
Research Statement 
 
The intersection of cognition, computation, and neuroscience has always fascinated me. I've made 
empirical and theoretical contributions to many topics, including analogy, heuristic use, exploratory 
behaviour, neuroeconomics, and reinforcement learning, and have found support for novel forms of 
learning in humans and machines. Many of these contributions were ahead of their time. For example, 
my first publication from my undergraduate honours project was PageRank for the mind three years 
before Google's PageRank (see PageRank wiki). My long-standing research focus is how people learn 
categories from examples.  
 
More recently, my contributions have shifted toward machine learning and artificial intelligence. I 
conduct large-scale analyses of human behaviour in naturalistic settings, derive embedding from 
human judgments that are orders of magnitude larger than existing approaches, extend deep learning 
approaches to be more human-aligned in terms of behaviour and accounting for brain activity, and 
develop tools to accelerate scientific discovery, such as in the BrainGPT.org project. Below I outline my 
journey from psychology to model-based neuroscience to my current efforts. 
 
I end by discussing BrainGPT, which speaks to my vision for Generative AI. I believe scientific discovery 
will be increasingly automated and human-machine teams will be the norm. The plan is to first apply 
these methods to neuroscience, followed by other knowledge-intensive fields and translational impact 
(e.g., drug discovery). 
   
Past work in Category Learning 
 
Concept learning draws on several interesting component processes associated with attention, object 
recognition, memory, goals, and generalisation. I found this topic a useful entry point to addressing 
fundamental questions, such as how people behave flexibly and how the brain realises the mind. 
 
When I entered the field, dominant category learning theories were rigid and insensitive to a learner's 
goals. For example, prototype models always represent all category experiences with a single node in 
memory, whereas exemplar models always store each experience as a separate node. With 
colleagues, I developed a learning model that moves between these extremes depending on the 
learning problem and learner's goals. The model clusters together related experiences in memory until 
a goal failure triggers storage of the surprising experience, which itself can later be abstracted by 
subsequent similar experiences. The model is very successful at capturing a range of learning and 
memory phenomena and is still the best model of human learning more than two decades later.  
 
While simple and understandable, the model's components can be related to processes involved in top-
down attention, knowledge representation, recognition, familiarity, and error correction. Quantifying 
these cognitive processes provides a means to understand their brain basis. Early on, I grounded the 
model mechanisms in the Medial Temporal Lobes (MTL) and medial prefrontal cortex (mPFC), focusing 
on the hippocampus, which was strangely neglected in the cognitive neuroscience of category learning 
literature prior to my work. When the timing was right, I tested these predictions in model-based fMRI, 
which successfully characterised the function of the MTL during category learning. In our first paper, 
across learning trials, we found the MTL's activation profile closely matched the model's 
familiarity/recognition strength signal, whereas the error-correction signal matched MTL activity at 
corrective feedback. This was the initial step down a path that led to understanding how the 
hippocampus and mPFC interact to support goal-direct concept learning. While studying these systems, 
we pioneered and systematised a number of approaches in model-based fMRI, such as extending brain 
decoding approaches for stimuli (e.g., is the participant viewing a house or face) to model states (e.g., 
does brain activity better predict the internal state of model A or model B). In doing so, we highlighted 
the importance of evaluating competing neurocomputational accounts rather than assuming one's 
preferred approach is correct, which is important because a model-based analysis is only as good as 
the model used.   
 
More recently, we established how the hippocampus and medial prefrontal cortex (mPFC) interact to 
support goal-directed learning. We used pattern-similarity analysis to uncover non-spatial 
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multidimensional representations in the anterior hippocampus that are modulated by task goals through 
interactions with mPFC. Task goals were reflected in attention weights learned by a cognitive model fit 
to behaviour, which we later found reflected individual differences in both behaviour and BOLD 
response. These attention weights also indexed the intrinsic dimensionality of visual representations in 
the ventral stream, which we established by applying a dimensionality measurement technique we 
developed. We discovered that the mPFC learns a goal-relevant compression code that accentuates 
relevant information, which helped explain activity in both the anterior hippocampus and the ventral 
stream. We followed up with a theory and simulations in which this same non-spatial learning 
mechanism captured place and grid cell activity, offering a new view on grid response. Our most recent 
deep learning work in computational neuroscience goes further to question the need for intuitive cell 
types and built-in attentional mechanisms to account for brain function. 
 
Foundational Contributions 
 
I haven't shied away from addressing foundational issues in cognitive science, neuroscience, and 
machine learning. For example, we questioned the restrictive approach taken by rational Bayesian 
approaches that were dominant in the 2000s. As we noted, these (then ascendant) approaches 
relegated all of neuroscience and development to tertiary roles in understanding cognition. I believe our 
efforts played a role in reshaping the research agenda and furthering the integration of cognition, 
computation, and neuroscience. Here are three example papers that follow our own recommendations 
on Bayesian modelling. Related, I edited a special issue on model-based cognitive neuroscience that 
broadened participation in this arena. In pursuing integrative theories of cognition, brain, and 
computation, I have tried to help clarify thinking on basic issues such as levels of analysis, reduction, 
emergence, and incoherent notions of biological plausibility, suggesting that the field should instead 
clearly state claims that can be evaluated by model comparison. In this spirit, we have considered which 
approaches, ranging from simple models to complex deep learning models, are most consistent with 
the neural code given the successes of fMRI in uncovering representational spaces despite its limited 
temporal and spatial resolution. In machine learning, we have considered basic issues, such as what 
constitutes a short-cut in the covariate shift problem and how to ameliorate it through a “too-good-to-
be-true prior.” 
 
My lab’s policy is to make both our data and code available without restrictions. When resources permit, 
we make code available in multiple languages with unit testing, proper documentation, etc. to promote 
uptake, as we did in the dimensionality estimation project using GitHub and Travis CI. We make regular 
use of open datasets and support open standards, such as Brain Imaging Data Structure (BIDS). Most 
of our research is supported by open-source tools, and we seek to minimise reliance on proprietary 
solutions. We are proponents of preprints to speed the dissemination of scientific findings. 
 

Looking Forward 

 
My experiences have positioned me to take advantage of recent advances in machine learning, 
computing methods, and hardware, as well as the increased availability of large, open datasets. I see 
opportunities in the Neuro-AI space for encompassing models of brain function that scale. It is now 
possible to address the neural bases of complex behaviours involving naturalistic stimuli (e.g., 
photographs, movies, etc.). Rather than disconnected models of the hippocampus, prefrontal cortex, 
the ventral stream, and multimodal association areas, it will soon be possible to have integrative models 
that address all these regions simultaneously. My vision is that these encompassing approaches can 
be expressed in general terms (i.e., coarse grained) to offer general accounts of brain function, or, 
alternatively when desirable, further decomposed down to the level of a neuron, all the while accounting 
for behaviour.  
 
The ultimate payoff is more robust and encompassing models that can illuminate the function of the 
healthy brain, as well as the compromised brain, whether the insult is from disease, stroke, or trauma. 
The methods we are developing for evaluating models are directly applicable to developing brain 
machine interfaces (BMI) that can address higher-level thought far away from the sensory-motor 
periphery. Data science approaches will be key to transform large real-world datasets of human 
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behaviour into models of memory, learning, knowledge representation, and decision making to advance 
neuroscience through rich model-based analyses. 
 
As discussed, cognitive models can be very useful in simultaneously addressing brain and behaviour 
through model-based analyses. However, cognitive models suffer from some key limitations. While 
cognitive models are useful in identifying neural correlates suggestive of function, there remains a gap 
between the higher-level constructs in these models and neurons. This gap limits the applicability of 
models and leaves key questions, such as how does the brain make a symbol, unanswered. 
 
For example, while Rob Mok and I successfully related representational units in our cognitive model 
with place and concept cells in the hippocampus, an explanatory gap remained. Whereas our cognitive 
model had a small number of representational units (e.g., clusters that capture related experiences), 
the hippocampus has many cells. In current work, we decompose these higher-level cognitive 
constructs into neuron-like computing elements while still capturing the input-output characteristics of 
the abstract model. We introduce the notion of "neural flocking", akin to how birds or artificial life agents 
flock according to local rules absent a central controller. We hypothesise this flocking behaviour is 
implemented by recurrence in the hippocampus, whether it be internal or so called big-loop recurrence. 
The upshot is that the aggregate (i.e., the flocks) of this lower-level model matches the higher-level 
model (i.e., the clusters), which provides a multi-level explanation of processing that spans behaviour 
to neurons. I will pursue this "levels of mechanism" approach in other endeavours in which higher-level 
models, which account for behaviour, can have a component decomposed into its own mechanism 
when it is desirable to make closer contact with fine-grain measures and phenomena. 
 
Making deep learning more human aligned 
 
One limitation of cognitive models is that they are restricted to processing stimuli handcrafted by the 
experimenter and cannot be directly applied to naturalistic stimuli. Modern deep learning models 
address this issue. In addition to being able to process naturalistic stimuli such as videos, deep learning 
models offer additional advantages such as multiple processing stages or layers that can be put in 
correspondence with multiple brain regions to offer more encompassing theories of brain function. One 
future research direction is extending these approaches to be more brain-like. Early efforts along these 
lines have incorporated goal-directed, top-down, attention mechanisms and evaluated their efficacy on 
large, naturalistic datasets. We have also incorporated generative replay into deep learning models to 
better understand its role in knowledge consolidation and address limitations in existing machine 
learning approaches. 
 
One overarching aim is integrate deep learning approaches with cognitive models, such as our own 
formal accounts of how mPFC and the hippocampus support category learning. The payoff of this 
approach is that we can offer accounts of how multiple brain regions interact to support rapid learning 
and generalisation based on only a few training examples. Rather than offer a model of a single narrow 
task or a specific brain region, this comprehensive approach addresses interesting human behaviours 
at scale. We are revisiting our work on attention in deep learning models following this approach. One 
idea we are evaluating is that the information needs of the hippocampus and mPFC direct encoding 
along the ventral visual stream. We will test a general theory of coordination across brain regions, which 
we cheekily call "the costly energy principle" in which there is a controller (e.g., mPFC) and peripherals 
(e.g., ventral stream regions) that aim to reduce their activity while not disrupting processing in the 
controller. The overarching principle is that the brain prefers to preserve computing resources, when 
possible, such that cells not relevant to higher-level computations can disengage. We will evaluate this 
controller-peripheral approach as a general account of brain function and quasi-hierarchical control. 
Our approach will lead to machine learning models that use minimal resources and are capable of 
continual learning. 
 
Properly evaluating deep learning models is a challenge for neuroscience. Currently, the field relies on 
establishing correspondences between model layers and brain regions based on shared variance. 
While these methods superficially differ (e.g., encoding approaches, RSA, CCA, CKA, etc.), they all 
share the implicit assumption that correlation implies correspondence. However, not all variance in brain 
measures is of interest or even task related. We propose a stronger test of correspondence based on 
substitution: If a model layer corresponds to a brain region, then replacing that layer with brain activity 
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should drive the model's activity toward an appropriate output. We applied this approach to object 
recognition using a simple linear mapping or translation from brain to model space and found, contrary 
to the zeitgeist of the field, that all regions along the ventral visual stream best corresponded to late 
model layers after 60ms. This result likely arises from long-range recurrent connections from “late” 
visual regions, such as inferotemporal cortex, to “earlier” regions. Our approach to model evaluation 
has the pleasant side effect of being applicable to brain machine interfaces – we found that only 10ms 
of multi-unit recording data from monkeys is needed to drive the deep learning model. With human 
fMRI, zero-shot decoding was successful for object categories held out from training, indicating the 
generality of brain-model mapping.  
 
BrainGPT: A tool to accelerate neuroscience research (and other knowledge intensive fields) 
 
I was attracted to computational modelling in part because it can effectively compress or summarise a 
vast empirical literature. A good model can explain hundreds of empirical studies consistent with it. 
However, given the exponential growth of the scientific literature, even with models, the literature is 
becoming fragmented, and it is impossible for scientists to keep up. Potentially disruptive findings are 
overlooked due to the rapid expansion of the scientific literature. The challenge of integrating findings 
may exceed human abilities. Already, specialist solutions have been developed to address important 
scientific questions in protein folding, drug discovery, and materials science. Rather than replace 
humans, I foresee a human-machine teaming solution using large language models (LLMs). While my 
initial efforts will focus on neuroscience, I intend for the approach to apply broadly and will promote its 
adoption across knowledge-intensive endeavours. 
 
One drawback of LLMs is that they can confabulate (i.e., “hallucinate”), which makes them problematic 
for information retrieval. These models cannot be trusted to correctly summarize the scientific literature 
(cf. Meta's Galactica). These failures are really features of the generative model – LLMs aren't 
knowledge graphs (e.g., Wikidata) that store facts. Instead, LLMs perform a synthesis by integrating 
large quantities of noisy and imperfect information. Likewise, the scientific literature is noisy, sometimes 
contradictory, and doesn't always replicate. In the BrainGPT project, we cater to LLMs' strengths and 
avoid their weaknesses. Instead of being used for information retrieval, we draw novel inferences from 
a large pool of data where “mixing” of facts is desirable because the goal is to generalize and predict 
unknown outcomes, such as predicting how different neural measures relate and the statistical power 
of candidate study designs. 
 
We have extended LLMs by providing additional training in the neuroscience domain using LoRA. 
BrainGPT (an open weight LLM +LoRA) will serve as a generative model of the scientific literature, 
allowing researchers to propose study designs as prompts for which BrainGPT would generate likely 
data patterns reflecting its current synthesis of the scientific literature. Modelers will use BrainGPT to 
assess their models against the field's general understanding of a domain (e.g., instant meta-analysis). 
BrainGPT could help identify anomalous findings, whether because they point to a breakthrough or 
contain an error. BrainGPT will also illuminate the basic structure of fields by tying changes in 
benchmark performance to the training curriculum. For example, in what situations do behavioural 
studies help constrain predictions about brain activity? Using BrainGPT, we can also better quantify 
citation biases, evaluate which aspects of the literature are most reliable and replicable. 
 
To evaluate BrainGPT and other LLMs, we have developed a novel forward-looking benchmark with 
the help of 75+ neuroscientists from the BrainGPT.org community (2440+ neuroscientists). The 
benchmark, BrainBench, assess the ability to predict neuroscience results from methods. LLMs predict 
neuroscience results from methods better (85% vs. 63%) than neuroscience experts. Accuracy 
improves further when the judgments and confidences of human experts and LLMs are integrated in a 
Bayesian fashion. Our findings should change the course of the field, ushering in a new era of human-
machine teaming in the pursuit of scientific discovery. With recent support from Microsoft Research, we 
have trained LLMs from scratch rather than relying on existing solutions. This approach gives us full 
control of the model and allows us to better understand the bases for its performance. All materials and 
models are open source. One future objective is to develop tools that use BrainGPT to determine which 
experiment should be conducted next. Further into the future, we will train models on raw data in 
addition to text and figures from articles. 
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