate cluster representations. In SUSTAIN, cluster representations are activated according 498 

to their similarity to the current stimulus. Clusters that are strongly activated are retrieved and 499 

used to categorize the current stimulus. The Pattern Completion model simulated the 500 

hippocampal inactivations by adding a normal distribution of noise to these similarity 501 

judgements. This noise increased the probability that category decisions were based on cluster 502 

representations that were dissimilar to the current stimulus.  503 

To assess how this learning deficit affected the underlying cluster representations, we 504 

examined the cluster layer of the winning model (Fig. 8D; Pattern Completion model). For the 505 

control groups, SUSTAIN recruited 1-2 clusters per category to learn the 1D tasks and 5-6 506 

clusters per category to learn the 2D tasks (Broschard et al., 2020). This suggests that the 507 

category representations for the 1D tasks tended to be more prototype-based (Rosch & Mervis, 508 

1975), whereas the representations for the 2D tasks tended to be more exemplar-based 509 

(Nosofsky, 1986). For the inactivation groups, SUSTAIN recruited about twice the number of 510 

clusters for both task types.  511 

 512 

Hippocampal inactivation impairs perceptual recency effects 513 

Broschard et al., 2021 demonstrated that rats’ decisions were influenced by recent training 514 

experiences. Specifically, accuracy was facilitated if the current stimulus was perceptually 515 

similar to the most recent stimulus, and accuracy was impaired if the current stimulus was 516 

perceptually dissimilar to the most recent stimulus. Broschard et al., 2021 found that these 517 

recency effects were mediated by the rodent prelimbic cortex. Here, we tested the prediction that 518 

these recency effects are also mediated by the HPC. 519 



 As expected, we found strong recency effects for the control rats (Fig. 9). Specifically, 520 

performance was facilitated (i.e., a positive recency score) if the current stimulus was 521 

perceptually similar to the previous stimulus (i.e., similarity above the median), and performance 522 

was impaired (i.e., a negative recency score) if the current stimulus was perceptually dissimilar 523 

to the previous stimulus (i.e., similarity below the median). Importantly, these recency effects 524 

were reduced in rats with hippocampal inactivation (Fig 9; low similarity: F(3,40) = 17.49, p < 525 

.001; high similarity: F(3,40) = 17.22, p < .001). This suggests that the inactivation groups were 526 

less likely to make their decision according to the identity of the previous stimulus. This aligns 527 

with the SUSTAIN simulation results and suggests that the HPC is critical for comparing the 528 

current stimulus to previous training experiences.  529 

 530 

IP injections of CNO do not affect categorization 531 

The current experiment used CNO as a ligand to activate the designer receptors. Although 532 

unlikely, it is possible that the categorization impairments were caused by CNO binding to non-533 

target receptors instead of the designer receptors. To rule out this possibility, we conducted a 534 

control experiment where rats were given IP injections of either CNO or PBS before learning the 535 

category tasks. All procedures were identical except that no AAV was infused into the HPC. 536 

We first tested whether CNO influenced category learning (Fig. 10A). As before, 537 

sessions accuracy significantly improved across learning (t(30.08) = 7.62, p < .001), Choice RT 538 

significantly decreased across learning (t(29.96) = -2.05, p = .049), and Cue RT did not change 539 

across sessions (t(30.25) = -1.71, p = .098). There were no significant differences in category 540 

learning between rats injected with CNO vs. PBS. This was true for rats learning the 1D tasks 541 

(Accuracy: t(27.14) = -0.58, p = .567; Cue RT: t(29.31) = -1.00, p = .324; Choice RT: t(26.92) = 542 



-0.69, p = .499) as well as rats learning the 2D tasks (Accuracy: t(26.89) = 0.61, p = .549; Cue 543 

RT: t(29.58) = 0.81, p = .425; Choice RT: t(26.97) = -1.32, p = .229). These results suggest that 544 

the CNO injections did not affect category learning by binding to non-target receptor types.  545 

We next examined the effect of injecting CNO on category generalization (Fig. 10B). 546 

Stimuli were segregated into three trial types: Trained, Distal, and Proximal. As before, accuracy 547 

was significantly impaired for the Proximal stimuli (Trained vs. Proximal: t(60.00) = -11.74, p < 548 

.001), and significantly improved for the Distal stimuli (Trained vs. Distal: t(60.00) = 5.39, p < 549 

.001). Cue RT and Choice RT were not significantly different across trial types (all p > .05). 550 

There were no significant differences between rats administered injections of CNO compared to 551 

rats injected with PBS (Fig. 10B). This was true for rats that had learned the 1D tasks (Accuracy: 552 

t(33.53) = 0.05, p = .961; Cue RT: t(41.10) = 0.27, p = .787; Choice RT: t(29.49) = 0.75, p = 553 

.460) as well as the 2D tasks (Accuracy: t(33.53) = -0.26, p = .793; Cue RT: t(41.10) = 1.42, p = 554 

.163; Choice RT: t(29.49) = -0.54, p = .594). This suggests that the IP injections of CNO 555 

themselves did not affect category generalization. 556 

 557 

DREADDs AAV inhibits hippocampal activity 558 

As a separate control, we recorded in vivo single unit activity in a single rat to confirm that the 559 

inhibitory DREADD effectively suppressed neural activity in the HPC (Fig. 11). This experiment 560 

used a within-subject design, such that the inhibitory DREADD construct was infused into one 561 

hippocampal hemisphere, and the control virus was infused into the other hippocampal 562 

hemisphere (see Fig. 11A for the virus spread). Spiking activity was recorded before and after 563 

the administration of an IP injection of CNO to examine its effect on neural activity. Figure 11B 564 

shows the firing rate of two representative cells transduced by the inhibitory DREADD. Firing 565 



rate decreased from baseline thirty minutes after the CNO injection (Wilcoxon Rank Sum Test; p 566 

< .001) and remained suppressed two hours after the injection (ps < .001). Firing rate was 567 

significantly suppressed for six out of fourteen neurons recorded (ps < .01). Three of the 568 

recording tetrodes were within the DG and the fourth tetrode was within CA1; firing rate 569 

decreased in neurons from both subregions. Conversely, the firing rate of all neurons containing 570 

the control virus (in total, sixteen recorded neurons) remained at baseline throughout the 571 

recording period and was not affected by the CNO injection (see Fig. 11C for two representative 572 

examples; all ps > .05). This confirms that the inhibitory DREADD suppressed neural activity in 573 

the HPC.  574 

 575 

Discussion 576 

Early theories of category learning posit that the hippocampus serves a relatively minor role in 577 

categorization (e.g., Ashby et al., 1998). The current experiment adds to a growing literature that 578 

challenges this view (e.g., Mack et al., 2018; Mack et al., 2016; Kim et al., 2018). We found that 579 

selective inactivation of the HPC using inhibitory DREADDs impaired category learning and 580 

category generalization in rats learning both 1D tasks and 2D tasks. Rats with hippocampal 581 

inactivation had lower accuracy (Fig. 4) and longer reaction time (Fig. 5). Inactivating the HPC 582 

did not affect performance on a control discrimination task (Fig. 7), suggesting that the 583 

impairments were not likely caused by unrelated processes (e.g., perception, motivation, or 584 

motion).  585 

EpCon posits that the hippocampus is central to category learning by building and 586 

maintaining category representations (Mack et al., 2018). We tested this prediction using 587 

SUSTAIN by designing and testing multiple models that simulated the effect of the inhibitory 588 



DREADDs (Fig. 8). Effectively, these model variants injected noise into specific model 589 

components. This allowed us to directly test the impact of specific functions while preserving the 590 

rest of the network. This manipulation was thought to be functionally similar to the effect of the 591 

inhibitory DREADDs.  592 

The models that assumed the HPC functioned as part of SUSTAIN’s clustering 593 

mechanism (i.e., Models 1-3) produced better fits of the data than the other models (i.e., Models 594 

4&5; Selective Attention and the Control Model; Fig. 8). This suggests that the function of the 595 

HPC may be related to SUSTAIN’s clustering mechanism; however, other categorization models 596 

would need to be systematically fit to the data to rule out alternative functions of the HPC (e.g., 597 

Gluck & Myers, 1993; Kumaran & McClelland, 2012). From the models tested, Model 1 (Pattern 598 

Completion) produced the best fit of the data. This model simulated the inhibitory DREADDs by 599 

adding noise to the calculation that compared the current stimulus to existing category 600 

representations. In SUSTAIN, representations are retrieved according to their similarity to the 601 

stimulus being categorized. Without the HPC, category decisions were based on representations 602 

that were dissimilar to the current stimulus. This model variant recruited about twice the number 603 

of clusters as the controls, suggesting that the cluster representations were not used appropriately 604 

or efficiently.  605 

This deficit may be related to the observed impairments in the perceptual recency effects 606 

(Fig. 9). For controls, behavior was influenced by the similarity between the current stimulus and 607 

the previous training trial. Accuracy was larger if this similarity was high and smaller if this 608 

similarity was low. For the inactivation groups, these effects were reduced, suggesting that the 609 

inactivation groups had difficulty comparing the similarity between the current stimulus and the 610 

previous stimulus. This impairment is similar to the deficit described by the best-fitting 611 



SUSTAIN model variant. In both cases, the inactivation groups had an impairment in comparing 612 

stimuli to previous training experiences.  613 

Together, we hypothesize that HPC inactivation caused impairments in the mechanisms 614 

of pattern completion, which use auto-association to retrieve similar memory traces (Horner, et 615 

al., 2015; Gold & Kesner, 2005; Guzman, Schlögl, Frotscher, & Jonas, 2016). A recent 616 

experiment using patients with amnesia supports this interpretation (Cutler, Duff, & Polyn, 617 

2019). Participants were asked to generate relevant features of common concepts (e.g., ‘berry’). 618 

Compared to the healthy comparisons, recall in amnesic patients was restricted to features close 619 

to the target concept in semantic space. Pattern completion mechanisms within the hippocampus 620 

may be critical for extrapolating features that are associated to each category (Solomon & 621 

Schapiro, 2020).  622 

An important next step in this research is to directly examine how categories are 623 

represented in the hippocampus. Conventionally, the hippocampus has been associated with 624 

representing memories of single events, akin to exemplar theory (Nosofsky, 1986; Gluck & 625 

Myers, 1993). Growing evidence suggests that the hippocampus may use recurrent connections 626 

to also support more prototype-based representations (Rosch & Mervis, 1975; Kumaran & 627 

McClelland, 2012; Bowman & Zeithamova, 2018). Most likely, both exemplar and prototype 628 

representations are available to the brain (Bowman, Iwashita, & Zeithamova, 2020) and can be 629 

used differentially according to the task demands.  630 

Clustering models like SUSTAIN are somewhat of a hybrid between these 631 

representational schemes. After every trial, SUSTAIN decides whether a new cluster is recruited 632 

(i.e., exemplar-based representations) or the stimulus is integrated into an existing cluster (i.e., 633 

prototype-based representations). At its extremes, SUSTAIN behaves like an exemplar model if 634 



new clusters are always recruited and a prototype model if new stimuli are always integrated. An 635 

alternative possibility is that both exemplar and prototype representations are maintained within 636 

the hippocampus in parallel. For example, the C-HORSE model posits that a trisynaptic pathway 637 

involving the dentate gyrus creates exemplar representations, whereas a monosynaptic pathway 638 

to CA1 creates prototype representations (Sucevic & Schapiro, 2023). The presence of multiple 639 

representation types can be tested using projection-specific inactivation techniques.  640 

We can better understand the nature of representations in the hippocampus by recording 641 

neural activity from the hippocampus during category learning. We predict that single neurons 642 

would show increased firing rate for stimuli sampled from specific portions of the stimulus space 643 

(i.e., cluster-like selectivity; Aronov, Nevers, & Tank, 2017). For animals learning the 1D tasks, 644 

this selectivity would likely generalize over an entire category (i.e., prototype-based). For 645 

animals learning the 2D tasks, the selectivity of each neuron would only cover a small portion of 646 

a category (i.e., exemplar-based). By recording from multiple hippocampal subfields, we could 647 

test whether multiple representational schemes are supported by the hippocampal 648 

simultaneously. Specifically, we would expect to see more exemplar-based representations in the 649 

dentate gyrus, and more prototype-based representations in the CA1.  650 

Another line of research can examine how the HPC interacts with other brain regions 651 

during category learning. Multiple studies have implicated the ventromedial prefrontal cortex 652 

(vmPFC) in category learning (Zeithamova, Dominick, & Preston, 2012; Mack et al., 2020; 653 

Kumaran, Summerfield, Hassabis, & Maguire, 2009; Bowman & Zeithamova, 2018). A general 654 

prediction is that the prefrontal cortex biases representations in the hippocampus according to 655 

current goals (Mack et al., 2020; Love & Gureckis, 2007). This is supported by Broschard et al., 656 

2021, which concluded that the rodent prelimbic prefrontal cortex (PL) maintains attention to 657 



relevant stimulus information and decides when to create new representations. Together, we 658 

suspect that rodent category learning involves a close interaction between the HPC and the PL. 659 

Future experiments can examine this interaction by neural recordings and inactivation 660 

approaches. For example, we predict that inactivating the PL would result in decreased 661 

selectivity in the HPC.  662 

In the current experiment, the inactivation groups had longer reaction times compared to 663 

the controls (Fig. 5). Generally, the HPC inactivation produced larger RT impairments for rats 664 

learning the 1D tasks compared to rats learning the 2D tasks. For example, differences in Choice 665 

RT were present throughout training for the rats learning the 1D tasks but emerged towards the 666 

end of training for the rats learning the 2D tasks. Additionally, rats learning the 1D tasks, but not 667 

the 2D tasks, had significantly longer Cue RT than controls. Learning the 1D tasks requires more 668 

top-down signaling from regions like the prelimbic prefrontal cortex (Broschard et al., 2021). We 669 

speculate that greater RT differences in the 1D tasks may have resulted from weakened 670 

connectivity with these upstream regions. However, this interpretation should be taken 671 

cautiously, considering there were no accuracy differences between the task types.  672 

Finally, it is important to note that rats without the HPC were still able to learn both task 673 

types, although at a slower rate compared to controls. There are many possible explanations for 674 

this. First, the current task design may not have targeted another potentially key function of the 675 

HPC: pattern separation (Leutgeb, Leutgeb, Moser, & Moser, 2007; Bakker, Kirwan, Miller, & 676 

Stark, 2008; Yassa & Stark, 2011). We expect to see larger impairments if the category tasks put 677 

more strain on pattern separation mechanisms (e.g., adding additional irrelevant stimulus 678 

dimensions or moving the means of the training distributions closer together). Second, inhibitory 679 

DREADDs only infects about half of the target cells (Roth, 2016). Therefore, it is possible that 680 



some functions of the HPC may have been at least partially intact. Third, other neural systems 681 

(e.g., the dorsal striatum; Ashby et al., 1998) may have compensated in the absence of the HPC. 682 

Fourth, the ventral HPC may also be important for category learning (Moser & Moser, 1998; 683 

Fanselow & Dong, 2010). 684 

To conclude, the current experiment supports the hypothesis that the HPC serves a 685 

critical role in category learning. Inactivation of the HPC through inhibitory DREADDs 686 

impaired learning for both 1D and 2D categorization tasks. Simulation results from SUSTAIN 687 

suggest that the HPC may use pattern completion mechanisms to retrieve relevant category 688 

representations. These representations are used to make category decisions. Future experiments 689 

will investigate these representations at a more mechanistic level and examine how they interact 690 

with other brain regions. We are optimistic that the current paradigm offers exciting innovations 691 

that will allow for a thorough understanding of mechanisms that underlie complex behavior.   692 
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 892 

Figure 1. Clustering models such as SUSTAIN encompass fundamental mechanisms of the 893 

hippocampus. A. SUSTAIN assumes that perceptually similar training experiences tend to 894 

cluster together in memory. B. Categories are represented by one or multiple clusters, where 895 

each cluster surrounds a portion of stimuli within the stimulus space. C. Categorizing a new 896 

stimulus involves retrieving cluster representations that are similar to that stimulus. This is 897 

similar to pattern completion mechanisms that use auto-association to retrieve similar memory 898 

representations. D-E. After each trial, SUSTAIN updates the cluster representations through two 899 

mechanisms. D. First, the current stimulus can be integrated into an existing cluster, such that the 900 

center of that cluster moves towards the stimulus. This is similar to memory integration, where 901 

new memory traces are integrated into existing representations. E. Second, the current stimulus 902 

can become the center of a new cluster. This is similar to pattern separation, which maximizes 903 

the distance between training experiences to keep them separate.   904 



905 
Figure 2. Category tasks and trial procedure. Rats were trained to categorize visual stimuli 906 
containing gratings that changed in spatial frequency and orientation. Categories were created 907 

using this two-dimensional space. A. 1D task had distributions that were perpendicular to one of 908 
the stimulus dimensions; learning a 1D task encouraged a shift in attention to the perpendicular 909 
dimension. 2D tasks had distributions that were not perpendicular to a stimulus dimension; 910 

learning a 2D task required attention to both stimulus dimensions. B. Trial procedure used for all 911 
training and testing sessions. First, rats touched a star to start the trial (Star phase). Next, an 912 

exemplar was presented at the center of the screen (Cue phase). After three touches of the 913 
exemplars, copies of the exemplar appeared on the left and right sides of the screen acting as 914 
response keys (Choice phase). Rats touched either response key depending on the category 915 

membership of the exemplar. After a correct response, a white box appeared. One touch of the 916 
white box delivered a food reward (Reward phase).  917 



918 
Figure 3:  AAV expression in the HPC. Virus expression and location was observed for each rat 919 
to ensure adequate transduction. The boundary of the HPC was defined according to Paxinos & 920 
Watson, 1998. AAV did not extend into the ventral hippocampus and was contained within AP: - 921 

2.8 and – 4.9. A. Representative AAV expression in the HPC. B. Minimum (dark gray) and 922 
maximum (light gray) AAV expression within the HPC. For a small subset of rats, AAV did not 923 
extend into the CA3.   924 



 925 
Figure 4. Category training. Rats were given ten training sessions to learn either a 1D task or a 926 
2D task (n = 9 per group). Hippocampal inactivation impaired accuracy across training sessions 927 
for rats learning both the 1D tasks. All error bars indicate the SEM. hM4D(Gi) indicates the 928 

inhibitory DREADD, and GFP indicates the control virus. Background datapoints indicate 929 

individual learning curves.   930 



931 
Figure 5. Reaction time during the Cue phase and Choice phase of training trials (Cue RT and 932 
Choice RT, respectively). A. Rats with hippocampal inactivation had increased Cue RT 933 
compared to controls when learning the 1D tasks, but not the 2D tasks. B. Rats with hippocampal 934 

inactivation had increased Choice RT compared to controls when learning both the 1D tasks and 935 
the 2D tasks. These results suggest that the HPC was critical for making category decisions. All 936 
error bars indicate the SEM. hM4D(Gi) indicates the inhibitory DREADD, and GFP indicates the 937 
control virus. Background datapoints indicate individual learning curves.   938 



939 
Figure 6. Category generalization. A. After training, rats were given five testing sessions to 940 

examine category generalization. Stimuli were separated into three trial types: stimuli that 941 
overlapped with the training distributions (i.e., Trained), novel stimuli that were farther from the 942 
category boundary relative to the training distributions (i.e., Distal), and novel stimuli that were 943 
close to the category boundary (i.e., Proximal). B. Heatmaps of the rats’ performance were 944 

generated by averaging the accuracy for each testing stimulus within the grid. Each task was 945 

rotated in stimulus space so that the relevant axis was parallel to the x-axis, and the irrelevant 946 
axis was parallel to the y-axis. C. Average accuracy for each trial type. Compared to Training 947 
stimuli, accuracy was improved for Distal stimuli, and accuracy was impaired for Proximal 948 
stimuli. Hippocampal inactivation impaired accuracy for rats that had learned the 1D tasks and 949 

2D tasks. There were no significant interactions between trial types. All error bars indicate the 950 

SEM. hM4D(Gi) indicates the inhibitory DREADD, and GFP indicates the control virus.   951 



952 
Figure 7. Simple discrimination control task. A. Rats were trained to discriminate a white box 953 
from a black box as a control experiment. Rats were given training sessions until a learning 954 
criterion was reached (i.e., at least 75% accuracy for both stimuli across two consecutive 955 
sessions). B. Hippocampal inactivation did not affect the number of sessions required to reach 956 
criterion. These results suggest that impairments were specific to categorization and were not 957 

caused by unrelated factors (e.g., perceptual, motivational, or motor deficits). All error bars 958 
indicate the SEM. hM4D(Gi) indicates the inhibitory DREADD, and GFP indicates the control 959 
virus. Scatterplots indicate individual subjects.  960 



 961 
Figure 8. SUSTAIN modeling. A. A diagram of the computational model SUSTAIN. Briefly, 962 
SUSTAIN contains three layers, an input layer that loads the stimulus information, a cluster layer 963 

that stores category representations, and a decision layer that makes category decisions. B. 964 

Multiple models were designed to test the function of the HPC in category learning. Each model 965 
was fit to the averaged group data. The goodness-of-fit was determined for each model by 966 
calculating BIC, where low BIC values indicate a better fit of the data. All models that assumed 967 

the HPC served a function related to SUSTAIN’s clustering mechanism (i.e., Pattern 968 

Completion, Memory Integration, and Pattern Separation) produced better fits of the data than 969 

the other models (i.e., Selective Attention and Control). The Pattern Completion model produced 970 
the best fit of the learning data. C. SUSTAIN’s predictions for the best fitting model (Pattern 971 
Completion). All error bars indicate the SEM. hM4D(Gi) indicates the inhibitory DREADD, and 972 
GFP indicates the control virus. D. Left: The average number of unique clusters across training 973 
generated from the Pattern Completion model. The 1D tasks were typically solved by recruiting 974 

1-2 clusters per category, whereas the 2D tasks were typically solved by recruiting 4-6 clusters 975 

per category. For both task types, rats with hippocampal inactivations recruited more clusters 976 
than the controls. Right: Example arrangement of cluster positions for rats learning the 1D tasks 977 
(top) and 2D tasks (bottom). The red ellipses indicate the position of the training distributions.    978 



 979 
Figure 9. HPC is critical for updating category representations. Trial accuracy was analyzed on a 980 

trial-by-trial basis and was segregated according to the similarity between the current stimulus 981 
and the stimulus of the most recent trial. Positive scores indicate facilitated accuracy due to trial 982 

order, negative scores indicate impaired accuracy due to trial order, and 0 means no effect of trial 983 
order. For controls learning both the 1D tasks and the 2D tasks, accuracy was facilitated when 984 
the current trial was perceptually similar to the most recent trial, and accuracy was impaired 985 
when the current trial was perceptually dissimilar to the most recent trial. The effect of trial order 986 

was impaired for rats with hippocampal inactivation learning both the 1D tasks and the 2D tasks. 987 

These results suggest that the HPC is important for updating category representations and biasing 988 
decisions according to the most previous trial. All error bars indicate the SEM. hM4D(Gi) 989 
indicates the inhibitory DREADD, and GFP indicates the control virus. Scatterplots indicate 990 
individual subjects.   991 



 992 
Figure 10. CNO control experiment. To ensure that IP injections of CNO did not affect 993 
categorization, rats were given training and testing sessions on either a 1D task or a 2D task. IP 994 
injections of either CNO or PBS were administered before each session. A. CNO injections did 995 

not affect category learning for rats learning the 1D tasks or the 2D tasks. B. CNO injections also 996 
did not affect category generalization for rats that learned the 1D tasks or the 2D tasks. Together, 997 
these results support that IP injections of CNO did not affect categorization. All error bars 998 
indicate the SEM.  999 



 1000 
Figure 11. DREADDs verification. A. In a single rat, the inhibitory DREADD virus was infused 1001 

into one hippocampal hemisphere and the control virus was infused into the other hippocampal 1002 
hemisphere. A custom built microdive containing multiple recording tetrodes was implanted to 1003 
record in vivo single units within the HPC. The white arrow indicates the placement of a 1004 
recording tetrode. B-C. The firing rate of representative cells transduced by the inhibitory virus 1005 

(B) or control virus (C) after the administration of an IP injection of CNO. B. The firing rate of 1006 

neurons transduced with the inhibitory DREADD decreased below baseline 30 minutes after 1007 

injection and remained suppressed 2 hours after injection. C. The firing of neurons transduced 1008 
with the control AAV remained at baseline throughout the recording period.  1009 


