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In uncertain environments, effective decision makers balance exploiting options that are 8 

currently preferred against exploring alternative options that may prove superior 1,2. For 9 

example, a honeybee foraging for nectar must decide whether to continue exploiting the 10 

current patch or move to a new location 3-6. When the relative reward of options changes over 11 

time, humans explore in a normatively correct fashion, exploring more often when they are 12 

uncertain about the relative value of competing options 7-11. However, rewards in these 13 

laboratory studies were objective (e.g., monetary payoff), whereas many real-world decision 14 

environments involve subjective evaluations of reward (e.g., satisfaction with food choice). 15 

In such cases, rather than choices following preferences, preferences may follow choices with 16 

subjective reward (i.e., value) to maximize coherency between preferences and behaviour 17 

12,13. If so, increasing coherency would lessen the tendency to explore while uncertainty 18 

increases, contrary to previous findings. To evaluate this possibility, we examined the 19 

exploratory choices of more than 280,000 anonymized individuals in supermarkets over 20 

several years. Consumers’ patterns of exploratory choice ran counter to normative models for 21 

objective rewards 7-9,14 – the longer the exploitation streak for a product, the less likely were 22 



people to explore an alternative. Furthermore, customers preferred coupons to explore 23 

alternative products when they have recently started an exploitation streak. These findings 24 

suggest interventions to promote healthy lifestyle choices. 25 

 26 

Effective decision making requires balancing exploratory and exploitative behaviour 1,2,15. 27 

For example, finding a restaurant that bests one’s current favourite requires some exploration. 28 

The timing of exploration is also critical. Normatively, the rate of exploration should increase 29 

as uncertainty about the relative goodness of options increases 8. For example, one may give 30 

a restaurant a second chance after a year has passed because the service could have improved 31 

in the interim. People in laboratory studies with objective rewards (e.g., money) behave in a 32 

manner consistent with the ideal actor 7-9,14, exploring more often when uncertainty is high. 33 

This efficient, systematic exploration appears to demand capacity-limited cognitive resources 34 

9 and rely on frontal dopamine brain circuitry 14,15. However, as in the restaurant example, 35 

rewards can be subjective rather than objective. Although it’s clear that higher monetary 36 

rewards are better, comparing the reward associated with two dining experiences is more 37 

subjective and multidimensional (e.g., atmosphere, service, food quality). In such cases, 38 

determining value becomes an interpretive exercise. This interpretive process can be self-39 

reinforcing such that people come to prefer what they happen to choose (or believe they 40 

chose) 16-18. For example, in a jam tasting task, the jam people initially disfavoured was 41 

deceptively presented as the favoured option for a re-taste. Not only did people frequently fail 42 

to detect the switch, but they also provided rich justifications for their “choice” 12. In such 43 

studies, people altered their preferences to align with their previous behaviour, which can 44 

affect future choice 17-20. Such coherence seeking behaviour is in line with people’s 45 

preference for information that is consistent with their current views and behaviour 21-23.  46 

 47 



These coherency seeking tendencies in subjective choice have implications for exploratory 48 

behaviour. Most choices, like those in a supermarket, involve subjective interpretation of 49 

reward. If people alter their preferences to match their choices, then patterns of exploration 50 

should be opposite of that found with objective monetary rewards. With objective rewards, 51 

the likelihood of exploring increases the longer it has been since exploring (see Fig. 1a). We 52 

refer to this manner of exploration as uncertainty minimizing, as it responds to the possibility 53 

of missing changes in the choice environment while exploiting preferred options. If instead 54 

preferences conform to choices, then people should become less likely to explore the more 55 

they exploit (see Fig. 1b), which we refer to as coherency maximizing. In coherency 56 

maximization, the longer people repetitively exploit an option, the more entrenched their 57 

preference becomes. Such increased liking for chosen options strengthens coherence between 58 

preference and past behaviour, while also promoting coherent future behaviour based on this 59 

preference. Unlike common approaches to balancing exploration and exploitation in machine 60 

learning 24, both views predict that exploration is structured and non-random in that the 61 

likelihood of exploring varies with recent choice history. Although these two views of 62 

exploration differ in their predictions for local timing of exploratory choice, they both predict 63 

the global exploration frequency should be stable over longer timescales. For example, under 64 

coherency maximization, once one eventually explores and discovers a new choice to exploit, 65 

the entrenchment process starts anew. In effect, the exploratory choice reduces the burden of 66 

continuing to choose coherently to justify past choices, thereby resetting people’s preferences 67 

to the level before the entrenchment started. This makes it possible to settle on a new choice 68 

once the exploitation streak of a former choice has ended.  69 

 70 

Whereas laboratory studies with objective rewards find uncertainty minimizing exploration, 71 

we predict that coherency maximizing exploration will dominate with subjective rewards. To 72 



test this hypothesis, we evaluated how people explore with subjective rewards by examining 73 

shoppers’ behaviour in the supermarket. Tesco, a major UK supermarket chain, provided 74 

approximately 283,000 fully anonymized datasets, each representing the purchases of a 75 

shopper within a specific product category over a period of 250 weeks, involving 152.2 (SD 76 

= 89.9) store visits on average. We examined how individual shoppers explored product 77 

options within six different product categories: beers, breads, coffees, toilet papers, washing 78 

detergents and yogurts. For example, a shopper may prefer and exploit beer brand A for a 79 

number of store visits before exploring brand B. Exploration and exploitation coding was 80 

based on repetition - repeated choices (i.e., purchases) were coded as exploitations whereas 81 

explorations involved non-repetitive (i.e., switching) choice (see Methods for further details).  82 

 83 

On average, people explored with a relative frequency of .404 and this global tendency to 84 

explore was stable over time (see Fig. 2a and 2b), mirroring the results in laboratory studies 85 

using objective rewards 8,9. Both uncertainty minimization and coherency maximization (see 86 

Fig. 1) anticipate this result while also predicting that local patterns of exploration should be 87 

non-random. Indeed, people’s patterns of exploratory purchases were non-random, as 88 

evidenced by exploitation streaks that were longer (M = 8.56, SD = 18.33) than expected in 89 

92.8% of cases by a permutation test (see Supplementary Information). This result indicates 90 

that people systematically explore when shopping. The key question is whether people’s local 91 

exploration patterns are more akin to those predicted by uncertainty minimization (Fig. 1a) or 92 

coherency maximization (Fig. 1b). As predicted and consistent with coherency maximizing 93 

view, shoppers were less likely to explore the longer they had been exploiting a product (see 94 

Fig. 2c and 2d). This result is in stark contrast to studies with objective rewards that find 95 

uncertainty minimizing exploration. 96 

 97 



Model-based analyses, which treat exploitation streak length as a continuous predictor of 98 

exploration rate, corroborated the conclusion that people are coherency maximizers. Choices 99 

were modelled with logistic regression to predict the probability of exploration given the 100 

current exploitation streak length (see Fig. 3a). The results showed that the impact of 101 

exploitation streak length on probability to explore was negative for 79.3% of the shopper 102 

datasets, implying that people explored less the longer they have been exploiting. A 103 

permutation test for all regression slopes revealed that 82.6% were lower than expected (see 104 

Fig. 3b). The findings suggest non-random exploration in line with the predictions for 105 

subjective outcomes and coherency maximization. 106 

 107 

In other domains, exploratory behaviour is viewed as a stable characteristic of individuals 108 

and groups. For example, individuals’ strategies tend to agree across internal (e.g., memory 109 

retrieval) and external (e.g., foraging) search tasks 25 and exploratory behaviour has been 110 

found to systematically vary with factors such as impulsivity, genotype, depressive 111 

symptoms, and age 7,9,14,26. Analogously, we consider whether people’s pattern of coherency 112 

maximizing exploration is consistent at the individual level across different products. Using 113 

the model-based estimates, we found that individuals’ patterns of coherency maximization 114 

were consistent across the product categories considered. For example, for 20.3% more 115 

shoppers than expected by chance, either all or none of five product category datasets were 116 

associated with strong coherency maximizing behaviour (see Supplementary Information), 117 

which is remarkable given the diversity of the product categories considered. 118 

 119 

One controversial aspect of the coherency maximizing view is that preferences may follow 120 

from choices. We assessed this possibility by examining consumer’s choices with coupon 121 

offers. First, we analysed how customers reacted toward product coupons, where they 122 



received points on a bonus card or price discounts for buying a promoted product. If people’s 123 

preferences change with exploitation streak length, they should prefer coupons to exploit or 124 

explore products differently at different stages (i.e. lengths) of their exploitation streaks. 125 

Based on 69,664 coupon redemptions in our choice datasets (see Fig. 4a), we observed that 126 

customers redeemed coupons to explore products more quickly when they were on short 127 

exploitation streaks (M = 27.0 days) compared to long ones (M = 29.8 days). Conversely, 128 

customers redeemed coupons to exploit more quickly on long exploitation streaks (M = 24.4 129 

days) and slower on short streaks (M = 25.7 days). This strong interaction is predicted by the 130 

coherency maximization view. 131 

 132 

Second, rather than relying on existing data, we conducted a follow-up coupon study in 133 

which we issued coupons for instant coffee to 8,623 randomly selected households who 134 

regularly buy instant coffees. A logistic regression model was fit to the group to predict 135 

coupon redemption probability based on exploitation streak length. Consistent with the 136 

previous coupon analysis and coherency maximizing exploration, the results revealed a 137 

significant interaction of coupon type (i.e. whether the coupon meant exploration or 138 

exploitation to the customer) and current exploitation streak length, |z| = 3.623, p < .001 (see 139 

Fig. 4b, details in Supplementary Information). Hence, we find support for the idea that 140 

people’s choices induced preference changes, as their interest in coupon rewards depended on 141 

how well the coupon matched their recent choices (i.e. their exploitation streak length). 142 

 143 

The overall pattern of results strongly indicates that shoppers are coherency maximizing 144 

explorers, which is striking given that research with objective rewards (e.g., money) finds the 145 

opposite, uncertainty minimizing exploration 7-11,14. One explanation is that subjective 146 

rewards involve an evaluative process (e.g., satisfaction with food choice) in which the 147 



individual constructs value to justify the choice and maximize coherency 18,27. Indeed, our 148 

ability to a priori predict who would redeem a coupon relied on people's preferences being 149 

shaped by recent behaviours. Effectively, preferences may follow choices, which might 150 

appear irrational 28 but could be an effective strategy in some environments. For example, 151 

preferring food sources that have been frequently and recently sampled could be an effective 152 

means for avoiding foodborne illnesses. The same approach we utilized, linking big data with 153 

psychological theory, could be leveraged to properly time interventions aimed at improving 154 

diet and exercise regime. Given that we found individuals' patterns of exploration were 155 

consistent across diverse product categories, it may be possible to predict who would benefit 156 

most from such interventions. One basic lesson from our research is that people periodically 157 

enter periods of exploration with a predictable likelihood, creating a window of opportunity 158 

to modify behaviour for better or worse.  159 
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Figures 243 

Figure 1 244 

 245 

 246 

Figure 1: Predicted exploration patterns for uncertainty minimization and coherency 247 

maximization. 248 

a, 249 

In changing environments, uncertainty minimizing decision makers tend to explore more as 250 

the time since the last exploration increases. This normatively correct pattern of non-random 251 

exploratory behaviour, where people explore more as uncertainty about the relative goodness 252 

of competing options increases, has been found in humans with objective rewards (e.g. 253 

monetary values). 254 

b, 255 

In contrast, coherency maximizing decision makers tend to explore less as the interval since 256 

the last exploration increases. One possibility is that when outcomes require subjective 257 



interpretation (e.g. tasting food), decision makers change their preferences to match their 258 

recent choices in order to increase coherency. We predict that this self-reinforcing pattern 259 

will hold for supermarket shoppers. 260 

Figure 2 261 

 262 

 263 

Figure 2: Exploration changes locally but not globally. 264 

a, 265 



A median split of each shopper’s purchases revealed that the overall rate of exploration was 266 

stable over time. 267 

b, 268 

Likewise, the distribution of differences between the first and second half exploration rates 269 

for each shopper showed no systematic variations over time. 270 

c, 271 

A median split of exploitation streaks by shopper revealed that, in line with the predictions 272 

for coherency maximization, people were overall less likely to explore on their next purchase 273 

when currently on a long run of exploitative choices. 274 

d, 275 

In line with panel c, most individuals showed a decline in probability to explore from 276 

exploitation streaks shorter to those longer than their median streak. 277 

Figure 3 278 

 279 



 280 

Figure 3: Predicting exploration from exploitation streak lengths.  281 

a, 282 

As shown, a coherency maximizing shopper is less likely to explore alternatives the longer 283 

the exploitation streak, which is characterized by a negative slope in the logistic regression 284 

model. In contrast, the slope would be positive under uncertainty minimization and flat for 285 

random exploration. 286 

b, 287 

Consistent with coherency maximization, the slope of the fitted logistic regression model was 288 

negative for the majority of individuals. For comparison, we permuted the order of each 289 

individual’s purchases and fitted the model (see Supplementary Information). Slopes were 290 

more negative in the actual than in the permuted data, providing further support that people 291 

are coherency maximizing.  292 



Figure 4 293 

 294 

 295 

Figure 4: Coupon redemption depending on current exploitation streak length. 296 

a, 297 

Consistent with coherency maximization, customers redeemed coupons to exploit products 298 

more quickly the longer they have been exploiting the product (i.e. on long exploitation 299 

streaks). Coupons to explore alternatives were used more quickly when customers were only 300 

beginning to exploit (i.e. on short exploitation streaks). Error bars represent standard errors. 301 

b, 302 



Model fits of the observed relationship between exploitation streak length and the probability 303 

of coupon redemption are shown. A shopper was more likely to redeem a coupon to exploit 304 

the longer the exploitation streak, whereas a coupon to explore was more likely to be 305 

redeemed the more recently a shopper has explored.  306 



Method 307 

We analysed 282,972 anonymous datasets containing the chronologically ordered purchases 308 

of individual supermarket customers at Tesco, a UK supermarket chain, regarding one of six 309 

different product categories. Tesco provided access to these datasets in collaboration with 310 

dunnhumby, a customer science company and subsidiary of Tesco (see Data Availability 311 

statement for requests). Customers’ product choices were recorded in a database every time 312 

they checked out using a personalized bonus card. This data use was in accord with the card 313 

agreement, which stipulated that anonymized shopping data would be used and shared 314 

outside of Tesco. Individuals in this database can only be identified by an anonymous dataset 315 

number, but not by any personal information. Thus, the analysed datasets only contained 316 

purchase-related information (e.g. quantities, prices, discounts, etc.), but no personal 317 

information about the shopper. Our sample was restricted to people with at least 50 purchases 318 

within a specific product category, which was necessary to model individual behaviour and to 319 

select from loyal customers (i.e., for which we have good coverage of their purchases). We 320 

did not select customers who never explored or who did over 75% of the time. We coded 321 

exploration and exploitation based on repetition, where repeated choices were coded as 322 

exploitations and non-repetitions as explorations (see Fig. 3a). 323 

Data Availability 324 

The datasets generated and analysed for the present study are available from dunnhumby, a 325 

customer science company and subsidiary of Tesco, upon request: 326 

data_questions@dunnhumby.com.  327 

Further information about the data and analyses is available online at the Open Science 328 

Framework: osf.io/e76wy. 329 
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Supplementary Information 

Customer datasets 

We gained access to the Clubcard bonus program of Tesco, a major UK supermarket chain. 

As Clubcard members, people receive points for their purchases at Tesco that can be 

transferred into store discounts and non-monetary rewards. Every time a customer shops at 

Tesco and uses the personalized Clubcard at the checkout, all purchased items and additional 

information, such as given discounts or redeemed coupons are recorded in a database. 

Individuals in this database can only be identified by an anonymous dataset number, but not 

by any personal information. We analysed anonymized datasets that only contained purchase-

related information (e.g. quantities, prices, discounts, etc.), but no personal information about 

the shopper. Thus, it was impossible to draw any connection between the analysed data and 

the shopper who carried out these purchases. The Clubcard database provides 250 weeks of 

purchase histories for approximately 1.55 million customers, which is a ten per-cent random 



sample of all Clubcard users. In order to capture a set of typical choices in the supermarket, 

we examined purchases within the product categories of beers, breads, coffees, toilet papers, 

washing detergents and yogurts. The range of every category was defined according to the 

retailer’s descriptions, which corresponds to the segmentation that people encounter in their 

stores. In order to assure a clearer differentiation between the choice options (e.g. ignore 

package sizes and special editions), we differed products on the brand level. Our datasets 

included chronological individual purchases of customers within one of the six above-

mentioned product categories. For some customers, we had multiple datasets from different 

categories available. 

 

We selected people with at least 50 purchases within a specific product category to gain 

sufficient data for individual analyses and also to retrieve customers that likely use their 

Clubcard with every store visit. Each product category contributed between 39,105 and 

79,988 datasets, summing up to 318,294 in total. We coded exploration and exploitation 

based on repetition, where repeated choices were coded as exploitations and non-repetitions 

as explorations (see Fig. 3a). After the coding, we removed about 3.5% of the datasets, as 

subjects chose the same item on every single occasion. Furthermore, extreme cases of 

exploration proportions beyond .75 were also excluded from all analyses (7.6% of the 

datasets). Eventually, a total of 282,972 datasets remained for our analyses. The mean time 

between purchases was 14.57 days (SD=7.46) with breads on the low end at 8.57 days 

(SD=3.35) and washing detergent on the high end at 23.38 (SD=6.46) days. Of the available 

options in a product category, customers tried 8.22 (SD=5.84) different brands on average. 

This ranged from 4.59 (SD=2.05) options for washing detergents to 15.83 (SD=9.82) for 

beers. 



Coding of explorative and exploitative choices 

We identified choice options at the brand level, which subsumes minor differences in unit 

sizes (e.g. the same product in a 0.5kg and 1.5kg package). In previous research, the 

classification of explorative and exploitative choices is often based on the numeric value of 

experienced rewards 1-3. As there is no numeric choice outcome in our brand choice dataset, 

we focus on the individual’s decision between either staying or going – repeating a brand 

choice or breaking out of a repetitive habit 4. This definition assumes that the brand people 

stay with at the moment is the one they currently perceive as the best choice. Our results 

proved robust to various definitions of exploratory choice. 

 

Thus, we coded customers’ repeated choice of a brand as exploitation. Non-repetitions were 

coded as explorations. For example, a choice sequence of A-A-B-A-A would be coded 

Exploit-Exploit-Explore-Explore-Exploit (assuming the first choice is a repetition). In some 

cases (less than 10%), people chose multiple items from the same category within the same 

store visit. We coded these cases as explorations when at least one of the items was not 

purchased on the previous store visit. 

Permutation tests 

We used permutation tests to determine when results differed from chance. We created 100 

permutations of the originally observed choice sequences for each choice dataset, which 

served as a null distribution. As a next step, we applied the coding of exploration and 

exploitation as described above to the original and the permuted datasets. All statistical 

analyses could hence be conducted with original and permuted datasets. Comparing the 

results of observed and permuted datasets could therefore be used to identify whether and 

how people’s actual choices differed from randomly ordered choices. The statistical values of 



every observed dataset (e.g. exploration frequency) were ranked in comparison with their 

permuted control (i.e., null) datasets. Here, we captured whether the dataset showed a 

relatively low or high value compared to the control datasets. Table 1 displays the mean 

values of exploration frequency, exploitation streak length and exploration streak length for 

observed and permuted data. Further, the relative number of observed datasets with low 

values compared to their control is shown. For example, 7.2% of shoppers have unusually 

short exploitation streaks compared to a permuted control. On the other hand, this means a 

vast majority of people has unusually long exploitation streaks. This suggests that the 

observed data is not randomly ordered and further, people go on longer exploitation streaks 

than one would expect if their choices were ordered randomly. 

Supplementary Table 1 

Mean values of observed and control data 

 MObs (SD) MControl (SD) % with low values 

f(explore) .404 (.196) .477 (.240) 83.4 

Exploitation streak length 8.56 (18.33) 6.51 (17.95) 7.2 

Exploration streak length 2.36 (.72) 2.56 (1.06) 76.7 

Note. M=Mean. SD=Standard Deviation. Obs=Observed. 

Individual logistic regression models 

For each dataset, we modelled the probability of exploration for all choices in observed and 

permuted control data (see previous paragraph) using logistic regressions. A baseline model 

with intercept only (one parameter) attributed constant probability of exploration independent 

of recent choices. This baseline model was compared to a streak model that included an 

intercept and a slope linked to the current exploitation streak length (two parameters). For 

each dataset, both models were fitted to all choices (M=114.0 choices, SD=66.3 choices). 

The slope parameter in the streak model for the randomized control data shows a slight 



positive bias, due to the limited amount of data and the fact that the longest exploitation 

streak will definitely end, therefore causing f(explore | exploitation streak length) to 

inherently rise with streak length. In the observed data, 79.3% of the slopes in the streak 

model are negative across all product categories. Compared to the permuted control data, 

82.6% of the datasets have unusually small or negative slope estimates. Table 2 lists these 

slope parameter estimates per category. 

Supplementary Table 2 

Slope estimates for the streak model in all product categories 

 Observed datasets Permuted control datasets 

Product category  Mean slope 
(SD) 

% negative 
slope values 

% values in lower 50th 
percentile of control data 

Mean slope 
(SD) 

% negative 
slope values 

Beers -.019 (.034) 66.8 71.9 .002 (.008) 27.6 

Breads -.040 (.037) 85.5 86.5 -.001 (.009) 55.6 

Coffees -.013 (.036) 59.2 68.3 .005 (.009) 24.2 

Toilet tissues -.026 (.039) 71.7 77.4 .004 (.010) 36.3 

Washing detergents -.016 (.035) 61.4 69.2 .003 (.007) 23.4 

Yogurts -.025 (.036) 71.0 74.8 .002 (.006) 29.3 

Note. Means and standard deviations were calculated across all observed customer datasets in the respective 
categories. For the control datasets, the 100 slopes per customer dataset were first averaged and the mean and 
standard deviation of these averages across customer datasets are reported.   

Cross-category analysis 

Some customers were represented in multiple datasets that contained their shopping decisions 

in different product categories. In these cases, we tested whether customers showed similar 

behaviour across these categories. We yielded slope estimates from a logistic regression (see 

previous paragraph) for all datasets. Next, we examined how many individuals had unusually 

negative slopes, i.e. ranked in the lower fifth percentile (slope ranked ≤ .05) of the permuted 

control in either all or none of their choice datasets. Such individuals were labelled consistent 



in their exploratory behaviour. We focused on the lower fifth percentile of slopes as these 

individuals showed clear and strong coherency maximizing behaviour. In each category, this 

still applied to almost half of the people. In order to check for unexpected behavioural 

consistency across product categories we compared the number of observed consistent 

individuals with the expected frequencies from chance. We included individuals who were 

represented in three to five categories in our analysis to assure an appropriate number of 

constellations cases to analyse. 

 

From the observed frequencies, we obtained a maximum-likelihood estimate for the 

probability that a dataset yielded a slope estimate in the lower fifth percentile rank amongst 

its permuted versions. This probability was estimated separately for cases where three, four 

or five datasets were available. We then created an expected frequency distribution for the 

number of datasets with slopes ranked in the lower fifth percentile given the total number of 

datasets available (i.e. either three, four or five) and compared this to the observed 

distribution. Table 3 gives the probability estimates for datasets to yield slopes in the lower 

fifth percentile, given the total number of datasets and also the observed and expected 

distributions for datasets with such slopes.  



Supplementary Table 3 
Observed and expected frequencies of slopes in lower 5th percentile when multiple 
datasets available per person 

 Datasets available 

 3 datasets 4 datasets 5 datasets 

No slope ranked ≤.05 4,946 (4,748) 1,317 (1,314) 163 (136) 

1 slope ranked ≤.05 11,793 (12,062) 4,383 (4,285) 544 (561) 

2 slopes ranked ≤.05 10,159 (10,213) 5,100 (5,239) 911 (923) 

3 slopes ranked ≤.05 3,007 (2,882) 2,817 (2,846) 736 (759) 

4 slopes ranked ≤.05 --- 647 (580) 325 (311) 

5 slopes ranked ≤.05 --- --- 62 (51) 

Total 29,905 14,264 2,741 

Note. Expected frequencies in brackets. 

Coupon analysis 

First, we analysed how quickly customers redeemed product coupons, which provided points 

on their bonus card or price discounts for buying a promoted product. Customers received 

these product coupons in their mail and could choose to redeem them when buying the 

promoted product within 60 days. In all our datasets, we found a total of 69,664 purchases 

that were associated with the use of a product coupon. From the view of coherency 

maximizing exploration, coupons to explore fit customers’ current behaviour better on short 

than on long exploitation streaks. Similarly, coupons to exploit a favourite fit better on long 

exploitation streaks than on short ones. Therefore, having exploited a product for a long time 

rather than just having started to exploit a new favourite, customers should be quicker to 

redeem a coupon for the exploited product. On the other hand, customers should be slower to 

redeem a coupon to explore a different product when they are currently on a long exploitation 

streak. This means on the other hand, that shoppers should redeem such an exploration 



coupon quicker when their exploitation streak is still short. We divided the exploitation 

streaks in each individual’s dataset into short and long streaks by a median split. For each 

observed coupon redemption, we noted whether at the time of reception the customer was on 

a short or long exploitation streak and whether the coupon product would mean exploration 

or exploitation for the next purchase.  We observed that customers redeemed coupons to 

explore products more quickly when they were on short exploitation streaks (M = 27.0 days) 

compared to long ones (M = 29.8 days). Conversely, customers redeemed coupons to exploit 

more quickly on long exploitation streaks (M = 24.4 days) and slower on short streaks (M = 

25.7 days). 

 

Based on the findings that we reported for the redemption times of coupons in the database, 

we mailed product coupons to randomly selected households in order to examine coupon 

redemption with respect to recent exploratory choices. We obtained 8,623 anonymized and 

randomly selected datasets from the instant coffees category where the customer made at 

least 50 purchases, independent of what was chosen. In the instant coffees category, people 

could choose between a maximum of 27 options of which five had a market share of at least 

5% (including the target brand on our coupon). We made a priori predictions about how 

likely individuals would redeem a coupon for a certain instant coffee brand based on their 

recent choices. Then, we sent the 8,623 anonymous customer IDs to a mailing house so that 

they could be mailed a coupon offering of 100 bonus points if they bought a specific instant 

coffee brand, which was the same for all customers. Customers could redeem the coupon 

within three weeks after reception.  

 

We defined the coupon type for each customer individually. Coupons served customers to 

exploit if their last purchase before receiving the coupon was the coupon product. On the 



other hand, the coupon was identified as exploration coupon if the customer bought a 

different instant coffee brand with the most recent purchase. Table 4 summarizes a logistic 

regression with probability of coupon redemption as dependent variable. We used coupon 

type (exploration or exploitation coupon) and exploitation streak length at coupon reception, 

as well as the interaction of the two variables as predictors. The significant negative 

interaction term implies that redemption was less likely for exploration coupons on long 

exploitation streaks. Conversely, redemption was more likely for exploitation coupons the 

longer customers have already been exploiting. Regarding the odds ratios, we can see that for 

exploitation coupons, the chance of coupon redemption increases 1.012 times with every 

additional exploitative choice or 1.127 times every ten exploitations. On the other hand, 

redemption decreases by a factor of 1.035 for exploration coupons with every additional 

exploitative product purchase or, in other words, by 1.411 with every ten additional 

exploitations. 

Supplementary Table 4 

Logistic regression to predict coupon redemption from exploitation streak length 

Model parameter Estimate Std. Error z-value p-value 

Intercept -3.4077 .1079 -31.584 <.001 

Coupon type (0=Exploit, 
1=Explore) -.2003 .1628 -1.231 .219 

Exploitation streak length .01168 .0037 3.185 .001 

Coupon type * 
Exploitation streak length -.0456 .0126 -3.623 <.001 
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