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Abstract 
Feature salience is a poorly understood construct in the 
study of category knowledge.  Independent-feature 
representations are limited in potential explanations, 
compared to more complex structured representations.  We 
explore the relationship between features’ connectivity in a 
network of relational knowledge and those features’ 
relative salience, along with their potential for inference.  
Comparing values of individual features, we illustrate a 
unique relationship between features’ salience, inferential 
potency, and structural connectivity.  We argue that these 
results provide evidence for the explanatory power of 
structured representation beyond independent-feature 
representation. 
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Introduction 
Cognitive scientists often invoke salience as an 
explanatory construct.  When responses are biased toward 
some items or features over others, differential salience 
provides a fairly simple account.  While such 
explanations may match intuition, they are not 
theoretically powerful unless one can further explicate 
why this difference exists. 

One area in which salience has a powerful impact is 
categorization.  For example, more salient dimensions 
have greater initial weights or biases in mathematical 
models of category learning (e.g. Kruschke, 1992; 
Nosofsky, Palmeri, & McKinley, 1994).  These weights 
are assigned according to arbitrary intuition or existing 
similarity data.  The determinants of salience are 
generally left to mystery.  We suggest that this 
explanatory limitation is partially the result of 
assumptions about the representational form of categories.  
The majority of published work assumes (explicitly or 
implicitly) that categories are sets of unstructured, 
unrelated features.  These independent-feature 
representations are instantiated in two main ways.  One is 
as a list of verbally described features, such as “has 
feathers”, “has wings”, and “flies” for the category bird.  
Feature lists are generally obtained for natural categories 
by querying semantic knowledge of normal participants 
(e.g. McRae, Cree, Seidenberg, & McNorgan, in press; 
Rosch & Mervis, 1975; Tversky, 1977).  The other type 
of independent-feature representation is a spatial one, in 
which features are numerical values in a vector.  For 

instance, the bird example above would be represented as 
[1,1,1].  This is the preferred format for artificial 
categories and mathematical models, with the features and 
their corresponding values usually being defined by the 
experimenter (e.g. Love, Medin, & Gureckis, 2004; 
Medin & Shaffer, 1978; Nosofsky, 1986; see McRae, de 
Sa, & Seidenberg, 1997 for a model employing spatial 
representations derived from feature lists).  Features and 
dimensions may be differentially weighted in these 
formats, but weights are generally not influenced by the 
relationships among features. 

In the next section, we describe ways that features’ 
salience can differ when those features are represented 
strictly independently.  We then review previous research 
that has employed structured representations in 
categorization.  From these findings, we suggest a 
relationship between features’ salience and connectivity 
in a structure of feature relations, which will motivate the 
current study. 

Independent Features and Salience 
There is a limited number of ways in which one can 

explain salience differences among features, given an 
independent-feature category representation.  Tversky 
first suggested some of these in his seminal work on 
features and similarity (1977).  One determinant of 
salience is our natural predisposition toward intensity, a 
contingent result of the design of our cognitive systems.  
This is most obviously the case for perceptual dimensions 
of stimuli, such as bright lights and loud sounds.  Salience 
may also be influenced by the statistics of the 
environment.  Two statistical properties of features that 
could have a straightforward relationship with salience 
are diagnosticity and frequency.  A common measure of 
diagnosticity in categorization is cue validity, the 
conditional probability of category membership given a 
particular feature, or P(bird|”feathers”).  A common 
measure of frequency is category validity, the conditional 
probability of the presence of a feature given category 
membership, or P(“feathers”|bird).  One can obtain these 
statistics through simple arithmetic on tallies of 
independent features.  Critically, both of these measures 
only involve the relationship between the feature and 
category label.  More complex statistics could incorporate 
information across features and dimensions. 

Features may also differ in salience according to the 



context in which they occur.  Some features of a category 
or item will become more or less salient depending on the 
comparison set of stimuli (Goldstone, Medin, & Gentner, 
1993; Medin, Goldstone, & Markman, 1995; Tversky, 
1977).  Features may also be differentially affected 
depending on the nature of the task.  For example, when 
people must classify similar stimuli into two categories, 
the features that distinguish between the two categories 
become more salient (Goldstone, 1996, Markman & Ross, 
2003).  In modeling terms, they receive greater attentional 
weight (Kruschke, 1992, Nosofsky, 1986). Attention is 
generally not clearly defined, but it is often treated as 
learned salience.  Attention may be allocated across 
multiple dimensions when none are sufficient for 
classification but they are jointly predictive. Although this 
acquired salience involves multiple features, it is not 
dependent on feature relationships per se, but rather the 
relationship between features and category labels. In this 
way, these diagnostic effects are analogous to the simple 
statistics discussed earlier. 

In general, any task context presents uncertainty about 
which action is optimal. Information that reliably predicts 
the best action is most valuable. Salience is a marker of 
this information value. 

 

Structured Category Representation 
Although the assumption of independent feature 

representation has stimulated valuable research, it 
nonetheless seems incomplete.  Murphy and Medin 
(1985) suggest that our natural categories are not merely 
bundles of unrelated features.  Rather, features are bound 
together in a systematic way, according to background 
knowledge.  We have theories of how the world works, 
and these theories provide constraints on which features 
exist and cohere together to form categories.  More 
important for this discussion, theories impose a structure 
onto features.  Our domain knowledge binds relevant 
features through causal relations.  We know not only “has 
wings” and “flies” independently, but also “has wings” 
causes “flies” relationally. 

Murphy and Medin’s (1985) theory account matches 
our common intuitions about the extent of our category 
knowledge.  However, it does little to define precisely 
what a theory is and how it might be instantiated 
structurally.  Without such a description it is unclear how 
relational structure would provide any additional impact 
on feature salience beyond that already accounted for with  

independent-feature representations. 
Sloman, Love, and Ahn (1998) performed a series of 

studies to elucidate the notion of theories and their effects 
on category features.  In particular, they were interested in 
the role of theories in feature centrality—how critical a 
feature is for the coherence of a concept.  One way to 
measure this centrality is to gauge the effect of removing 
a feature on the coherence of the resulting incomplete 
concept.  The relative ease with which one can remove a 
feature while preserving the concept is referred to as 
“mutability”.  Sloman, Love, and Ahn obtained 
participants’ subjective mutability ratings for the features 
of four natural categories, using multiple questions 
employing the feature removal theme.  They also obtained 
several other measures of feature importance, such as 
salience.  Table 1 contains a representative subset of these 
questions.  All 4 mutability ratings were correlated, while 
none were correlated with the other constructs. 

Sloman, Love, and Ahn also acquired representations of 
participants’ theoretical knowledge of the categories in a 
structurally tractable way.  For each category, they 
presented participants with all of that category’s features 
on a sheet of paper.  Participants then drew arrows 
between features, indicating relations between those 
features.  Specifically, they were instructed to draw 
arrows between two features if one “depended on” 
another.  That is “flies””has wings” is equivalent to 
“flies” depends on “has wings”.  Such dependency 
relations subsume causality relations, but allow for other 
knowledge as well.  Participants could also weight links 
between features according to the perceived strength of 
the dependency relation.  Averaging across participants, 
Sloman, Love, and Ahn created matrices of all pairwise 
dependency relations, representing the theoretical 
knowledge of a category. 

 
 

Figure 1: Example dependency graph and matrix
 

Table 1: Feature Rating Types 

Rating type Example 
Salience How prominent in your conception of bicycles is that they have wheels? 
Inferential 
Potency 

If all you know about an object is that it has wheels, what percentage of other features of bicycles 
would you assume the object had? 

Cue validity Of all things that have wheels, what percentage are bicycles? 
Category validity Of all things that are bicycles, what percentage have wheels? 
Mutability How easily can you imagine a real bicycle that does not have wheels? 



Proceeding from this representation, Sloman, Love, and 
Ahn could structurally define centrality.  A relatively 
simple version derives a feature’s centrality from the 
number of features that depend on it and the strength of 
those relations.  Sloman, Love, and Ahn’s formulation 
also includes the centrality of the dependent features, such 
that the centrality of a single feature has an iterative, 
asymmetric quality.  They implemented this definition 
mathematically and illustrated a reliable correlation 
between structural centrality and mutability ratings. 
This structural representation view of categories and 
theoretical knowledge has proved fruitful in a variety of 
ways.  Ahn and her colleagues have shown that greater 
feature centrality in a network of dependency relations 
corresponds with higher typicality ratings, stronger 
category membership, and other classification indices for 
exemplars of artificial categories (Ahn, Kim, Lassaline, & 
Dennis, 2000); differences in the types of “core” features 
for natural kinds and artifacts in various natural categories 
(Ahn, 1998); and memory and diagnostic weight for 
symptoms of clinical disorders by expert clinicians and 
novices (Kim & Ahn, 2002).  Although all of this work is 
suggestive of a strong role of asymmetric dependency 
structure in classification, this point is equivocal in light 
of other evidence. 

Rehder and Hastie (2001, 2004; Rehder, 2003) have 
performed several studies that suggest that dependency 
per se is not the critical structural element for 
classification.  In these experiments, participants are 
given background knowledge of artificial categories, 
some of which have detailed causal relations between 
features.  Importantly, these categories exemplify 
different causal schemata.  In a “chain” network (like that 
used in Ahn et al. 2000), Feature 1 causes Feature 2, 
Feature 2 causes Feature 3, and Feature 3 causes Feature 
4.  In a “common cause” network, Feature 1 causes 
Features 2, 3, and 4.  In a “common effect” network, 
Features 1, 2, and 3, cause Feature 4.  After participants 
sufficiently learn the category features and their causal 
relations, they classify transfer exemplars in which the 
presence/absence of features is systematically varied. 

By analyzing the differences in classification according 
to the presence or absence of a feature (or relation 
between features), one can determine the classification 
weight placed on that feature.  In the chain and common 
cause network, the greatest weight is placed on Feature 1, 
as predicted by the asymmetric dependency model.  
However, in the common effect network, the greatest 
weight is placed on Feature 4, the least central feature in 
terms of dependency. 

Structural Connectivity and Salience 
The pattern found by Rehder and Hastie (2001, 2004; 

Rehder, 2003) suggests that classification for these 
categories is determined less by dependency centrality 
than overall relational connectivity.  On this view, a 
feature’s weight in classification and classification-like 

tasks (e.g. mutability) is influenced by its connectivity in 
a structured representation.  What about the other aspects 
of feature importance outlined by Sloman, Love, and 
Ahn?  In particular, does relational connectivity have an 
impact on feature salience?  There are intuitively 
appealing arguments for such a relationship.  First, a 
feature’s salience can be considered roughly coextensive 
with its level of activation.  Assuming activation spreads 
across features in a manner akin to a semantic network 
(Collins & Loftus, 1975), the most densely connected 
features in the network will be those most activated 
(Steyvers & Tenenbaum, 2005).  However activation 
initially occurs and spreads, elements with more links will 
benefit. 

There is also a more normative argument for the 
relationship between connectivity and salience.  
Presumably, salience highlights particular features 
because they are more relevant or valuable.  A pervasive 
goal of cognitive agents is to obtain more information 
about their environment.  Some features are more 
valuable to the extent that they promote reliable 
inferences about other features.  Again, the loci of 
greatest inferential potency are those features that have 
the most relational links to other features.  As with the 
context effects discussed above, knowledge of these 
features maximally reduces uncertainty, and is therefore 
most valuable to an ideally rational agent.  Though 
dependency may not be deterministic, it does express a 
lawful relation between elements that should aid inference 
bi-directionally.  The boost in salience drawn from 
connectivity-based inference from relations has been 
demonstrated previously in the domain of analogy 
(Clement & Gentner, 1991; Markman, 1997).  A similar 
finding exists in artificial categories for features that are 
empirically correlated with several other features 
(Billman & Knutson, 1996). 

The current study is designed to demonstrate the 
existence of this relationship between features’ structural 
connectivity and both salience and inferential potency.  
To do so, we will obtain values on these and other feature 
measures, such as cue validity.  We will present 
regression data that supports this posited relationship and 
disambiguates the relative importance of structural and 
standard statistical properties.  Evidence for such a 
relationship will suggest that structured representation 
provides constraints and insights beyond the independent-
feature representations traditionally adopted in 
categorization research.  

Method 

Participants 
118 University of Texas at Austin students participated 
for partial fulfillment of a course requirement or monetary 
reimbursement. 



Materials 
We used eight natural categories: acoustic guitar, apple, 
chair, robin, caterpillar, cello, eggplant, and saddle.  In the 
interest of consistency, the first four categories are those 
used by Sloman, Love, and Ahn (1998).  These categories 
have 9, 9, 9, and 14 features, respectively.  These features 
were taken from the feature norms of Rosch, Mervis, 
Gray, Johnson, & Boyes-Braem (1976).  In order to 
inoculate any findings against any category selection bias, 
the latter four categories were taken from the feature 
norms of McRae, Cree, Seidenberg, and McNorgan (in 
press).  These categories have 14. 9, 9, and 9 features, 
respectively.  All eight categories were selected to 
represent a diversity of natural category types, including 
both artifacts and natural kinds. 

Procedure 
Feature Ratings Participants performed a computer task, 
answering questions presented on the monitor with 
keyboard responses.  For each feature, they answered 
each of the rating question types presented in Table 1.  
Questions were presented one at a time.  On each trial, the 
question was displayed over a box that displayed the 
answer.  Participants were instructed to respond to all 
questions with numerical answers ranging from 0 to 100.  
One could alter answers until one hit the enter key, after 
which the trial was over.  Following the practice trials in 
Table 1, all categories and rating types were presented 
randomly.  The task was untimed and self-paced. 
 

Relational Knowledge Assessment The procedure for 
obtaining participants’ theoretical knowledge of feature 
relations was identical to Sloman, Love, and Ahn (1998).  
Participants were given a paper packet and three markers.  
In written instructions, they were informed that they 
would be reporting their knowledge of relationships 
between features.  Each page in the packet contained the 
category label at the top, with all of the category’s 
features—individually inscribed in circles—displayed in 
an oval.  Participants were instructed to draw an arrow 
from one feature to another if the first feature depended 
on the second.  An example of what such a dependency 
graph might look like was presented on the instruction 
page, using the number 12 and its mathematical 
properties.  The three markers were blue, green, and red.  
Participants were instructed to use these markers to 
indicate low, medium, and high strength dependency 
relations, respectively.  The task was untimed and self-
paced. 

Results 
For each feature, we computed its value on a particular 
rating by taking the mean response for that feature across 
participants.  Therefore, there is a single data point for 
each feature, 82 in all. 

To quantify feature connectivity, we first converted 
each participant’s dependency graphs into matrices.  For 
instance, each graph for apple was translated into a 9x9 
matrix, corresponding to all of the possible pairwise 
relations that could obtain between features.  These are 
two-dimensional matrices because the dependency 
relation is asymmetric; participants could and did draw 
arrows for X depends on Y without a complementary 
arrow for Y depends on X.  Each cell in the matrix 
contained a number corresponding to the strength of the 
relationship: 0, 1, 2, or 3 for none, low, medium, and 
high, respectively.  For each category, we created a 
summary matrix by taking the mean of each cell across 
participants.  We then obtained connectivity values for 
each feature by computing the mean relation strength for 
that feature.  For a feature in the apple category, this is 
obtained by taking the mean of the 8 values in the matrix 
column and the 8 values in the row (no participant 
indicated that any feature depended on itself).  So, the 
minimum connectivity value for any feature was 0, 
corresponding to complete relational isolation.  The 
maximum value was 3, corresponding to high-strength, 
symmetric dependency relations with all other category 
features.  The mean connectivity value was 0.27. 

As predicted, there is a highly reliable positive 
correlation between connectivity values—defined as 
mean relation strength—and salience values across all 82 
features (r = 0.47, p < .001).  This positive relationship 
also holds within all eight individual categories (r’s = 
0.58, 0.54, 0.63, 0.54, 0.71, 0.52, 0.63, and 0.78 for 
acoustic guitar, apple, chair, robin, caterpillar, cello, 
eggplant, and saddle, respectively).  In fact, all of the 
correlations for individual categories are stronger than the 
correlation obtained by collapsing across categories.  This 
suggests that the statistically reliable correlation reported 
above is not simply an artifact of combining otherwise 
distinct categories. 

Also as predicted, there is a reliable positive correlation 
between connectivity values and inferential potency 
values (r = 0.27, p = .02).  This positive relationship holds 
for six of the eight categories, (r’s = 0.42, 0.73, 0.77,        
-0.25, 0.81, 0.02, 0.71, and 0.81 for acoustic guitar, apple, 
chair, robin, caterpillar, cello, eggplant, and saddle, 
respectively).  Again, many of the individual category 
correlations are stronger than the overall correlation.  
Scatterplots of these data can be found at 
homepage.psy.utexas.edu/homepage/students/Rein/CogSc
i07data.pdf. 

Although these correlations are reliable, one could 
argue that some construct other than structural 
connectivity is influencing both salience and inferential 
potency.  To address this possibility, we performed 
multiple regression analyses with these values as 
dependent variables.  For each, we used the other four 
feature importance values (mutability, cue and category 
validity, salience/inferential potency) and connectivity as 
predictors.  We also used collocation (the product of cue 



Table 2: Multiple regression of salience 
 

Predictor Beta 
Category validity 0.65** 
Cue validity -0.01 
Collocation 0.08 
Inferential potency 0.04 
Mutability -0.17 
Dependency 0.08 
Connectivity 0.27** 

** denotes p < .01 

Table 3: Multiple regression of inferential potency 
 

Predictor Beta 
Category validity 0.08 
Cue validity 0.31* 
Collocation 0.48* 
Salience 0.05 
Mutability -0.25* 
Dependency -0.20 
Connectivity 0.27* 

* denotes p < .05 
 

and category validity) and mean dependency strength (i.e. 
just the relations in which the feature was depended on) as 
predictors.  The predictors and their standardized 
regression coefficients are presented in Tables 2 and 3. 

Using these seven variables as predictors of salience, 
the overall R is 0.86 (R2 = 0.74).  The best predictor is 
category validity, followed by connectivity.  All other 
predictors are not statistically reliable.  Predicting 
inferential potency, the overall R is 0.81 (R2 = 0.65).  
Collocation, cue validity, connectivity, and mutability are 
all statistically reliable predictors. 

Discussion 
As we predicted, features that are more densely 

connected in a structured relational representation are 
perceived as more salient.   This increased salience may 
be a byproduct of the greater inferential value of features 
that are relationally linked with many other features.  Our 
findings suggest that the existence of these two reliable 
correlations is not merely coincidence.  Of all of the 
measures and transforms discussed, only structural 
connectivity correlates with both salience and inferential 
potency.  Likewise, the only measures that connectivity 
reliably correlates with are those two.  Amidst all of the 
shared variance that comes with so many measures of 
feature importance, this unique relationship is no small 
thing.  Including previous research, connectivity has 
proven to be a reliable predictor of salience, inference, 
and classification.  This convergence of properties is 
reminiscent of the basic level phenomenon in 
categorization. 

Of course, structural connectivity does not provide the 
whole story.  Any complex judgment will be multiply 
determined.  For salience and inferential potency, people 
seem to rely on statistical information along with category 
structure.  Indeed, for each of these, a statistical property 
was the best predictor, though the exact property differed 
according to the judgment in question.  These properties 
provide information complementary to connectivity.  In 
the case of salience, the best predictor was category 
validity, or frequency.  A natural way for frequency to 
increase salience is through better memory retrieval, 
similar to the benefits of relational connectivity 
hypothesized above.  In the case of inferential potency, 
the best predictor was collocation, followed by cue 

validity.  It is not surprising that measures of diagnosticity 
map onto inference; one can infer little from something 
that is true of everything.  In fact, one reason for the 
negative correlation between inferential potency and 
connectivity exhibited in the robin category is that its 
highly connected features are non-diagnostic, such as 
“moves” and “eats”.  The other strong predictors of 
inference—dependency and mutability—represent the 
explicit asymmetry of causality.  This affirms the 
reasonable intuition that people prefer to infer effects 
from causes rather than vice versa.  We can therefore 
uphold the idea that the direction of causality does play an 
important role in feature relations (Ahn et al., 2000, 
Rehder & Kim, 2006). 

Simple statistical information clearly has an important 
role in category knowledge. We have also argued for a 
strong role for more complex relationships between 
features. How is this relational knowledge learned? One 
possibility is that it is gleaned from pairwise correlations 
between independently-represented features (McRae, de 
Sa, & Seidenberg, 1997). However, an analysis of these 
features indicates that many are themselves relational—
elements of larger structures containing other categories 
and features (Jones & Love, 2006). Recent advances in 
Bayesian modeling have developed techniques for 
building and selecting these kinds of structured causal 
models from observable data (Getoor, Friedman, Taskar, 
& Kollar, 2002; Tenenbaum, Griffiths, & Kemp 2006).  
Simple statistical information is valuable for its own sake, 
but statistics can also be used to learn more complex 
relational structures. The study reported here and other 
evidence suggest that both sources of information are used 
in various category judgments (McNorgan, Kotack, 
Meehan, & McRae, in press; Wisniewski, 1995). 

Although others have effectively argued for the 
importance of structural properties in categorization (e.g. 
Murphy & Medin, 1985; Rehder & Hastie, 2001; Sloman, 
Love, & Ahn, 1998), this is the first illustration of such 
factors’ influence on salience and inference.  These 
findings provide an additional explanation of the source 
of salience, and in so doing provide an additional reason 
to consider structured representation as a viable and 
necessary alternative to independent-feature 
representation.  Incorporating structure allows one to 
preserve the powerful statistical information so commonly 
used while also introducing relational information that is 



often neglected but clearly crucial to several aspects of 
categorization. 
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