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Abstract Physiological arousal, a marker of emotional re-
sponse, has been demonstrated to accompany human decision
making under uncertainty. Anticipatory emotions have been
portrayed as basic and rapid evaluations of chosen actions.
Instead, could these arousal signals stem from a “cognitive”
assessment of value that utilizes the full environment structure,
as opposed to merely signaling a coarse, reflexive assessment of
the possible consequences of choices? Combining an explora-
tion–exploitation task, computational modeling, and skin con-
ductance measurements, we find that physiological arousal
manifests a reflective assessment of the benefit of the chosen
action, mirroring observed behavior. Consistent with the level of
computational sophistication evident in these signals, a follow-
up experiment demonstrates that anticipatory arousal is modu-
lated by current environment volatility, in accordance with the
predictions of our computational account. Finally, we examine
the cognitive costs of the exploratory choice behavior these
arousal signals accompany by manipulating concurrent cogni-
tive demand. Taken together, these results demonstrate that the
arousal that accompanies choice under uncertainty arises from a
more reflective and “cognitive” assessment of the chosen ac-
tion’s consequences than has been revealed previously.

Keywords Decision-making . Reward . Reinforcement
learning . Emotion . Arousal

Introduction

Emotional response and its concomitant peripheral autonomic
response play a central role in the way people manage decisions
under uncertainty in a variety of task contexts (Critchley, 2005;
Dolan, 2002; Figner, Mackinlay, Wilkening, & Weber, 2009;
Mellers, Schwartz, Ho, & Ritov, 1997). For example, in the
context of decisionmaking, people exhibit arousal, measured by
skin conductance responses (SCRs; Öhman & Soares, 1994)
just prior to choices carrying potentialmonetary losses (Bechara,
Tranel, Damasio, & Damasio, 1996; Suzuki, Hirota, Takasawa,
& Shigemasu, 2003) or future cognitive costs (Botvinick &
Rosen, 2009), suggesting that these arousal signals reflect, in
some form, an evaluation of a chosen action’s goodness.

Although previous work has considered the causal role of
autonomic arousal in choice under uncertainty (Bechara et al.,
1996; Damasio, 1994; but see Dunn, Dalgleish, & Lawrence,
2006; Tomb, Hauser, Deldin, & Caramazza, 2002; Whitney,
Hinson,Wirick, &Holben, 2007), little work has endeavored to
characterize the processes generating these arousal signals. In
this report, we utilize the framework of reinforcement learning
(RL; Sutton & Barto, 1998) to provide a computationally
informed examination of how insightful these signals are.

Affective research has often portrayed these anticipatory
emotions as basic and rapid evaluations of the options facing a
decision-maker—possibly facilitating rapid action—in contrast
to a “cognitive” evaluation of a course of action (Ledoux, 1996;
Loewenstein, Weber, Hsee, & Welch, 2001; Zajonc, 1984).
Could these emotional responses instead stem from a reflective
and intelligent decision-making system, as opposed to a simpler,
reflexive decision process? Indeed, work in the domain of
aversive Pavlovian conditioning has demonstrated how causal
knowledge and more explicit, “cognitive” information can pro-
duce anticipatory arousal responses (Lovibond, 2003; Olsson &
Phelps, 2004). Here, we evaluate the possibility that SCRs
accompanying choice register planning-oriented value calcula-
tions utilizing environment structure and evolving uncertainty,
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in contrast to merely signaling a coarse calculation of the pos-
sible consequences resulting from the choice made.

Answering these questions is critical to understanding the
nature of interactions between cognition and emotion. For
example, patients with ventromedial prefrontal cortex
(vmPFC) lesions fail to manifest anticipatory SCRs for actions
carrying large potential monetary losses in putatively risky
decisionmaking, andmoreover, their choices appear insensitive
to these negative consequences (Bechara, Damasio, Damasio,
& Lee, 1999; Bechara et al., 1996). It is unclear to what extent
these apparent physiological and behavioral anomalies stem
from the breakdown of a computationally sophisticated, reflec-
tive choice system versus a simpler reflexive system.

A key challenge in characterizing these signals lies in con-
structing a computational account of choice in paradigms exam-
ining autonomic response to risky decision making (Busemeyer
& Stout, 2002; Studer & Clark, 2011; Worthy et al., 2013).
Furthermore, in the Iowa gambling task—ubiquitously used to
examine emotional arousal accompanying risky choice—it is
well documented that healthy participants exhibit pronounced
SCRs when they make selections to “disadvantageous” actions
with negative (experienced) expected utility. Because actions in
this paradigm are represented by stimuli that remain constant
throughout the task, it is unclear whether arousal signals are
merely tied to specific stimuli themselves or, instead, reflect a
deeper assessment of the chosen action’s goodness.

Here, we utilize a well-understood choice task called the
leapfrog task (Knox, Otto, Stone, & Love, 2012), in which
decision-makers must continually adapt their choice behavior
in response to changing payoffs. The task is sufficiently
constrained such that our computational modeling approach
allows us to clearly delineate between competing accounts of
behavior (Blanco, Otto, Maddox, Beevers, & Love, 2013;
Knox et al., 2012) and their relationship to arousal responses
accompanying choice.

The leapfrog task leverages the tension, found in many real-
world decision-making situations, between exploitative choice
(choosing a known option that is believed to have yielded the
best outcome in the past) and exploratory choice (choosing a
possibly inferior option with the hope that it will yield an even
better result). This trade-off is a nontrivial problem, and the way
in which people negotiate this balance is the subject of a spate of
recent cognitive neuroscience research concerning its neural and
physiological signatures (Badre, Doll, Long, & Frank, 2012;
Cohen, McClure, & Yu, 2007; Daw, O’Doherty, Dayan, Sey-
mour, & Dolan, 2006; Jepma & Nieuwenhuis, 2011).

Consider the choice task depicted in Fig. 1a, termed the
leapfrog task, in which the decision-maker repeatedly makes
choices among optionsA andB, each time observing the obtained
payoff. Although one option is always superior to the other by 10
points, the payoffs associated with the two options change over
time in a constrainedmanner:With some fixed probability, option
B (which is initially inferior) increases in value by 20 points and,

thereby, becomes superior to option A, and with this same prob-
ability, option A can subsequently overtake option B as the
superior option. Because the relative superiority of the options
changes over time, decision-makersmust negotiate the competing
demands of exploration and exploitation: An exploitative
decision-maker will miss jumps in payoff levels and persist in
choosing options that have become inferior, while an overly
exploratory decision-maker will incur large opportunity costs
associated with sampling the observed inferior option too fre-
quently, thus forgoing the higher payoffs associated with the
superior option. An example participant’s sequence of choices,
denoted with Xs andOs, is superimposed on the payoffs in Fig 1a.

Importantly, this constrained “bandit” task allows us to iden-
tify whether people approach exploration in a reflective versus
reflexive fashion (Blanco et al., 2013; Knox et al., 2012). A
reflexive strategy is informed only by directly observing payoffs
and, thus, relies upon occasional, undirected random choices to
the observed inferior action in order to explore. A reflective
strategy, by contrast, leverages knowledge of the full structure
of the environment to maintain a belief about the currently
superior option. This evolving belief—which incorporates pre-
dictions of unobserved changes in the payoffs of the two op-
tions—guides the choice between an exploratory or an exploit-
ative action at each decision. With each successive exploitive
choice, the probability that the relative value of the options has
flipped increases, making the state of the environment less
certain. In this way, exploratory behavior is directed by uncer-
tainty about the state of the environment; as uncertainty in-
creases, exploration becomes more valuable. Critically, the be-
havioral signatures of the two strategies can be identified on the
basis of sequential dependence in exploratory choice: Reflexive
choice produces unconditionally and equiprobable exploration
over time, while a reflective strategy entails that longer periods of
consecutive exploitative choice necessitate more exploration.

We formulated two computational models of choice to
verify whether participants negotiated exploration in a reflec-
tive manner, informed by predictions of unobserved changes
in the environment, or in a reflexive manner, informed only by
direct payoff observations. And more interestingly, we used
these models to elucidate the reflective signature of the antic-
ipatory SCRs accompanying this choice behavior. We provide
qualitative descriptions of each model below; full algorithmic
details are given in the Appendix.

The Naïve RL model is reflexive model that assumes that
action-values are updated in a reactive fashion to directly
experienced rewards. This model reflexively maintains beliefs
about payoffs based only on directly observed payoffs. In other
words, its estimated payoffs for each action (called Q-values in
RL) are those most recently observed for the two actions A and
B. The crucial feature of its predicted behavior—in the leap-
frog task—is a constant probability of making an exploratory
choice. This predicted behavior and the contrasting predic-
tions of the reflective model are described in Experiment 1.

Cogn Affect Behav Neurosci



The Ideal Actor, with knowledge of the task structure,
integrates its past beliefs with present observations to produce a
belief about the currently higher-paying option, using simple
Bayesian inference. Figure 1b depicts this evolving belief, in-
ferred from the example participant’s sequence choices in
Fig. 1a. These optimal beliefs are then transformed into action-
values by using existing techniques in RL (see the Appendix),
resulting in action-values associated with exploitative and ex-
ploratory actions. Figure 1c depicts the Ideal Actor’s calculated
relative value of the exploitative action [expressed as Q(exploit)
− Q(explore)] as a function of its belief. Intuitively, the Ideal
Actor prescribes an exploitative action whenever this quantity is
greater than zero and an exploratory action otherwise.

The Ideal Actor’s directed form of exploration contrasts with
the purely random exploration exhibited by the Naïve RL

model—in which action-values are updated in a reflexive fashion
to match directly observed payoffs. Unlike the reflective Ideal
Actor, this reflexive model does not fully utilize environment
structure. Beyond the qualitatively different patterns of behavior
ascribed to the reflexive and reflective accounts of choice, we
also intuited that the two modes of choice impose different
requirements on cognitive resources. On this view, usage of
reflective choice should be constrained by available central ex-
ecutive resources, given its comparatively greater computational
expenses—a prediction we also test in this report.

In Experiment 1, we examine anticipatory SCRs while par-
ticipants negotiate the exploration–exploitation trade-off in the
leapfrog task. Since the option payoffs continually change in the
task, the identities of the actions (exploration versus exploita-
tion) are uncoupled from the choice stimuli (options A and B),
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Fig. 1 Choice task andmodel-inferred variables. aAn example instantiation
of the leapfrog task, inwhich participantsmake repeated choices between two
options, A and B, each time observing the payoff for the selected option. An
example participant’s sequence of choices and payoff observations are over-
laid as Xs and Os. b The Ideal Actor’s belief at each choice, based on choices

and observations made by the participant up to that point. c The Ideal Actor’s
calculated relative value, based on the beliefs in panel b, of taking the
exploitative action, expressed asQ(exploit) −Q(explore). Taking the exploit-
ative action is optimal whenever the relative value of exploiting is positive;
when this value is negative, the exploratory action is optimal
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ruling out the possibility that anticipatory arousal is tied to
specific stimulus items, as in the Iowa gambling task, discussed
above. Ourmodeling approach uniquely positions us to examine
the level of sophistication in arousal signals that accompany
choice under uncertainty and the choices themselves. To fore-
shadow, we find that SCRs in exploratory choice are in accord
with the Ideal Actor, suggesting that SCRs index reflective and
nuanced assessments of the expected benefit of the chosen
action. That is, anticipatory arousal appears to register compu-
tations deeper than static associations between emotional arousal
and particular actions or stimuli (as evidenced by Bechara et al.,
1996), evincing a more sophisticated trial-by-trial calculation of
the relative benefit of the two actions.

Having demonstrated that anticipatory SCRs and concom-
itant choice behavior manifest reflective, rather than reflexive,
signatures, we then provide two additional confirmations of
the computational framework’s predictions. First, by manipu-
lating the volatility level in the leapfrog paradigm, we reveal
that anticipatory SCRs appear to be rationally modulated by
the current level of environment volatility, in line with the
Ideal Actor’s predictions. And second, to highlight the com-
putational expense of the reflective choice processes pre-
sumed to drive behavior and SCRs in Experiment 1, we
demonstrate that concurrent cognitive demand reverts
decision-makers to more reflexive choice behavior. In doing
so, we corroborate—indirectly—the role of reflective calcula-
tions in the anticipatory SCRs seen in Experiment 1.

Experiment 1

Method

Forty-three undergraduates at the University of Texas com-
pleted 200 trials of the leapfrog task (Fig. 1a). In the choice
task, the payoffs for the two options continually alternated in
superiority over the course of the task. Payoffs for options A
and B started at 10 and 20, respectively, and alternated in
superiority by increasing (i.e., “jumping”) by 20 points with
probability P(jump) = .075 after each choice. In order to
facilitate a full understanding of the task structure, participants
were provided with the following instructions:

Option A and Bwill both keep getting more valuable over
the course of the experiment. Option A and B will take
turns being the better option. The onlyway to knowwhich
option is currently better is by sampling the options. The
better option will always give you 10more points than the
worse option. When the worse option becomes the better
option, it will jump in value by 20 points.

To avoid complications associated with participants
exhibiting diminishing sensitivity to payoff differences as the

payoff magnitudes rise (Tversky & Kahneman, 1992), partici-
pants were paid 5 cents per “correct” choice, defined by whether
they had chosen the option with the superior payoffs at the time
of choice. At the outset of the experiment, participants were
informed which option would give the higher initial payoff (20
points) and which option had the lower initial payoff (10 points).

Participants were first presented with a prechoice
(anticipatory) period, during which they were instructed to
“THINK ABOUT YOUR CHOICE,” followed by a prompt
to make their choice. Participants had 1.5 s to choose by key-
board. When a participant failed to respond, he or she was
presented with a screen that read “TOO SLOW, TRYAGAIN,”
and the trial was repeated. After their choice, the outcome was
displayed for 1 s. An intertrial interval (ITI) occurred after each
trial, with a duration ranging from 2 to 6 s (Poisson, mean = 3 s).

SCR was measured via Ag-AgCl electrodes attached to the
crease between the distal and middle phalanges of the first and
second digits of the left hand and were recorded with a BIOPAC
unit at 200 Hz. We employed a deconvolution technique, based
on a physiological model of the general SCR shape, that allows
for separation and quantification of the fast-varying (phasic) and
slow-varying (tonic) components of the skin conductance signal
(Benedek&Kaernbach, 2010).We calculated anticipatory sym-
pathetic arousal by integrating (i.e., summing over time) the
phasic driver signal during the 7.5-s anticipatory period starting
at the onset of the “THINK ABOUT YOUR CHOICE” prompt
and ending at feedback onset. Average optimized time constants
τ1 and τ2 were 0.93 and 2.79. To avoid the influence of task
novelty on SCRs, the first 10 trials were excluded from analysis.
Finally, SCRmagnitudes were log-transformed to remove skew
and z-transformed within participants.

Results and discussion

Choice behavior

We first assessed sequential dependence in choice behavior (for
which the reflective and reflexive models make divergent qual-
itative predictions), using what we termed the hazard rate of
exploration. This hazard rate is calculated as the probability of
making an exploratory choice as a function of the number of
consecutive exploitative choices made prior to choice. The two
candidate models of choice behavior make divergent predictions
about the hazard rate of exploratory choice (Fig. 2a). The Ideal
Actor prescribes that the hazard rate for exploration monotoni-
cally increases with the streak length of exploitative choices of
the observed superior option, because the model’s uncertainty
about which option currently has the higher payoff increases in
the absence of exploration. In contrast, the reflexive Naïve RL
model acts only on direct observations of payoffs and does not
perform an inference about the goodness of the observed inferior
option. Since its sole source of exploration is trial-independent
choice randomness, it prescribes a flat hazard rate of exploration.
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Qualitatively, participants’ hazard rates (Fig. 2b) manifest
contributions of both reflective and reflexive strategies. Consis-
tent with the reflectivemodel of choice, participants by and large
made more exploratory choices as the number of stable exploit-
ative choices increased, F(4, 38) = 40.85, p < .0001. Still, this
group hazard rate appears less sloped than that prescribed by the
reflective model, suggesting that behavior also bore the influ-
ence of a reflexive strategy. Quantitative assessment of model
fits (via maximum likelihood) reveals that 88 % of participants
were better described by the Ideal Actor model1 (binomial test,

p < .0001; see Table 1 for parameter values and goodness-of-
fit measures). The psychometric curve plotted in Fig. 2c fur-
ther illustrates the reflective character of participants’ choices.

Psychophysiological results

We began examining autonomic responses by analyzing the
phasic (fast-varying) component of participants’ anticipatory
SCRs as a function of simple trial type. We found that SCRs
accompanying exploratory actions were significantly larger
than those accompanying exploitative actions (Fig. 3a), F(1,

1 We also examined the goodness of fit of a baseline model (Yechiam &
Busemeyer, 2005), which assumes that choice probabilities for each
option are constant and statistically independent across trials, to identify
“nonlearners” who were not responsive to the options’ changing payoffs.
We found that no participants in this experiment were best fit by the
baseline model (using BIC), as compared with the two other models. This
analysis supports an interpretation that the model fits elucidate the type of
learning strategy taken and not, say, whether a participant demonstrated
learning versus nonlearning in response to choice outcomes.

Fig. 2 Choice behavior in Experiment 1. a Predicted hazard rates of
exploration, calculated as the probability of making an exploratory choice
given an exploitative choice streak of length n, according to the belief-
directed Ideal Actor (blue line) and the Naïve RL model reinforcement
learning (red line) accounts. b Observed hazard rate for participants in

Experiment 1, which roughly exhibits the monotonically increasing sig-
nature of the Ideal Actor. c Proportion of participants’ exploratory choices
as a function of the Ideal Actor calculated relative value of choosing the
exploitative option, revealing a monotonically decreasing relationship.
Error bars represent standard error of the mean

Table 1 Summary of model fit in Experiment 1 [P(jump) = .075]

Model % Best Fit Total BIC P(jump) (SD) γ (SD)

Naïve 12 11,402.24 - 0.07 (0.05)

Ideal Actor 88 9,513.41 .03 (.03) 0.34 (0.13)
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38) = 7.33, p < .01. One might expect intuitively that choices
to the observed inferior option would evoke a larger emotional
response than would choices to the observed superior option;
indeed, this mirrors previous work revealing heightened
arousal in anticipation of future monetary (Bechara et al.,
1996) or cognitive (Botvinick & Rosen, 2009) costs, as well
as a subjective experience of regret (Camille et al., 2004). This
coarse analysis lends credibility to a reflexive account of
arousal. But could these signals provide evidence for a reflec-
tive process, following participants’ behavior, that makes
inferences on the basis of unobserved payoff changes?

To perform such an assessment, we leveraged the Ideal
Actor’s trial-by-trial action prescriptions to understand how par-
ticipants’ beliefs about the currently optimal action might drive
SCRs at choice. Specifically, the model affords classification of

choices to the observed superior option (exploitation) as optimal
versus suboptimal because, for example, there are situations
where the model prescribes that the observed inferior option
has become superior and exploratory action is actually optimal.
Likewise, choices of the observed inferior option (exploration)
are classified by the Ideal Actor as optimal versus suboptimal on
the basis of how recently the observed inferior option has been
explored. Accordingly, we reexamined the choice SCRs in
Fig. 3a, classifying them as “explore optimal” or “exploit opti-
mal” as defined by themodel’s optimal prescription at the time of
choice. A reflective arousal signature critically entails that SCRs
differentiate according to the agreement between the chosen
action and the reflectively calculated benefit of that action—that
is, an interaction, in contrast to the main effect of chosen action,
as predicted by a reflexive account. Figure 3b reveals that, upon

Fig. 3 Anticipatory skin conductance responses (SCRs) in Experiment 1. a
Log-transformed phasic SCRs accompanying exploitative versus exploratory
choices. b Exploratory and exploitative choices decomposed according to the
Ideal Actor’s optimal prescription at time of choice. The outer two bars depict
SCRs accompanying choices where decision-makers acted against the pre-
scription of the model. Conversely, the inner two bars depict SCRs in choices
in which decision-makers acted in accordance with the model. Here, partic-
ipants appear to differentiate physiologically between optimal and suboptimal
choices as calculated by a reflective model of choice. cBehavioral agreement

with the reflective Ideal Actor (quantified using model log-likelihood) pre-
dicts the Reflective SCR Sensitivity Index (the extent to which an individual
physiologically differentiated between suboptimal and optimal actions). d
Behavioral agreement with the reflexive, Naïve RL model reinforcement
learning (RL) model predicts the Reflexive SCR Sensitivity Index (the extent
to which an individual physiologically differentiated between exploratory and
exploitative choices). All SCRs are reported as z-scores computed from the
log-transformed integrated phasic SCR. Error bars represent standard error of
the mean. *p < .05, **p < .01
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closer inspection, anticipatory SCRs indicate greater arousal
accompanying suboptimal choices (outer bars) and comparative-
ly less arousal on optimal choices (inner bars). The interaction
was statistically reliable, F(1, 38) = 7.02, p < .01.

We also directly compared the explanatory power of the
ideal-actor-based factorial analysis (leveraging both chosen
action and model prescriptions; Fig. 3b) with that of the more
coarse analysis (examining only actions; Fig. 3a). Indeed,
from a baseline linear model predicting SCR as a function of
the action type (exploratory or exploitative), adding the Ideal
Actor’s prescription and its interaction with the chosen action
resulted in a significant improvement in the amount of vari-
ance explained, χ(9) = 18.81, p < .05. This more formal
assessment suggests, compellingly, that anticipatory arousal
signals some form of reflective assessment of the chosen
action’s benefit.

Notably, these findings hold at the level of the individual:
Decision-makers who manifested more reflective SCRs be-
haved more consistently with the Ideal Actor. For each par-
ticipant, we calculated a Reflective SCR Sensitivity Index,
which quantifies the extent to which their SCRs differentiated
between suboptimal versus optimal choices:

SCR Exploit ExploreOptimaljð Þ−SCR Explore ExploitOptimaljð Þ½ �−
SCR Exploit ExploitOptimaljð Þ−SCR Explore ExploreOptimaljð Þ½ � :

The Reflective SCR Sensitivity Index is akin to interaction
size in Fig. 3b. We found that the more pronounced a partic-
ipant’s physiological responses to suboptimal choice was, the
more reflective his or her choice behavior appeared (Fig. 3c),
r(41) = .46, p < .01. Intuitively, because reflective exploration
is the optimal strategy in this task, we found that
reflective choice behavior (quantified by Ideal Actor
log-likelihood) significantly predicted total obtained
payoff, r(41) = .54, p < .01.

We also examined the converse: Did participants who
behaved more reflexively (i.e., made choices more consistent
with the Naïve RLmodel) exhibit more reflexive SCRs—akin
to the coarse effect in Fig. 3a? We calculated a Reflexive SCR
Sensitivity Index as SCR(Explore) − SCR(Exploit). Indeed,
participants who exhibited more reflexive behavior displayed
more reflexive SCRs (Fig. 3d), r(41) = .33, p < .05. Critically,
reflective and reflexive behavioral indices did not correlate
with each other, r(41) = .12 , p = .46, and moreover, a
permutation test supported the pairing of the two models with
their respective SCR indices, p < .025. In other words, phys-
iological differentiation dovetails with the choice strategy
employed, suggesting against the possibility that choice-
related arousal merely reflects a general form of task engage-
ment. Full correlations between behavioral and physiological
metrics are reported in Table 2.

Physiological arousal, a marker of the involvement of
emotion in decision making, is well documented to

accompany choices made under uncertainty, but past work
has been unable to characterize the intelligent nature of these
signals: Namely, does arousal stem from a “cognitive” assess-
ment of value that utilizes the full environment structure, or
does it merely signal a coarse, reflexive assessment of the
possible consequences of choices? In this experiment, we
found compelling evidence for a reflective source of anticipa-
tory arousal accompanying choice as participants negotiate an
exploration–exploitation task, mirroring the observed behav-
ior. Our subsequent experiments bolster this account, by dem-
onstrating how changing the task environment (a factor exter-
nal to the decision-maker) affects arousal and choice behavior
in a manner predicted by our reflective model (Experiment 2)
and howmanipulating available processing resources (a factor
internal to the decision-maker) attenuates the reflective signa-
ture observed in the behavior here (Experiment 3).

Experiment 2

Having found suggestive evidence in Experiment 1 that
decision-makers’ anticipatory arousal patterns manifest a re-
flective assessment of the chosen action’s value, we sought
confirmation of two corollary predictions made by the Ideal
Actor. Bymanipulating the task volatility, we demonstrate that
participants’ choices and arousal patterns change in a manner
predicted by the reflective account. First, more volatile envi-
ronments necessitate higher rates of exploratory choice
(Humphries, Khamassi, & Gurney, 2012), because the Ideal
Actor’s beliefs about which action is optimal change more
rapidly. Second, as environment volatility increases, the
model’s certainty about the currently higher-payoff action
decreases, and in turn, the value differential between the
exploratory and exploitative actions decreases.

Accordingly, we manipulated the environment volatility in
a counterbalanced within-subjects fashion, such that P(jump)
varied between .025 (low volatility) and .125 (high volatility),
and obtained model predictions of exploratory choice rates for
the two volatility rates (Fig. 4a; see the Appendix for model
simulation details). We predicted, intuitively, that participants
should explore more during high-volatility blocks. We rea-
soned further that the value indifference brought about by
increased volatility (expressed as average Q-values differen-
tial; Fig. 4b) should attenuate the physiological differentiation

Table 2 Correlations between skin conductance response (SCR) sensi-
tivity indices and choice model goodness of fit

Ideal Actor
Log-Likelihood

Naïve RL
Log-likelihood

Reflective SCR sensitivity r = .46, p = .003 r = .04, p = .79

Reflexive SCR sensitivity r = −.13, p = .44 r = .33, p = .04
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between exploratory and exploitative choices in our participants
(Fig. 3a). In other words, the arousal accompanying exploration
(as compared with exploitation) should decrease in volatile
environments, as compared with stable environments. Critical-
ly, the Naïve RL model, since its action-value estimates do not
depend on environment volatility, makes no such prediction.

Method

Thirty-two undergraduates at the University of Texas made
choices in the same 200-trial choice task as in Experiment 1,
with one exception: The volatility rate began at .025 (low) for
one 100-trial block and changed to .125 (high) for the other
100-trial block. Critically, the order of low- and high-volatility
blocks was counterbalanced across participants. Participants
were provided with the same instructions as in Experiment 1.

SCR was measured and analyzed in the same manner as in
Experiment 1. To avoid the influence of task novelty on SCRs
and to allow for participants to adapt their behavior to the
change in volatility, the first 10 trials of each block were
excluded from analysis. The SCR deconvolution procedure
(Benedek & Kaernbach, 2010) yielded average optimized fast
(τ1) and slow (τ2) time constants of 0.79 and 2.68, respectively.

Results and discussion

Behavioral results

Figure 4c reveals that participants made more frequent explor-
atory choices in high-volatility blocks than in low-volatility
blocks, F(1, 30) = 6.64, p < .05, in accordance with the
qualitative predictions of the Ideal Actor model (Fig. 4a).

db

Subjects

c
Ideal Actor

*

*

**

a

Fig. 4 Model predictions and behavioral and psychophysiological re-
sults in Experiment 2. Simulations reveal that the Ideal Actor prescribes a
a greater rate of exploration in high- versus low-volatility environments
and b greater indifference with respect to action-values expressed in terms
of average Q-value differences over all trials and choice types. c Partic-
ipants exhibit the same ordinal relationship between rate of exploratory

choice and environment volatility. d The model’s prediction of increased
indifference in high-volatility environments is manifested in participants’
skin conductance response differentiation between exploratory versus
exploitative actions in low- versus high-volatility environments. Error
bars represent standard errors of the means. *p < .05, **p < .01
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Moreover, the increasing hazard rate of exploration—charac-
teristic of reflective choice (Fig. 2a)—was evident across both
low [effect of streak length: F(4, 27) = 5.68, p < .01] and high,
[F(4, 27) = 9.28,p < .001] volatility levels, mirroring the
behavior seen in Experiment 1.

Psychophysiological results

Following Experiment 1, we examined anticipatory phasic
SCRs for both exploratory and exploitative trials across high-
and low-volatility blocks. These results, shown in Fig. 4d,
suggest that environment volatility attenuated decision-
makers’ physiological response to exploratory choice. An
ANOVA conducted on SCRs revealed a significant interaction
between volatility (high/low) and trial type (explore/exploit),
F(1, 31) = 8.64, p < .01. During low-volatility periods, SCRs
significantly differentiate between exploratory and exploitative
choices, F(1, 31) = 4.84, p < .05, but in high-volatility pe-
riods—where the Ideal Actor’s value differential between the
exploratory and exploitative actions is markedly smaller— this
differentiation was absent, F(1, 31) = 0.82, p = .36.

Although the order of blocks was counterbalanced across
participants, we also examined whether order effects (whether a
participant experienced a high-volatility or a low-volatility
block first) could play a role in the observed volatility effect.
Adding block order as a factor to the above ANOVA, we found
no significant three-way interaction, F(1, 31) = 0.77, p = .38,
suggesting against the possibility that the attenuated physiolog-
ical response in high-volatility blocks was the result of an order
effect. Furthermore, tonic SCR—the slow-varying component
of SCR—did not differ significantly across volatility blocks,
t(41) = 0.21, p = .83, ruling out the possibility that heightened
environment volatility increased the tonic SCR signal and
reduced our capability to detect phasic SCR peaks.

Taken together, these results confirm that both choice-related
autonomic arousal and exploratory choice, in accordance with
the predictions of the reflective account of choice, are sensitive
to environment volatility. Following our model predictions
(Fig. 4a, b), participants increased their exploration rates during
more volatile periods. Furthermore, decision-makers show less
physiological differentiation between exploratory and exploit-
ative choices during more volatile periods, as compared with
less volatile periods, providing suggestive evidence, beyond
that of Experiment 1, that the arousal accompanying choice is
the result of a reflective computation of action-value.

Experiment 3

In a third experiment, we examine reflective choice more
deeply, demonstrating through its cognitive costs that the
patterns of choice and SCRs observed here manifest a reflec-
tive and sophisticated computation of value. Both here and in

past work (Blanco et al., 2013; Knox et al., 2012), we have
shown that under normal circumstances, people exhibit sig-
natures of both reflective and reflexive strategies in their
negotiation of the exploration–exploitation trade-off. Here,
we reveal how, with concurrent cognitive demands (via work-
ing memory [WM] load), decision-makers revert to more
reflexive behavior, highlighting the computational sophistica-
tion of the processes presumed to underpin behavior and
anticipatory SCRs in Experiment 1.

In our framework, the reflective and reflexive modes of
choice are differentiated, in part, by their computational ex-
pense: Reflective choice requires maintaining a belief about
the environment’s state and prospectively planning, while
reflexive choice involves stochastic, unprincipled exploration.
This is echoed in contemporary two-system theories of RL: A
reflective account would be regarded as “model-based” be-
cause it utilizes a model of the environment structure to
prospectively evaluate the values of actions, while the reflex-
ive account would be considered “model-free” because it is
informed only by directly experience payoffs and eschews the
full environment structure (Daw, Niv, & Dayan, 2005). In-
deed, the two hypothesized choice systems characteristically
impose different computational costs (Daw et al., 2005;
Keramati, Dezfouli, & Piray, 2011).

Here, we sought to disentangle the two sources of explo-
ration with the intuition that reflective exploratory choice
imposes greater requirements on decision-makers’ cognitive
resources than does reflexive exploratory choice. We placed
participants under WM load during the leapfrog task to ex-
amine whether, with concurrent cognitive demands, decision-
makers would revert to a reflexive exploration strategy. In past
work, WM load manipulations have been shown to foster
reliance on implicit classification strategies (Foerde,
Knowlton, & Poldrack, 2006; Zeithamova & Maddox,
2006) and cognitively inexpensive model-free choice strate-
gies during sequential decision making (Gershman,
Markman, & Otto, 2014; Otto, Gershman, Markman, &
Daw, 2013). Such a demonstration here would further affirm
that the choice behavior seen in these experiments arises from
a computationally sophisticated action-selection process like
that of the reflective Ideal Actor.

Method

Sixty-eight undergraduates at the University of Texas were
randomly assigned to two groups: the single-task condition
and the dual-task condition. Both groups completed 300 trials
of the leapfrog choice task using the same volatility rate as in
Experiment 1 [P(jump) = .075]. The dual-task condition
followed the general tone-counting procedure of Foerde
et al. (2006), which we modified to ensure that the concurrent
task persisted over all stages of the decision task (Otto, Taylor,
& Markman, 2011). We used a deadline procedure to ensure
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that, between conditions, a fixed amount of time elapsed on
each trial. On each trial, participants saw the word
“CHOOSE” and had 1.5 s to make a response, after which
the resultant payoff was displayed for 1 s, followed by a
variable length ITI (2–6 s). To ensure that WM load did not
interfere with learning of the volatility rate, participants com-
pleted a passive viewing of a random instantiation of the task
for 500 trials before the choice task.

In the dual-task condition, two types of tones—high pitched
(1000 Hz) and low pitched (500 Hz)—were played during each
trial. The choice period of each trial was divided into 10
intervals of 250 ms, with tones occurring in intervals 3–7
(500–1,750ms after trial onset). The number of tones presented
during each trial varied uniformly between one and four. The
base rate of high tones was determined every 50 trials and was
sampled from a uniform distribution between 0.3 and 0.7.
Participants were instructed to maintain a running count of
the number of high tones, while ignoring the low-pitched tones.
At the end of each 50-trial block, participants reported their
counts and were instructed to restart their count at zero.

Results and discussion

To ensure that dual-task participants did not trade off perfor-
mance on the concurrent task in order to complete the choice
task, we excluded the data of 7 dual-task participants who
exhibited a root mean squared error of 40 or greater on the
concurrent task. Sixty-one participants (31 single task, 30 dual
task) remain in the analyses that follow.

Exploratory choice rates

Critically, we found no significant effect of WM load upon
overall rate of exploratory choice [condition: F(1) = 0.22, p
=.64], ruling out the possibilities that WM load impeded
exploration altogether or rendered participants insensitive to
the options’ payoffs (Fig. 5a). Furthermore, these exploration
rates reached a steady state early on across both groups [25-
trial block × condition: F(1, 11) = 0.74, p = .48], since
pretraining both groups of participants on the environmental
volatility rate presumably stabilized exploration rates early on.
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Fig. 5 a Proportion of exploratory choice across single-task (solid line)
and dual-task (dashed line) participants, as a function of 25-trial block. b
Hazard rate of exploratory choice averaged across single-task and dual-
task participants. c Average relative goodness of fit between the Ideal
Actor and the Naïve reinforcement learning (RL) model (calculated as a

difference in BIC scores) between single-task and dual-task participants.
Positive values indicate that a decision-maker’s choices were better
described by the Ideal Actor, and negative values indicate that a deci-
sion-maker’s choices were better described by the Naïve RLmodel. Error
bars represent standard errors of the means
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Hazard rates of exploration

Qualitatively, we predicted that the hazard rates (calculated the
same way as in the previous experiments) of dual-task partici-
pants would be less sloped than those of single-task participants,
since their reliance on a strategy resembling the Naïve RLmodel
should yield a flatter hazard rate. Figure 5b reveals that these
predictions were borne out in the hazard rates of exploration
between conditions, since dual-task participants exhibited mark-
edly less sloped hazard rates. Critically a two-way ANOVA
revealed a significant interaction between group (single task vs.
dual task) and exploitative choice streak length n, F(1, 4) = 5.49,
p < .05, indicating that the slopes of the hazard rates were
different across single-task and dual-task groups. Additionally,
there was a significant main effect of streak length n,
F(4) = 32.31, p < .0001. Corroborating the previous
overall exploration rate analysis, there was no significant main
effect of condition (single task vs. dual task), F = 0.19, p = .66.

Individual models

To quantitatively illustrate single-task and dual-task groups’
differential reliance upon exploration strategies, we performed
a model comparison, examining the relative goodness of fit of
the Ideal Actor model and the Naïve RL model across the two
conditions. We fit both models to participants’ choices, using
the procedure detailed in Experiment 1, and calculated a rela-
tive BIC score, BICNaive − BICActor, which quantifies how
much better a participant’s behavior is described by the Ideal
Actor model than by the Naïve RL model. Intuitively, positive
scores indicate a better fit by the Ideal Actor model, while
negative scores indicate a better fit by the Naïve RL model.
Figure 5c depicts relative BIC scores of single-task and dual-
task participants, revealing that single-task participants were
significantly better characterized by the Ideal Actor model than
by the Naïve RL model, whereas dual-task participants were
significantly better characterized by the Naïve RL model
(paired samples t = 2.79, p < .01). Model goodness-of-fit scores
and parameter estimates, by condition, are reported in Table 3.

Using this metric, we also examined the possibility that
dual-task participants could be trading off performance in the
concurrent task in order to make choices in the leapfrog task.
If this were true, we might find that larger relative BIC scores

(indicating better description of behavior by the Ideal Actor)
accompany more erroneous tone-counting performance. We
found no significant relationship between the two quanti-
ties, r = .22, p = .48, suggesting against the possibility of
an internal trade-off occurring.

Hybrid model

We also considered a hybrid model that assumes that choices at
each trial are the result of a weighted combination of the Naïve
RL and the Ideal Actor models. This approach follows past
computational accounts indicating that individuals exhibit a
mixture of model-based and model-free contributions (Daw,
Gershman, Seymour, Dayan, & Dolan, 2011; Gläscher, Daw,
Dayan, & O’Doherty, 2010; Otto, Raio, Chiang, Phelps, &
Daw, 2013). We hypothesized that, in the present experiment,
the weighting of the Ideal Actor’s contribution to choice should
decrease in the dual-task condition, in favor of an increased
weighting of the Naïve RL model. Accordingly, we fit a
constrained hybrid model whose weighting parameter quan-
tifies the contribution of the reflective Ideal Actor relative to the
reflexive Naïve RLmodel (see the Appendix for model details).
We found that the best-fitting weighting parameter was larger
for the single-task participants (M = 0.62, SD = 0.12) than for
the dual-task participants (M = 0.49, SD =0.21) and that this
difference was significant, t = 2.80, p < .01, indicating that
concurrent cognitive demand decreased participants’ behavior-
al expression of reflective choice strategies.

Both of these modeling approaches corroborate our empiri-
cally assessed hazard rates of exploration, elucidating how con-
current cognitive demands attenuated the influence of a reflective
and belief-based exploratory choice strategy and fostered in-
creased reliance on a Naïve, stochastic strategy. Moreover, re-
vealing the cognitively demanding nature of reflective choice
provides an indirect hint about the computational sophistication
underlying SCRs observed in Experiment 1.

General discussion

Using a novel task and modeling approach, we demonstrated
that the arousal signals accompanying choice, widely
interpreted as evidence for interplay between emotion and

Table 3 Summary of model fits across single-task and dual-task conditions in Experiment 3 [P(jump) = .075]

Condition Model % Best Fit Total BIC P(Jump) (SD) γ (SD)

Single task Naïve RL 10 8,815.46 .03 (.03) 0.14 (0.02)

Ideal Actor 90 7,747.28 – 0.5 (0.18)

Dual task Naïve RL 58 8,487.27 – 0.14 (0.06)

Ideal Actor 42 8,256.24 .02 (.02) 0.38 (0.18)
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decision making (Critchley, 2005), bear a reflective and
planning-oriented signature. The apparent sophistication of
these signals, particularly pronounced in participants whose
choices were most reflective, challenges accounts purporting
that there is a sharp divergence between emotional responses
and cognitive evaluations of action outcomes (Loewenstein
et al., 2001; Rolls, 1999). That the level of cognitive sophis-
tication manifested in behavior predicts the character of phys-
iological differentiation underscores the close relationship
between reflective choice behavior and these concomitant
sophisticated physiological signals. Furthermore, we demon-
strated that this sort of reflective behavior is computationally
expensive, suggesting that—with the assumption that similar
processes drive behavior and anticipatory arousal—SCRs can
also originate, at least in part, from a cognitively sophisticated
evaluation of an action’s benefit.

The pronounced arousal accompanying suboptimal
choices (Fig. 3b) raises an interesting question: Why do peo-
ple make actions that they appear to “know,” at some level
(insofar as registering autonomic responses), are disadvanta-
geous? The observed hazard rates of exploratory choice
(Fig. 2b) may provide a hint: Individuals exhibit a mixture
of reflexive and reflective exploration strategies, suggesting
that they occasionally make reflexively-guided (i.e., purely
stochastic) exploratory actions that violate the prescriptions
made by a reflective choice strategy. Accordingly, the SCRs
seen here may index a form of discord between the chosen
action—however it came about—and a reflective assessment
of the action’s advantageousness. Indeed, the observation that
these putative “errors” register physiologically mirrors the
SCRs observed to accompany response errors in more basic
control tasks (Critchley, Tang, Glaser, Butterworth, & Dolan,
2005; Hajcak, McDonald, & Simons, 2003).

We note that in Experiment 1, it is conceivable that SCRs
could reflect uncertainty at the time of choice, such that larger
SCRs are simply associated with greater uncertainty2

(Critchley, Mathias, & Dolan, 2001). However, a regression
examining trial-by-trial SCRs as a function of belief state
uncertainty (i.e., Shannon entropy) revealed no significant or
positive effect of uncertainty. The factorial analysis depicted
in Fig. 3b may yield insight about why uncertainty does not
play a critical role in SCRs here. Because uncertainty-driven
exploration distinguishes the Ideal Actor, we can deduce that
the model is most uncertain in situations where it prescribes
exploration (“Exploit–Explore Optimal” and “Explore–Ex-
plore Optimal” in Fig. 3b). However, SCRs are lower on those
trials. Furthermore, the far right cell (“Explore–Exploit Opti-
mal”) corresponds to choices where uncertainty would be low
(i.e., the model is most certain that the highest-observed
option is still the highest observed), but SCRs are elevated
in this situation. The impression obtained, then, is that

uncertainty alone appears unable to explain the pattern of
SCRs; the key element driving SCR here is the chosen action
itself and one’s belief about the currently optimal action.

In Experiment 2, we found that heightened environment
volatility both evoked higher rates of exploration and modu-
lated the physiological response to exploratory choice. This
finding raises a question about the source of the behavioral
and autonomic regulation. Although both changes are
straightforward predictions of the Ideal Actor model—that
is, more rapidly evolving beliefs yield increased action-value
indifference—an emotion regulation process (Martin &
Delgado, 2011) could explain the effect of volatility on choice
and arousal patterns accompanying these choices. Previous
work (Sokol-Hessner et al., 2009) suggested that explicitly
coaching decision-makers to intentionally reinterpret their ac-
tions decreased loss aversion in risky choice and decreased
arousal in response to losses. Here, a marked increase in
volatility (which warrants more frequent exploration) could
have brought about a regulation strategy, decreasing decision-
makers’ aversion to the potential regret associated with explor-
atory choice in that it entails the risk of obtaining an inferior
payoff. Such a form of cognitive regulation, then, could con-
ceivably underpin the observed choice strategy change and
modulation of physiological responses observed here.

It is worth noting that modern theoretical treatments of
emotion posit two orthogonal dimensions to emotional expe-
rience: arousal and valence (Lang, Greenwald, Bradley, &
Hamm, 1993). However, SCR and, more broadly, any index
of sympathetic nervous system activity captures only the
arousal component of emotional response. Thus, the present
work does not address the valence dimension—the pleasant/
unpleasant dimension of affective experience— associated
with choice-related emotional responding.While it is conceiv-
able that the arousal signals accompanying suboptimal
choices here indicate negative emotions (e.g., anxiety sur-
rounding undesirable outcomes), it is also possible that posi-
tive emotions may also be involved in decision making under
uncertainty (Schonberg, Fox, & Poldrack, 2011), since past
work suggests that some individuals actively seek out stimu-
lation associated with risky actions (Figner et al., 2009).

The nuanced source of observed SCRs is (at least concep-
tually) predicted by lesion and functional imaging work. No-
tably, vmPFC lesion patients fail to register anticipatory SCRs
when making disadvantageous choices (Bechara et al., 1999;
Bechara et al., 1996), and at the same time, their actions
appear largely insensitive to negative consequences of these
actions (Fellows & Farah, 2005). Not surprisingly, functional
neuroimaging work implicates these same prefrontal struc-
tures in the generation of SCRs (Critchley, Elliott, Mathias,
& Dolan, 2000; Mitchell, 2011; Nagai, Critchley,
Featherstone, Trimble, & Dolan, 2004) and, moreover, high-
lights a role for the vmPFC in flexible and intricate calcula-
tions of action-value (Fellows, 2007; Hampton, Bossaerts, &2 We thank two anonymous reviewers for pointing out this possibility.
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O’Doherty, 2006; Hare, Camerer, & Rangel, 2009; Nicolle
et al., 2012; Rushworth, Noonan, Boorman, Walton, &
Behrens, 2011). Taken together, this work supports our con-
tention that anticipatory SCRs could indeed arise from an
insightful, reflective valuation process.

Here, we have demonstrated how physiological arousal
accompanying choice—a marker of the involvement of emo-
tion in decision making—exhibits sophisticated and reflective
contributions, enriching previous characterizations of these sig-
nals. Along these lines, pupil diameter changes (a putative
index of locus coeruleus–noradrenergic activity) have been
shown to reflect assessments of environment state (Nassar
et al., 2012), uncertainty (Preuschoff, Hart, & Einhäuser,
2011), and cognitive control state (Gilzenrat, Nieuwenhuis,
Jepma,&Cohen, 2010). Correspondingly, recent imagingwork
examining decision making emphasizes model-based (i.e.,
planning-oriented) contributions to value signals in the brain
(Daw et al., 2011; Wunderlich, Dayan, & Dolan, 2012). The
pattern of arousal signals observed here evinces a similar form
of value computation, suggesting that the emotions accompa-
nying choices, much like the observed behavior, exhibit hall-
marks of a forward-planning and reflective process.

Althoughwe have provided a preliminary demonstration of
how computational modeling can elucidate the level of cog-
nitive sophistication present in autonomic arousal, future work
is needed in order to understand more precisely, beyond the
reflective/reflexive distinction, the information sources that
play into these computations and, moreover, the nature of
the computations themselves. Experiment 1, in particular,
reveals that individuals who choose in a more reflective man-
ner (which presumably requires a rich representation of the
decision environment) manifest a more sophisticated pattern
of arousal than do individuals who choose more reflexively
(which presumably requires only a crude understanding of the
task environment and a simpler choice strategy). That is,
arousal responses accompanying choices appear to mimic, in
part, the cognitive process guiding choice. Still, these physi-
ological and behavioral signatures could be the result of
qualitatively different understandings of the task structure—
that is, a decision-maker who appears reflective because he or
she conceptualizes the task as less structured than it actually
is—rather than as reflecting differential engagement of a more
“intelligent” system. Such a level of characterization may
afford critical insight into the causal nature of the interaction
between behavior and arousal in decision making under un-
certainty, a question historically beset with methodological
and theoretical issues (Dunn et al., 2006).
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Appendix

The appendix describes the two models used and the model-
fitting and comparison procedures we employed.

Naïve reinforcement learning model

The Naïve RL model is a single-parameter reflexive
model that assumes that action-values are updated reac-
tively to directly experienced rewards. The model re-
flexively maintains beliefs about payoffs based only on
what it has seen. In other words, it believes that the
point payoffs for each action are those most recently
observed. Accordingly, the Naïve RL model assumes
that Action H (that with highest observed payoff; the
“exploit” action) and ¬H (the alternative action with
inferior observed payoffs; the “explore” action) give
rewards of 1 and 0, respectively, corresponding to the
higher and lower payoffs, respectively. Its expectation of
each action’s reward, Q(H), is input into a softmax
action selector (Sutton & Barto, 1998), giving it a
constant probability of exploring or exploiting:

P Hð Þ ¼ exp γ⋅Q Hð Þð Þ= exp γ⋅Q Hð Þð Þ þ exp γ⋅Q :Hð Þð Þ½ �;

where γ is an inverse temperature parameter. As γ
increases, the probability that H (the highest-observed
action) will be chosen increases. This model is algorith-
mically equivalent to the softmax models used by Otto,
Markman, Gureckis, and Love (2010) and Worthy,
Maddox, and Markman (2007).

Ideal Actor model

The Ideal Actor is a two-parameter reflective model that
maintains an optimal belief about the probability that
each action has higher immediate payoffs. These beliefs
are then used to compute optimal Q-values. A full
specification of this belief update and Q-value compu-
tation is provided below. The Ideal Actor prescribes the
exploitative action when the Q-value for the exploitative
action is greater than zero and, conversely, prescribes
the exploratory action when the Q-value for the exploit-
ative action is less than zero. This model has two free
parameters: P(jump), the environment volatility it uses
to perform belief updates, and γ, the inverse tempera-
ture parameter used in the softmax rule.

In the main text, we described that the current highest-
payoff option switches over time as the payoffs “jump” and
that these jumps are not necessarily observed. The Ideal Actor
model maintains a probabilistic distribution over possible
underlying payoff states, represented as a belief B, which is
the probability that the exploitative action—that is, the action
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with the currently highest observed payoffs—yields the larger
immediate payoff.

In this formulation, the underlying payoff states can also be
thought of as the number of unobserved (i.e., true) jumps at a
given time point. Accordingly, if there are zero or two unob-
served jumps at the time of choice, the exploitative action
yields the higher immediate payoff. Conversely, if there is one
unobserved jump at the time of choice, then the exploratory
option (i.e., not the option with the highest observed payoff)
yields the higher immediate payoff. In the model, beliefs are
optimally updated after each choice and observation of resul-
tant payoff. The update to calculate the belief Bt+1—the prob-

ability distribution over the number of unobserved jumps
(zero, one, or two) before taking the action at trial t+1—
depends on the previous belief state Bt, the action taken at
trial t (exploratory or exploitative), the observed number
of payoff jumps o seen as a result of that action at t
(which can take on the values of zero and one jumps in
the case of exploratory choices and zero and two jumps
in the case of exploitative choices), and the assumed
volatility rate of the environment [P(jump), a free
parameter].

The state transition matrix on exploitative choices is de-
fined by

Unobserved jumps at time t+1
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0

Bt × 1−P( jump)

if   o=1 or o=2

0 otherwise

Bt ×P jump

if   o=0

0 otherwise 0 

1  

0 

1−Bt × 1−P( jump)

if   o=0

0 otherwise

1− Bt ×P( jump)

if   o=2

0 otherwise

The state transition matrix on exploratory choices is
defined by

Unobserved jumps at time t+1
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Bt × 1−P( jump)
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0 otherwise 0
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1−Bt × 1−P( jump)

if o=1

0 otherwise

1−Bt ×P( jump)

if o=1

0 otherwise
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These individual state transition probabilities are then com-
bined and normalized to form a posterior belief:

Btþ1 ¼
P s0;tþ1; s0;t
� �þ P s2;tþ1; s1;t

� �

P s0;tþ1; s0;t
� �þ P s2;tþ1; s1;t

� �þ P s1;tþ1; s1;t
� �þ P s1;tþ1; s0;t

� �:

Note that, above, the state si,t+1 refers to the number of
unobserved jumps after the choice and payoff observation
were made, while si,t+1 refers to the number of unobserved
jumps before the choice.

If the choice was exploratory and a jump is observed, it is
intuitive that the subsequent identities of the exploratory and
exploitative actions should swap. The change of reference
point necessitated by this situation is accomplished by
inverting the belief:

Btþ1 ¼ 1−Btþ1ð Þ if at ¼ exploreando ¼ 1
Btþ1 otherwise

�
:

Using these optimally maintained beliefs, the Ideal Actor
employs another step that optimally converts beliefs into ac-
tion-values (“Q-values”). To do this, we make use of methods
for solving partially observable Markov decision processes
(POMDPs: Kaebling, Littman, & Cassandra, 1998), whereby
each option’s action-value expresses the statistical expectation
of the sum of future reward given that the option is chosen and
subsequent actions are chosen optimally. Importantly, in this
leapfrog task, an action’s relative value—that is, the difference
in its value and the other actions’—is dependent only on the
probability of the action yielding an immediate payoff and the
informational value of the action’s observation, which affects
the actor’s ability to accurately assess the value of future ac-
tions. To calculate these optimal action-values, we employed
Cassandra, Littman, and Zhang's (1997) incremental pruning
algorithm, an exact inference method that calculates Q-values
for each possible belief state at each time horizon (i.e., number
of choices remaining). These routines are implemented in Cas-
sandra et al.’s (1997) POMDP-Solve library.

The true Ideal Actor deterministically (i.e., greedily)
chooses argmaxa Qt(a, t). However, for the purpose of fitting
this model to participants’ choices, we utilized a softmax
choice rule (identical to that used by the Naïve RL model) to
generate response probabilities from these Q-values:

P ai; tð Þ ¼ exp γ⋅Q ai; tð Þ½ �
X2

j¼1
exp γ⋅Q aj; t

� �� �

where γ is an inverse temperature parameter governing the
choice rule’s sensitivity to value differences. As in the Naïve
RL model, as γ approaches infinity, the Ideal Actor becomes
deterministic (greedy) in its choices; as γ approaches zero, the

Ideal Actor moves toward choosing actions with uniform
randomness.

Hybrid model

The hybrid model in Experiment 3 assumes that the final
response probabilities are governed by a weighted combina-
tion of the response probabilities of two models: (1) a deter-
ministic (i.e., γ = ∞) version of the Ideal Actor with P(jump)
set to the optimal, ground-truth volatility rate of .075 and (2) a
Naïve RL model with the inverse temperature parameter γ set
to the optimal value of 0.143, as determined by simulations of
a pure Naïve RL model. Maximally constraining the parame-
ters of the constituent models in a theory-neutral manner
reduces undesirable trade-offs in parameter values estimation,
which reduce identifiabilility and interpretability of parame-
ters. In the hybrid model, the weighted mixture is governed by

P Exploreð Þ ¼ w⋅P ActorExploreð Þ þ 1−wð Þ⋅P NaiveRLExploreð Þ;

where w is a mixture parameter indicating the influence of the
Ideal Actor, relative to the Naïve RL model, in determining
final response probabilities.

Model fitting and comparison

Our model-fitting procedure sought parameter values that
maximized the log-likelihood of participants’ choices given
their previous rewards and choices. We conducted an exhaus-
tive grid search to optimize parameter values for each partic-
ipant. To compare goodness of fit across different models, we
utilized the Bayesian information criterion (Schwarz, 1978),
defined as BIC = −2 × LL + k × log(n), where k is the number
of free parameters in the model, LL is the log likelihood of the
model given the participants’ data, and n is the number of
choices fit. Lower BIC values indicate better fit. Summary
statistics for best-fitting parameter values and goodness-of-fit
measures are provided in Table 2.

Model simulation details

To generate the model-predicted hazard rates of exploration in
Experiment 1 (Fig. 2a), each of the two models was yoked to a
participant’s particular instantiation of the leapfrog payoff
structure and, consequently, the environment volatility rate.
To simulate model choice behavior, we used the average of
participants’ best-fitting parameter values for each model and
averaged across each simulated participant to calculate hazard
rates. To derive predicted exploration rates and Q-value dif-
ferentials in Experiment 2 (Fig. 4a, b), we simulated the Ideal
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Actor using P(jump) parameter values of .025 for the low-
volatility condition and .125 for the high-volatility condition.
TheQ-value differentials across 100 such simulations for each
condition were then averaged.
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