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Abstract

Similarity and categorization are fundamental processes in human cog-

nition that help complex organisms make sense of the cacophony of

information in their environment. These processes are critical for tasks

such as recognizing objects, making decisions, and forming memories.

In this review chapter, we provide an overview of the current state of

knowledge on similarity and psychological spaces, discussing the theo-

ries, methods, and empirical findings that have been generated over the

years. Although the concept of similarity has important limitations, it

plays a key role in cognitive modeling. The review surfaces three key

themes. First, similarity and mental representations are merely two

sides of the same coin—existing as a similarity-representation duality

that jointly defines a psychological space. Second, both the brain’s men-

tal representations and the study of mental representations are made

possible by exploiting second-order isomorphism. Third, similarity

analysis has near-universal applicability across all levels of cognition—

providing a common research language.
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1. INTRODUCTION

Matter is for us not what is primarily given. What is primarily given is, rather, the elements,

which, when standing to one another in a certain known relation, are called sensations.

(Mach 1914)

Similarity and categorization are fundamental processes in human cognition that help

complex organisms make sense of the cacophony of information in their environment. The

similarity processes plays a critical role in a variety of tasks, such as recognizing objects,

making decisions, and forming memories. In terms of its individual parts, this review is

primarily concerned with formal models of similarity. As a whole, this review emphasizes

three major themes: the existence of a similarity-representation duality, the investigative

beachhead provided by second-order isomorphism, and the applicability of similarity to

multiple levels of analysis. These models are broken down into parts that focus on the var-

ious data structures used to formalize similarity, how similarity models have been adapted

for naturalistic stimuli, and the role of similarity in dynamic cognitive models. This re-

view touches a wide variety of topics and collects evidence from dense specialties, including

philosophy, embedding algorithms (e.g., multidimensional scaling) and category learning

models. The goal is not to systematically cover these specialties, but to curate a narrative

that emphasizes how the notion of similarity is woven throughout research and contributes

to diverse research programs.

1.1. Similarity-Representation Duality

On the surface, the notion of psychological similarity is a simple and intuitive idea; similarity

evaluates the sameness between two things. For example, two things are more similar the

more features that they have in common. The intuitive nature of similarity is supported

by the fact that individuals can easily complete tasks based on similarity. If you give an

individual a photograph of a basketball, salamander, and a frog and ask them to pick the

least similar image—i.e., perform an odd-one-out judgment—most are likely to select the

basketball.

However, probe a little deeper and a formal definition of similarity can be challenging

to pin down. For example, if individuals are asked to make an odd-one-out judgment for

the words “apple”, “penguin”, and “otter”, many are likely to choose based on a fruit-

animal distinction, but others may choose based on the icons of major operating systems

(MacOS, Linux). While some similarity judgments may have strong consensus, the relative

importance of different stimulus features can vary according to context and task (Murphy

& Medin 1985). Similarity has repeatedly drawn criticism as a useful construct owing

to its extreme flexibility. The philosopher Nelson Goodman succinctly labeled similarity

”invidious, insidious, a pretender, an imposter, a quack” (Goodman 1972, p. 437).

Part of the issue revolves around treating similarity as a unitary and independent con-

cept. The process or function for outputting a similarity value v requires, at a minimum,

two arguments.

v = s( · , · ), 1.

where s is an arbitrary similarity function that operates on arbitrary representations, such

as a dot product that operates on vectors. At least two things must be compared—whether

they be images, sounds, odors, text—in order to produce a similarity value. The role of some
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larger context c, such as an agent’s current goals, can be made explicit using a conditional,

v = s( · , · |c). 2.

Focusing on the functional aspect of similarity, similarity is inextricably linked to the

representations similarity operates on. It rarely makes sense to talk about one and not the

other. The link between the two is so fundamental, that it is more productive to consider (a)

the similarity function and (b) the corresponding representations that serve as operands, as

two sides of the same coin—a similarity-representation duality. When a similarity judgments

are elicited from participants, there are implied mental representations supporting those

judgments. But the converse is also true! Given a set of mental representations, there

is an implied similarity function for comparing the representations. For example, if one

considers representations in early visual cortex, the representations are only meaningful

with respect to one another. The means of computing relativeness is a similarity function.

The similarity-representation duality is closely aligned with the views championed by others.

For example, (Medin et al. 1993, p. 254) propose that “an important source of constraints

derives from the similarity comparison process itself.”

The similarity-representation duality is a key theme throughout this review. To promote

readability, we refer to a data structure equipped with similarity-representation duality as

a psychological space. To place the similarity-representation duality and the other themes

of this chapter on firmer footing, it is helpful to begin with a broader historical context.

We briefly introduce a handful of foundational ideas from philosophical thinkers and early

psychological work. The historical progression culminates in a launchpad for the remainder

of the chapter. As a side-effect, we will see that contemporary notions of similarity are

iterations of older insights.

1.2. The Piers of Similarity

The desire to understand how humans perceive and digest the world has lured thinkers

for centuries. Much of this thinking has coalesced around the idea that studying relative

differences (i.e., similarities) are tractable, but understanding absolute qualities of the world

is problematic. In other words, science may never know if two people perceive the color red

in the same way, but it is possible to compare the relative perception of red to other colors.

An understanding of similarity and mental representations has been advanced under

various guises across a range of disciplines including philosophy, psychology, neuroscience,

and computer science. The broad attraction of this topic is partially due to the fact that

perception acts as an inescapable and quirky lens through which all other knowledge is

filtered. Analogous to the way that the limitations of a telescope should be understood in

order to appropriately process collected light measurements; scientists aim to understand

idiosyncrasies of the human mind in order to better understand reality.

The work of ancient philosophers, such as Plato’s Republic, Aristotle’s Metaphysics,

and the Upanishads were some of the earliest to systematically analyze and dissect the

nature of perception. One pertinent piece comes from the Allegory of the Cave in Plato’s

Republic. Inside the cave, prisoners are chained in such a way that they can only look at a

wall directly in front of them. On the wall, the prisoners observe moving shadows. The fire

creating the light and the objects casting the shadows are unobservable to the prisoners.

Socrates: So we are! Now, tell me if you suppose it’s possible that these captives ever saw
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anything of themselves or one another, other than the shadows flitting across the cavern wall

before them?

Glaukon: Certainly not, for they are restrained, all their lives, with their heads facing forward

only.

...

Socrates: Now, if they could speak, would you say that these captives would imagine that

the names they gave to the things they were able to see applied to real things?

Glaukon: It would have to be so.

(Plato, The Republic)

The shadows are the prisoners’ reality and the prisoners process that reality accordingly,

such as assigning labels and inferring causal relationships. The shadows are a stand-in for

the reality that humans can normally perceive and provides an early example the distin-

guishes between what might be in the world versus what is perceived.

Philosophical debates regarding the distinction between external reality and perceived

reality have continued into modern times. Immanuel Kant argued that the only world we

can know is the world created by the innate structure of our minds and thus reality “as it

is in itself” is unknowable.

What might be said of things in themselves, separated from all relationship to our senses,

remains for us absolutely unknown.

(Guyer & Wood 1998)

For Kant, the only reality we know is a cognitively-rendered virtual reality. The philo-

sophical models of Plato and Kant seem to suggest an impasse for studying other’s mental

representations.

An early researcher to bridge the divide between external reality and the inner psycho-

logical reality was Gustav Fechner. Considered by many to be the founder of psychophysics,

Fechner approached the problem of ascertaining one’s psychological reality by pioneering

the use of relative judgments. For example, given a change in a particular intensity of light

(i.e., lux as measured using a photometer), what is the perceived change according to a hu-

man observer? A systematic exploration using relative judgments of this kind led Fechner

to posit two related laws: Weber’s law (named after his mentor Ernst Heinrich Weber) and

Fechner’s law. Fechner’s law states in order that the intensity of a sensation may increase

in arithmetical progression, the stimulus must increase in geometrical progression (Fechner

1860). In other words, Fechner’s law posits that psychologically perceived sensation p is

proportional to the logarithm of the stimulus intensity s

p = c ln
s

s0
, 3.

where s0 denotes the threshold at which a perceived stimulus becomes zero and c denotes

a constant that is determined empirically for a particular stimulus set. Fechner’s law is

not without its limitations. It is not scale invariant like a power law relationship and

has mixed support across different sense modalities. However, the audacity to hypothesize

mathematical relationships between objectively measurable differences in the external world

and differences in psychological space is a key step in the development of empirical tools

for probing the representations of the human mind. Focusing on relative judgments shows
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the beginning of a strategy that can be used to circumvent philosophical issues regarding

the mapping between external reality and psychological reality.

Heavily influenced by Fechner’s work, Ernst Mach also sought to formalize connections

between external and inner realities. Mach made many seminal contributions to science,

one of which was his work studying the optical illusion that now bears his name: Mach

bands. The illusory band is an exaggeration of the contrast between slightly differing color

shades due to edge-detection in the visual system. There are two relevant implications

from this work. First, information processing begins immediately; the sense organs are not

simple conveyors of sensory information but active participants in a process that occurs in

successive stages. This insight, combined with others such as lateral inhibition, is one reason

why Mach is regarded as a forerunner of the idea of neural nets in perception. Second, to

explain the illusion, Mach argued that perception works by focusing on relative differences,

not absolute sensory intensity.

Since every retinal point perceives itself, so to speak, as above or below the average of its

neighbors, there results a characteristic type of perception. Whatever is near the mean of

the surroundings becomes effaced, whatever is above or below is disproportionately brought

into prominence. One could say that the retina schematizes and caricatures. The teleological

significance of this process is clear in itself. It is an analog of abstraction and of the formation

of concepts.

(Ratliff 1965)

In Mach’s view, relative differences are a primary mechanism that the brain uses during

sensation. While experiments with Mach Bands were primarily concerned with relative dif-

ferences between adjacent patches of the retina, Mach hypothesized that a relative difference

operation extended beyond sensation and applied more broadly to all aspects of perception.

Nearly a century later, this view would be given strong physiological support from the

investigations of cat cortex conducted by Hubel & Wiesel (1959). The relative difference

operation was posited as a general principle of cognition, used to assemble increasingly

abstract representations of the world.

Relative difference can be computed in many different ways. For example, on could

simply compute the difference between the activity of two adjacent photoreceptors ai − aj ,

which can also be expressed as the dot product [ai, aj ]·[1,−1]. The second operand ([1,−1])

is often referred to as a kernel. A dot product of this form can also accommodate an arbitrary

number of activations (i.e., a local neighborhood)

f(a, k) = a · k, 4.

where a and k are both vectors of the same length. For example, consider the dot product

of the kernel k = [−1, 0, 1] and different patterns of neighborhood activation:

1. [0, 0, 0] · k = 0

2. [0, 0, 10] · k = 10

3. [0, 10, 10] · k = 10

4. [10, 10, 10] · k = 0

5. [10, 0, 10] · k = 0

6. [0, 10, 0] · k = 0

This kernel can be viewed as a crude version of a boundary detector, activating when the
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incoming activity is not uniform. Stated another way, the kernel is like a template and

f(a, k) computes the similarity between the incoming activity a and the template k. The

kernel serves as a way of assessing similarity with respect to a particular template or feature.

If both input activations match the template, then they are deemed similar. Computing

relative differences implies a similarity operation. Computing similarity constitutes a basic

step in feature extraction. While this particular operation is simple, kernels form the basis

of popular techniques such as convolutional neural networks (CNNs) (Krizhevsky et al.

2017), which enable human-level object recognition in natural images and self-attention

(Vaswani et al. 2017), which laid the groundwork for the proliferation of natural language

transformers.

Shepard & Chipman (1970) eloquently framed the notion of relative differences in terms

of a second-order isomorphism.

The crucial step consists in accepting that the isomorphism should be sought—not in the

first-order relation between (a) an individual object, and (b) its corresponding internal

representation—but in the second-order relation between (a) the relations among alternative

external objects, and (b) the relations among their corresponding internal representations.

Thus, although the internal representation for a square need not itself be square, it should

(whatever it is) at least have a closer functional relation to the internal representation for a

rectangle than to that, say, for a green flash or the taste of persimmon.

(Shepard & Chipman 1970, p. 2)

The proposed perspective reiterates Mach’s view that it is relative differences—not absolute

qualities—that matter. Second-order isomorphism is the basis of popular tools for studying

mental representations, such as Representational Similarity Analysis (RSA) (Kriegeskorte

et al. 2008). The proposed perspective also brings together the insights of Fechner and

Mach, providing a unifying framework for similarity-as-a-research-tool and similarity-as-a-

cognitive-mechanism.

Second-order isomorphism is the conceptual pier that stabilizes all theories of similar-

ity. Focusing on second-order isomorphism—rather than first-order isomorphism—allows

researchers to rise above the tricky and potentially intractable philosophical quagmire re-

garding the nature of reality. The price for such a solution is that both the similarity

representation and the similarity function must be considered in tandem, otherwise the

notion of a psychological space falls apart.

www.annualreviews.org • Psychological Space 7



2. PSYCHOLOGICAL SPACES

Since psychological spaces (i.e., mental representations) are not directly observable, they

need to be inferred from measured quantities. Using the perception-action cycle as an orga-

nizing framework (Von Uexküll 1926, Sperry 1952), one can think of inferring psychological

spaces from three qualitatively distinct data sources: stimulus information (e.g., image

pixels), neural activity (e.g., fMRI), and behavior (e.g., categorization responses). Data

sources that roughly correspond to the beginning, middle, and end of the perception-action

cycle, respectively.

An abundance of techniques exist for inferring psychological spaces. The different infer-

ence techniques can be broadly categorized based on the characteristics of the data struc-

tures they use. Three popular data structures include geometric spaces, set-theoretic spaces,

and graph spaces. Each of the three type of data sources (stimulus, neural, behavioral) can

be transformed into any one of the three psychological spaces (Figure 1). Two additional

options add complexity to the possible configurations. First, it is possible to convert from

one psychological space to another, for example converting from a graph representation to

a geometric representation. Second, one can chain a sequence of transformations, resulting

in a different psychological space at each step, such as the neuron activations at successive

layers in a deep neural network.

Similarity-Representation SpaceInput Data

Stimulus 
Information

Neural Activity

Behavior

𝑧! 𝑧"

𝑧#𝑧$

𝑧%
𝑧& 𝑧!

𝑧" 𝑧#

𝑧$ 𝑧% 𝑧& 𝑧' 𝑧( 𝑧)

Geometric Set-Theoretic Graph

𝑧! = 𝑎, 𝑏, 𝑐, 𝑑
𝑧" = 𝑐, 𝑑, 𝑒
𝑧# = 𝑒, 𝑓, 𝑔, ℎ
𝑧$ = 𝑎, 𝑐
𝑧% = 𝑎, 𝑐, 𝑒

Figure 1

Strategies for inferring psychological spaces. Source input data can be transformed into any one of the three different

psychological spaces. One kind of psychological space can also be transformed into a different space.

2.1. Fundamentals

A psychological space is composed of both a similarity function and mental representations.

The two aspects are both full-fledged model components—each endowed with the potential

to be arbitrarily sophisticated. This means both components may have their own free

parameters and exhibit a hierarchical structure. While this fact may be familiar for the

representations, it is also true of the similarity function. Similarity functions can be simple

and parameter free, as is the case with cosine similarity, or complex and parameterized, as

is the case with the generalized exponential (discussed later). In all cases, the choice of a

similarity function is a deliberate architectural choice that operates hand-in-glove with the

chosen representation.

Techniques for inferring psychological spaces vary, but one generic framing can be

achieved by focusing on second-order isomorphism. Shifting the focus to second-order iso-
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morphism means that we care about preserving relationships rather than absolute quanti-

ties. For example, if people rate an image of a honey badger (xi) as more similar to an image

of an American river otter (xj) than an image of an African lion (xk), then the inferred

representation should honor those relationships. Loosely speaking, the general inference

problem can be framed in the following way:

f(xi,xj) ≥ f(xi,xk) → s(Zi,Zj) ≥ s(Zi,Zk), 5.

where x denotes an initial representation, f is relational measure between the initial repre-

sentations, Z is the inferred mental representation, and s is a relational measure (e.g., simi-

larity) that operates on the inferred mental representations. Continuing with the example of

a badger, otter, and lion; regardless of the psychological space we choose, we expect that the

modeled similarity between a honey badger and American river otter (s(Zi,Zj)) should be

greater than the modeled similarity between the honey badger and African lion (s(Zi,Zk)).

The chosen framing also accommodates the case where the function f and representation

x are an inferred psychological space instead of measured quantities. Second-order isomor-

phism focuses on preserving the relationships between things and is less concerned with the

absolute values of x and z.

The relational measure f can take many forms. As the example demonstrates, f can

be implicitly provided by human participants in the form of similarity ratings or rankings.

In a second-order isomorphism paradigm, it is acceptable if the relational measure f is not

completely known, so long as the outcomes of the measure can be obtained. The relational

measure f can also be explicit, such as a function that outputs the graph geodesic between

two nodes on a graph. Alternatively, an explicit measure f may be learned from the data

by honing in on statistical regularities, such as a CNN kernel which computes the similarity

between an image patch input and a learned template patch.

Given the plethora of potential information to focus on, the relational measure f typi-

cally reflects researcher or agent priorities. If people consider a honey badger as more similar

to an American river otter, they are prioritizing features like overall size and taxonomic sim-

ilarity (i.e., both are mustelids). Alternatively, people could have said that African lions

and honey badgers are more similar if they placed more emphasis on shared geography.

Likewise, researchers may be more interested in relational measures that prioritize neigh-

borhood relationships and deemphasize global relationships; a trick used by many nonlinear

dimensionality reduction algorithms such as Locally Linear Embedding (LLE) (Roweis &

Saul 2000) and ISOMAP (Balasubramanian & Schwartz 2002, Silva & Tenenbaum 2002,

Tenenbaum et al. 2000).

Using an optimization algorithm, the free parameters of a psychological space are found

by maximizing goodness of fit (i.e., the loss function) to the observed data. Historically,

when referring specifically to the free parameters that correspond to the the representation

of stimuli (e.g., coordinates in geometric space) inference algorithms were commonly called

“multidimensional scaling” (MDS) or just “scaling” algorithms. Today, some inference al-

gorithms are still called “scaling” algorithms even if they infer a larger set of free parameters

beyond the traditional geometric coordinates. In the machine learning literature, analogous

inference algorithms are often called embedding algorithms. The term embedding denotes a

higher-dimensional representation that is embedded in a lower dimensional space. For that

reason, the inferred mental representations of a psychological space could also be called a

psychological embedding.

The specifics of the optimization algorithm and loss function have evolved over time,
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but the general principle remains the same: find a solution that minimizes loss. A general

iterative approach to scaling was introduced by Shepard Shepard (1962) and migrated to

a standard gradient decent framework by Kruskal Kruskal (1964). As is the case with any

machine learning setup, any remaining hyperparameter values—such as the dimensionality

of the space—can be determined using an “outer loop” procedure, such as cross-validation.

Inference algorithms leverage the second-order isomorphism trick in order to learn a

set of representations where relative differences in inferred psychological space correspond

to relative differences in the training data. The details of the algorithm determine which

relative differences are emphasized. Some techniques are broadly applicable because they

make weak assumptions about the input data, others can only be applied under very specific

conditions. In the remainder of this section, we introduce three popular data structures

for formalizing mental representations. Along the way, we cover commonly used data and

options for similarity function pairings.

2.2. Geometric Representations

Geometric representations, also known as spatial representations, embed mental represen-

tations in a multidimensional geometric space. In geometric space, mental representations

take the form of multidimensional coordinates Z ∈ Rn×d, where n indicates the number of

mental representations (e.g., stimulus percepts) and d indicates the dimensionality of the

space. For improved readability, Zi is used to denote the ith row vector (e.g., the ith stim-

ulus embedding). Generally speaking, coordinates that are located close together have high

similarity while coordinates located far apart have low similarity. Geometric representations

have a long history in science, as Roger Shepard pointed out:

Proposals that stimuli be modeled by points in a space in such a way that perceived similarity

is represented by spatial proximity go back to the suggestions of Isaac Newton (3) that

spectral hues be represented on a circle, of Helmholtz and Schrödinger (4) that colors in

general be represented in a curved Riemannian manifold, of Drobisch (5) that pure tones be

represented on a helix, and of Henning (6) that odors and tastes be represented within a

prism and a tetrahedron, respectively.

(Shepard 1980, p. 390)

Early work with geometric spaces used behavioral data to infer psychological spaces,

often focusing on identification, categorization and recognition tasks. When modeling iden-

tification and categorization performance, the entire process can be framed as a mapping

from stimulus representation X (e.g., image pixels) to a categorical outcome y. Given

stimulus i, the probability of responding identity/category j is denoted p(yj |Xi,Θ), where

Θ is a catch-all for any model parameters. Psychologists are particularly interested in the

intermediate mental representations of the perception-action cycle, Zi = f(Xi,Θ
(0)), where

f denotes some arbitrary transformation of the stimulus, such as a series of convolutional

layers. One can think of the transformation function f as a perception module.

Early work used a special perception module f that is effectively a lookup table. In-

stead of using information in the stimulus (e.g., pixel values), all stimulus information is

discarded except a stimulus identifier (e.g., an integer that serves as index). The stimulus

identifier i is used to look up the appropriate mental representation Zi. In other words, the

complete lookup table corresponds to the matrix of values Z. In deep learning packages
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such as TensorFlow and PyTorch, lookup tables of this sort are called embedding layers,

which should not be confused with the broader scope of applications covered by embedding

algorithms.

Using a lookup table as a perception module has two advantages. First, allows the

inferred mental representations to be almost completely constrained by behavioral data,

simplifying the research problem. If using a perception module that performs more so-

phisticated processing, different architectural choices can impact the inferred psychological

representation because they are constrained by both behavior and stimulus data. Second—

and more relevant from a historical perspective—a lookup table bypasses the need to im-

plement of a functional perception module, which was intractable for naturalistic stimuli

until recently.

In additional to a perception module, one must specify a model component that maps

from a psychological space to observed behavior, what could be called a behavior module.

A popular behavior module comes from the similarity choice model (SCM) (Shepard 1957,

Luce 1963), which is sometimes referred to as Luce’s ratio of strengths formulation (Luce

1959). The heart of SCM is the response rule

P (yj |i,Z, b) =
bjs(Zi,Zj)∑N

k=1 bks(Zi,Zk)
, 6.

where yj denotes a response choosing stimulus j and bj (0 ≤ bj ≤ 1,
∑

k bk = 1) is a

corresponding response bias.

When originally introduced, SCM did not use Z or specify a similarity function s.

Instead the similarity values s(zi, zj) were used directly and formulated as free parameters

ηij such that ηij ≥ 0 and ηij = ηji. As originally formulated, the free parameters included

one bias parameter per possible response (i.e., stimulus) and one “similarity” parameter for

each unique stimulus-pair. There are two notable downsides with the original formulation.

First, the number of free parameters scales poorly as the number of stimuli increases,

growing like O(n2). Second, there is no explicit psychological space, although distances are

implied by the similarity parameters learned for each unique stimulus-pair.

The complete fusing of a lookup table (perception module) and SCM (behavior mod-

ule) is demonstrated by the MDS-choice model (Shepard 1957, 1958). An MDS-choice

model explicitly infers a psychological space by assuming similarity is functionally related

to psychological distance via an exponential-family kernel:

s (Zi,Zj) = exp
(
−β||Zi −Zj ||τρ

)
, 7.

where β, ρ, and τ control the gradient of generalization. The steepness at which similarity

decays is largely controlled by β. The most common settings of τ result in a Laplace kernel

(τ = 1) and a Gaussian kernel (τ = 2). The most common settings for the Minkowski

distance parameter ρ result in Manhattan distance (ρ = 1) and Euclidean distance (ρ = 2).

In early work that used the SCM, it was unclear whether the exponential family sim-

ilarity function should take the form of a Laplace or Gaussian distribution (Ashby & Lee

1991, Nosofsky 1988, Shepard 1988). After systematic investigation, it appears that a

Laplace distribution best describes the perceptual encoding of a single event, but percep-

tual and memory noise may result in a stimulus being encoded in slightly different locations

in psychological space (Ennis 1988, Ennis et al. 1988). Depending on the relative level of

perceptual and memory noise, the effective similarity function will appear to be a Laplace

(low relative noise) or Gaussian (high relative noise).
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With the pieces in place, inference research boomed. There were multiple breakthroughs

in developing inference algorithms with different constraints. For example, embedding with

unknown distance (Shepard 1962), nonmetric similarity functions (Kruskal 1964), and asym-

metric similarity functions (Krumhansl 1978). Inference algorithms were also extended to

accommodate individual differences (Carroll & Chang 1970, Carroll & Wish 1974). Even-

tually, inference research ran into some problems. First, hardware constraints made it

computationally expensive to determine solutions for problems involving more than a few

stimuli. Second, the lack of software packages presented a high barrier to entry since models

had to be coded from scratch. Third, collecting behavioral data is expensive. All of these

factors confined research to relatively small and simplistic stimulus sets. Future hardware

and software advances, which we return to in a later section, would blow open the door on

studying large-scale, naturalistic stimulus sets. As a preview, one major advancement has

been the generalization of geometric spaces to non-Euclidean geometries.

2.3. Set-Theoretic Representations

One criticism of geometric approaches is that they are overly restrictive. A more general

in flexible data structure may be needed. One intuitive way to think about similarity is in

terms of a feature matching or set-theoretic process. A feature matching process assumes

that an item i can be represented as a set of features Zi. For example, given the concept of

bumble bee and butterfly one could list as many features as possible about each of them.

These could include attributes like “has wings”, “has stinger”, “can fly”, “is insect”, and so

on. Continuous features, like specific colors, can be treated as exact matches or the color

space could be discretized. The similarity value between two items is then some function

of the common and distinctive features. For example, both a butterfly and bumble bee are

insects, have wings, and can fly, but only a bumblebee has a stinger.

The feature matching approach was placed on solid theoretical ground by Tversky (1977)

in the seminal work “Features of Similarity”. Given some stimulus i with features Zi and

some stimulus j with features Zj , the similarity value of the two items takes the following

general form:

s (Zi,Zj) = g (Zi ∩ Zj ,Zi −Zj ,Zi −Zj) . 8.

The first operand in the function determines the features common to both items, the second

operand determines the set of features unique to item i, and the third operand determines

the set of features unique to item j. Various forms of g are possible and Tversky highlighted

two of them.

The contrastive model of similarity assumes

s (Zi,Zj) = f (Zi ∩ Zj)− αf (Zi −Zj)− βf (Zj −Zi) , 9.

where θ, α and β are nonnegative free parameters that determine the relative importance of

each term. The function f maps features to an interval scale in a way that takes into account

factors that contribute to psychological salience, such as intensity, frequency, familiarity

and informational content. The free parameters allow for a number of possibilities, which

differentially weights the contribution of shared and distinctive features to the computed

similarity value. For example, if θ = 1 and α = β = 0, then the similarity of the items is

entirely determined by the common features. Alternatively, if θ = 0 and α = β = 1, then

you get a similarity function that is entirely determined by distinct features and loosely
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resembles a generalized version of Hamming distance. If α > β, the similarity function

more heavily weights the set of features unique to item i.

A second matching function, the ratio model, is partially motivated by the desire to

create a similarity function with the codomain [0, 1]. The ratio model assumes

s (Zi,Zj) =
f (Zi ∩ Zj)

f (Zi ∩ Zj) + αf (Zi −Zj) + βf (Zj −Zi)
, 10.

where α and β are nonnegative free parameters that play an analogous role to α and β in

the contrastive model of similarity. The ratio model encompasses a number of historical

feature-matching approaches as special cases (Tversky 1977).

Both the contrastive model and ratio model are capable of operating on a wide range

of representations. The set of features can include an arbitrary mixture of categorical and

continuous features. Historically, the stimuli features were hand-coded.

2.4. Graph Representations

A final representation space is realized through graphs or networks. Set-theoretic data

structures may be too flexible for some applications. Networks provide an alternative that

straddles the mathematical maturity of geometric structures and the flexibility set-theoretic

structures. A graph Z is composed of a set of n vertices (or nodes) V and a set of edges

E ⊆ V
∏

V The nodes represent concepts, and the edges make explicit the relationships

between concepts. In general, two nodes are considered similar if the number of edges

separating them are low. When using graphs to model mental representations, the set of

graphs is typically restricted to those without any closed loops, in which case the focus is

on additive or path-length trees. The distance, and therefore the similarity, between two

nodes is given by the sum of the lengths of the edges between them. A variety of algorithms

were introduced in the late 1970’s for inferring additive trees from behavioral data (Carroll

1976, Cunningham 1978, Sattath & Tversky 1977).

Cluster representations can be thought of as a special case corresponding to a discon-

nected graph. Given a set of clusters, the nodes of each cluster are disconnected from the

nodes of every other cluster. If there is no notion of within-cluster similarity, similarity is

simply a binary output that yields 1 if a path exists between two nodes and 0 otherwise.

2.5. Relative Strengths and Weaknesses

Different psychological spaces exhibit various strengths and weaknesses. There is not nec-

essarily one true representation. As stated by Shepard,

It would be a mistake to ask which of these various scaling, tree-fitting, or clustering methods

is based on the correct model. As even my small sample of illustrative applications indicates,

different models may be more appropriate for different sets of stimuli or types of data. Even

for the same set of data, moreover, different methods of analysis may be better suited to

bringing out different, but equally informative aspects of the underlying structure.

(Shepard 1980, p. 397)

Two aspects worth calling out are adherence to metric axioms and the capability to capture

hierarchical relationships.
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2.5.1. Metric Axioms. Tversky noted that when eliciting human judgments of similarity,

people would often provide ratings that violated the standard axioms of metric space. Three

key axioms are

• Minimality: δ(zi, zj) ≥ δ(zi, zi) = 0.

• Symmetry: δ(zi, zj) = δ(zj , zi).

• The triangle inequality: δ(zi, zj) + δ(zj , zk) ≥ δ(zi, zk).

It is not unusual for individuals to provide similarity judgments that exhibit asymmetry. For

example, people might say that apes are like humans, but they might not say that humans

are like apes. The violation of these axioms is technically problematic for geometric rep-

resentations. Standard geometric representations are metric spaces and can only generate

solutions that obey the metric axioms. If people regularly violate these axioms, then models

of similarity that assume symmetry, equal self-similarity and triangle inequality may be a

poor modeling choice. In fact, a major reason Tversky took the time to articulate a feature

matching framework was to create a representation framework that allowed for violations

of metric axioms.

2.5.2. Hierarchical Relations. In addition to potential over-adherance to metric axioms,

Euclidean spaces also have difficulty accommodating hierarchical similarity relations. The

difficulty can be shown a number of ways, but one approach is by analyzing the maximum

number of items that can share the same nearest neighbor (Tversky & Hutchinson 1986).

To intuit the result, imagine that you have one blue sphere and a infinite set of red spheres.

You start by placing blue sphere on the table and then incrementally glue red spheres to

the blue sphere. Eventually you will get to a point where you can no longer attach any

additional red spheres. This is a problem because the blue sphere may represent an abstract

category like “mammal” and the red spheres subcategories like “felines” and “canines”. If

the data you are trying to embed has more subcategories than will fit around the primary

category, then the embedding will fail to adequately capture the hierarchical relationship.

One way to address the hierarchical limitation of geometric spaces is to expand geometric

representations beyond Euclidean geometry. One such extension is to use a hyperbolic space

which is characterized by negative curvature. A special case of hyperbolic geometry is a

Poincaré space. To intuit the properties of a Poincaré space, we can consider the two-

dimension case: a Poincaré disk. If one starts at the origin of Poincaré disk and moves

towards the edge of the disk, the distance traveled tends to infinity. You can imagine

that a Poincaré disk is like a two-dimensional projection of a very deep bowl. As one

moves towards the edge of the bowl they also have to move up. Poincaré spaces serve as

accommodating representations for embedding hierarchical data. First, the root node of

the hierarchical data is placed at the origin. For each successive level, the nodes are place

farther from the origin. Since the available space effectively expands as you move away from

the origin, Poincaré representations do not suffer from same problem as Euclidean spaces.

Such representations have been used to embed knowledge graphs (Wang et al. 2014) and

have more recently been integrated into various deep neural network architectures (Peng

et al. 2022).
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2.6. Potential versus Actual Duality

Before diving into the different psychological spaces, it is import to clarify an aspect of

the similarity-representation duality. When architecting a cognitive model, the chosen rep-

resentation space will only partially constrain the set of compatible similarity functions.

Given the previous argument that the similarity-representation duality asserts a tight link

between similarity and representations, one may be wondering why there is so much flexi-

bility in selecting a similarity function given a representation space. An essential point to

realize is that the link between a similarity function and a representation is actualized when

a set of representations are learned—either artificially via an algorithm or naturally in the

brain. Prior to learning representations, there is only a potential link.

Consider the following example: given a set of triplet similarity judgments we would

like to use an embedding algorithm to infer the mental stimulus representations of the

human participants. Based on other research goals, a researcher might select an L2 distance

(instead of an alternative Lp distance) to serve as the core of an exponential similarity

function. After making this architectural choice, an algorithm is used to learn the most

likely set of mental representations given the observed behavior.

After training the model, it would be inappropriate to swap out the L2 distance with

an L1 distance. The process of training the model has inextricably linked the representa-

tion with the similarity function. In the same vein, it would be inappropriate to substitute

the exponential similarity function with a cosine similarity function. Of course, some sub-

stitutions will “work”—in the sense that they operate over the same functional domain

of operands—but they will be theoretically wrong. Some substitutions may even output

highly correlated similarity values. Unless there is a formal justification for a substitution,

substitutions create a theoretical mismatch, breaking the similarity-representation link.

Before training, there is a potential link between similarity and representations. After

training, the similarity-representation duality link is actualized. Prior to training, there is

flexibility in choosing the architectural ingredients—including selecting similarity functions

that have free parameters. After training, the architectural choices are baked in and the

correct way to read out a similarity value between two items is using the same similarity

function that was used to train the space.
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3. NATURALISTIC DATA SOURCES

The introduction of psychological spaces was accompanied by relatively simple and well-

controlled stimuli. The focus of this section shifts from historical motivators of each rep-

resentation space to techniques that scale to real-world, naturalistic paradigms. Modern

techniques, in particular those driven by machine learning, have unlocked the ability to

extract psychological spaces for real-world research paradigms: such as those using natu-

ralistic images. Significant advancements have been made for sourcing data from all parts

of the perception-action cycle; from deep neural networks that process naturalistic stimuli

to active learning approaches that help scale behavior collection to tens of thousands of

stimuli.

3.1. Stimulus Information

A decade ago, options were limited for inferring psychological representations from natural-

istic stimuli. The work-around was to use simplistic stimuli and hand-coded feature dimen-

sions. Today, an enormous number of methods exist for extracting rich feature spaces, such

as convolutional neural networks (CNNs) and transformers. While enormous progress has

been made for all stimulus modalities, two modalities have received particular attention:

visual stimuli and natural language text. Image and natural language modules have be-

come sufficiently capable, that a vibrant subfield has emerged to study the correspondence

between machine- and human-learned representations.

3.1.1. Natural Images. Algorithms and models can be used to map image pixels to rich psy-

chological spaces. Approaches vary in complexity, from relatively simple domain-general ap-

proaches like PCA and ICA (Comon 1994, Bell & Sejnowski 1995), to highly-parameterized

domain-specific approaches like CNNs pre-trained on image datasets. The field has seen

a general shift from hand-engineered components to data-driven features. Early efforts fo-

cused on approaches which can be collectively be called local feature integration. These

efforts included scale invariant feature transform (SIFT) (Lowe 1999), histogram of oriented

gradients (HoG) (McConnell 1986, Dalal & Triggs 2005), and HMAX (Riesenhuber & Pog-

gio 1999). Collectively, these approaches converged around the general-purpose abilities of

convolution layers.

A dominate approach today is the use of stacked convolutional layers in CNNs. In-

terestingly, the foundation for modern CNNs was established before many alternatives to

local feature integration. In 1979, the Neocognitron brought together many of the essen-

tial features of modern CNNs (Fukushima 1980). Neocognitron uses a hierarchical, multi-

layer design that leverages multiple pooling and convolution layers and was inspired by the

model proposed by Hubel & Wiesel (1959). Fully formed CNNs burst onto the scene fol-

lowing the success of AlexNet (Krizhevsky et al. 2017). AlexNet is a 1000-category-output

model trained on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). While

AlexNet performed admirably well on the ILSVRC task, performance has since increased,

leaving a trail of popular models, such as VGG (Simonyan & Zisserman 2015). With minor

modifications, such as removing the last layer, most CNN image models can be treated as

an encoder or perception module—a function that maps images to a latent representation.

Consequently these models can treated as a modular building block and incorporated into

a diverse set of cognitive models.

With categorization performance rivaling or exceeding human abilities, focus has shifted
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to understanding the differences between machine- and human-learned representations. As

part of this effort, a new class of CNNs—such as CorNet (Schrimpf et al. 2020)—have

been developed with the key objective of understanding human-learned representations.

One of the aim of these models is to provide a perceptual module that yields grounded

psychological spaces. Understanding the differences between machine- and human-learned

representations requires grounding in another data source, such as neural or behavioral

data.

3.1.2. Natural Language Text. Like images, natural language text has seen a meteoric rise

in human-like capabilities. Modern efforts got off the ground by leveraging the distribution

hypothesis, which assumes that words with similar meaning will occur in similar contexts,

and inferring a multidimensional representation that places similar meaning words close

together. An early example of this can be seen in latent semantic analysis (LSA) (Dumais

et al. 1988), which used “documents” to define a coarse-grained notion of context. More

recent research has refined the operational definition of context and is more nuanced. Word

embeddings approaches like word2vec (Mikolov et al. 2013) and GloVe (Pennington et al.

2014), define context as a weighted window around every word. Depending on the particular

algorithm, similarity between embedding coordinates can be computed using something like

cosine similarity or Euclidean distance.

However the meaning of words is not independent of their context, which motivated

the introduction of sentence embeddings, which embed entire sentences into a multidimen-

sional space. Sentence embedding models, such as BERT (Devlin et al. 2019), leverage

transformers as an extremely flexible mechanism for learning relevant context. Near com-

plete ingestion of all available high-quality natural language text and architectural improve-

ments have culminated in large language models (LLMs) that exhibit an impressive ability

to generate well-formed natural language outputs from natural language inputs, what one

could think of as “dialogue autocomplete”. Some of the most well known LLMs come from

OpenAI’s family of Generative Pre-trained Transformer models, commonly referred to as

GPT (Brown et al. 2020, AI 2023). The encoder component of LLM can be treated as a

perceptual model, but mirroring the development of image models, the focus has begun to

shift to comparing human- and machine-learned representations.

3.2. Neural Activity

Situated between stimulus and behavior, neural data provides a powerful window into psy-

chological spaces. The universe of techniques for analyzing neural data warrants multiple

reviews and cannot be fully covered here. Instead, we briefly cover a few techniques that

demonstrate the variety of ways that psychological spaces can be extracted from neural

data.

Different recording methodologies (e.g., EEG, MEG, fMRI, microelectrodes, diffusion

imaging) for generating neural data can all be used to infer psychological spaces. Off-the-

shelf linear dimensionality reduction approaches like PCA and factor analysis can be applied

regardless of recording methodology and are particularly common for population responses

(Cunningham & Yu 2014). More recently, off-the-shelf nonlinear dimensionality reduction

methods have also become popular, such as LLE, ISOMAP, t-SNE (van der Maaten &

Hinton 2008), and autoencoder neural networks (Hinton & Zemel 1993, Kingma & Welling

2013). Given the necessity of processing neural data in a consistent way, entire processing
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pipelines have also emerged, such as fMRIPrep (Esteban et al. 2019). Collectively, these

techniques have revealed characteristics about the psychological space for different functions

and regions of the brain. For example, the geometry of visual cortex (Stringer et al. 2019,

Guidolin et al. 2022), touch (Nogueira et al. 2023), control (Badre et al. 2021, Gallego et al.

2017), and abstraction in the hippocampus and prefrontal cortex (Bernardi et al. 2020).

One can also test which similarity function the brain uses in its internal computation and

whether similarity function varies across brain regions and tasks (Bobadilla-Suarez et al.

2020).

3.3. Behavior

Working backwards from observed behavior, inference procedures can uncover the most

likely psychological space. Behavior-based embeddings have grown in three key ways: the

use of naturalistic stimuli, the diversity of measures, and the scaling up of collection strate-

gies. Relatively simple stimuli have been largely replaced by high-fidelity naturalistic stim-

uli. The diversity of behavioral measures have proliferated since the seminal psychophysics

work of Weber and Fechner. Increasingly accessible tools for creating custom websites has

created the ability to design a seemingly limitless number of behavioral paradigms. The

integration of modern machine learning approaches, combined with web-based data collec-

tion, has enabled behavioral data collection at an unprecendented scale, opening up avenues

to new research questions.

While innovative paradigms continue to flourish and push the boundary, a handful of

behavioral measures have maintained their status as key players in behavior-based embed-

dings. These include continuous measures such as similarity ratings, response times. Cat-

egorical measures include identification responses, classification responses, same-different

judgments, triplet similarity judgments, odd-one-out similarity judgments, and pile sorting.

Ordinal measures include generalized similarity rankings.

Behavioral data, like similarity judgments, has been collected for an increasingly diverse

set of stimuli. Similarity judgments have been collected for naturalistic images including

everyday objects (Hebart et al. 2020, Roads & Love 2021), food (Wilber et al. 2014), birds

(Roads & Mozer 2021), rocks (Nosofsky et al. 2018), skin lesions (Roads et al. 2018) images

of the reachable world (Josephs et al. 2023). Similarity judgments have also been collected

for other modalities, such as odours (Nakayama et al. 2022). Beyond similarity judgments,

psychological spaces can also be derived from real-world activity patterns, such as consumer

shopping behavior (Hornsby et al. 2020, Hornsby & Love 2022).

In addition to the adoption of naturalistic stimuli, there has also been growth in more

naturalistic scale. The real-world is composed of countless concepts. Even if we restrict our-

selves to categories encountered on a daily basis, there are thousands of categories (e.g., food,

travel, entertainment, work), each with thousands of nonfungible exemplars (my golden re-

triever versus your golden retriever). Modern approaches have embraced this diversity by

developing data collection approaches that scale to a large number of stimuli. Advance-

ments have been made on two fronts: designing tasks that take advantage of human abilities

and selecting trial content that maximizes expected information gain.

On the first point for scaling up, the ideal task with heavily depend on the domain. For

example, if collecting similarity judgments about odors, a researcher is largely constrained

to sequential pair-wise ratings. However, if collecting similarity judgments about images,

a researcher can consider a larger set of options since multiple images can be displayed
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at the same time. In the case of images, this allows for a generalization of the standard

triplet. In a standard triplet task, a participant is given a query image and two reference

images. The participant must select the reference image they think is most similar to the

query image. This task can be generalized such that a participant is shown a query image

and |R| reference images (Roads & Mozer 2019, Wah et al. 2014, Wilber et al. 2014).

The participant must then make S selections that indicate the subset of references that

are most similar to the query. These selections can be ranked (Roads & Mozer 2019) or

unranked (Wah et al. 2014, Wilber et al. 2014). The advantage of a generalized trial is

it exploits a human’s ability to quickly process a visual scene. Participants can provide

more information about how they perceive similarity in a shorter amount of time (Roads

& Mozer 2019, Wilber et al. 2014). This respects the participant’s time and reduces data

collection costs.

Beyond intelligent task design, the next advancement for scaling up is intelligent content

selection. When inferring a psychological space, it is not strictly necessary that all pairwise

relations be directly probed. Instead, the collection budget can be allocated where it is

needed most. In an active learning paradigm, a three-step iterative procedure is used to

allocate the data collection budget as economically as possible (Jamieson et al. 2015, Rau

et al. 2016, Sievert et al. 2017, Tamuz et al. 2011, Roads & Mozer 2019, Roads & Love

2021). First, the currently collected data is used to estimate uncertainty associated with

the psychological space by computing a posterior distribution. Second, the posterior distri-

bution is used to identify the next batch of trials that are likely to maximize information

gain. Third, those selected trials are shown to participants and the process is repeated with

the expanded set of behavioral data. The benefit of active learning depends on the appli-

cation, with some cases showing no benefit (Jamieson et al. 2015) and other cases showing

a benefit (Roads & Mozer 2019). In the best case scenario, active learning opens up the

possibility of scaling up to larger stimulus sets.

3.4. Comparing Psychological Spaces

With all of these different psychological spaces, it is important to consider the appropriate

way to compare them. Given the three different sources of data, there are three purist psy-

chological spaces: stimulus-based, neural-based, and behavior-based. The different sources

of data can also be combined to produce hybrid psychological spaces. For example, stimulus

information can be combined with human behavior to jointly constrain a stimulus-behavior-

based psychological space. All of these options mean multiple types of comparisons are

possible, such as stimulus- versus stimulus-based (Kornblith et al. 2019), neural- versus

neural-based (Sexton & Love 2022), stimulus- versus neural-based (Kubilius et al. 2019,

Sexton & Love 2022), stimulus-behavior- to neural-based (Mack et al. 2016, 2020). These

distinctions can be further broken down by participant species, such as stimulus- versus

human-neural-based (Jacob et al. 2021) and stimulus- versus macaque-neural-based (Rajal-

ingham et al. 2018). Multiple techniques exist for comparing psychological spaces, but the

optimal method for comparing representations is an ongoing research problem.

Numerous techniques exist and each has limitations. Popular techniques for compar-

ing representations include representational similarity analysis (RSA) (Laakso & Cottrell

2000, Kriegeskorte et al. 2008) and canonical correlation analysis (CCA) (Hotelling 1936).

Briefly, RSA is a method for comparing two representations that assesses the correlation

between the implied pairwise similarity matrices. CCA is a method that compares two rep-
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resentations by finding a pair of latent variables (one for each domain) that are maximally

correlated. While RSA and CCA remain popular, their limitations have spurred researchers

to develop more robust methods. Adjustments to RSA include the similarity metric Cen-

tered Kernel Alignment (also known as the RV coefficient) (Cristianini et al. 2006, Cortes

et al. 2012, Kornblith et al. 2019), unbiased CKA (Nienborg et al. 2019), feature-reweighted

RSA (Kaniuth & Hebart 2022), and extensions for handling noise (Storrs et al. 2021). Nu-

merous CCA variants have been introduced to make the approach more widely applicable,

such as probabilistic CCA (Bach & Jordan 2005, Klami et al. 2013), kernel CCA (Hardoon

et al. 2004), deep CCA (Andrew et al. 2013), sparse CCA (Witten & Tibshirani 2009), and

projection weighted CCA (Morcos et al. 2018). Another family of comparison techniques

is pattern component modeling (Diedrichsen et al. 2018).
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4. DYNAMIC PSYCHOLOGICAL SPACES

Categorization is a foundational task for agents interacting in the world. As agents go about

their lives, they must determine if a given stimulus supports their goals, loosely group-

ing stimuli into categories such as safe/dangerous, nutritious/toxic, prosocial/antisocial,

fact/misinformation, entertaining/boring. While many categories will be fuzzy, one can

think of categories as being composed of things with similar consequences, what Shepard

refers to as a consequential region in psychological space.

An object that is significant for an individual’s survival and reproduction is never sui generis;

it is always a member of a particular class—what philosophers term a ”natural kind.” Such

a class corresponds to some region in the individual’s psychological space, which I call a

consequential region.

(Shepard 1987, p. 1319)

The ability to categorize the world provides a framework for executing the appropriate

behavior (e.g., toxic → avoid) and equally as important, for generalizing knowledge beyond

seen stimuli to novel stimuli.

Category learning provides an interesting testbed for psychological spaces because it

surfaces the issue of evolving knowledge and context-dependent behavior. As people move

about the world, they are exposed to new experiences and ideally acquire new relevant

knowledge and forget other less-useful knowledge. A psychological space needs to accom-

modate different experiences if it is to fully capture human learning. For example, expert

fishermen judge similarities among fish on both functional and morphological criteria while

novices judge on morphological criteria alone (Boster & Johnson 1989). Differences between

expert and novice perceived similarity is also present when judging trees (Srinivasan Ship-

man & Boster 2008) and musical pitch (Shepard 1982). In addition to incorporating new

experiences, people can also tune their attention to focus on a subset of features in a context-

dependent manner. For example, focusing on the irregular outline of a skin lesion to assess

if it is malignant. A comprehensive model of psychological space needs to support both of

these dynamics.

Early work explored the ability of SCM-like models to predict human categorization

behavior (Shepard et al. 1961). Using the now seminal, six category types task, Shepard et

al. Shepard et al. (1961) attributed failure of exemplar models to an intervening selective-

attention process. These results highlight how psychological spaces are limited in isolation.

A classic human categorization model is the generalized context model (GCM) (Nosofsky

1984, 1986). The model uses a geometric representation of individual stimuli and a summed-

similarity behavior module. GCM’s summed similarity approach extends Luce’s ratio of

strengths rule to categories that have many members (i.e., exemplars). The first step

defines the aggregate evidence that stimulus i belongs to category j,

g(i, j|Z,m) =
∑

k|yk=yi

mks(Zi,Zk), 11.

where mk indicates the strength that exemplar k is stored in memory. The second step

places the aggregate evidence within a ratio of strengths template:

P (yj |i,Z, b,m) =
bjg(i, j|Z,m)∑
l∈y blg(i, l|Z,m)

, 12.
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where bj is the response bias for category j. The probability of making a particular catego-

rization response is proportional to the aggregate generalization evidence associated with a

category.

Perhaps the most crucial aspect of this model is contained within the similarity function

s. Instead of using standard Minkowksi distance, the similarity function uses a weighted

Minkowski distance as a way to formalize the notion of selective attention:

s (Zi,Zj) = exp
(
−β ∥Zi −Zj∥τρ,w

)
, 13.

where the weighted Minkowksi distance is

∥Zi −Zj∥ρ,w =

(
D∑

d=1

wd|Zi,d − Zj,d|ρ
) 1

ρ

. 14.

The weights are constrained such that wj ≥ 0 and
∑

d wd = 1. The other parameters (β,

τ , ρ) have the same interpretation as in SCM. The choice of formalism reflects an adoption

of Individual Differences Scaling (Carroll & Wish 1974) for modeling selective attention.

The weighted Minkowksi distance provides a mechanism for stretching and contracting

psychological space. Consider a two-dimensional psychological space with four stimuli ar-

ranged in a rectangle where the sides of the rectangle are parallel to the axes of the space.

Decreasing the attention weights has the effect of bringing all the stimuli closer together

in psychological space. If only one weight is changed, opposite sides of the rectangle can

be pushed closer or farther apart relative to the other two sides. Manipulations of this

form can be used to model changes such as increased discriminability between categories.

However, one limitation is that it is not possible to bring stimuli at opposite corners closer

together (or father apart) while holding the distance of the other two stimuli constant. This

is an appropriate constraint if the psychological dimensions are separable (Nosofsky 1992),

but problematic if the psychological dimensions are integral.

As originally formulated, GCM does not specify a mechanism for how the attention

weights should change with experience. Instead, the attention weights are treated as free

parameters and fit to contrasting sets of behavioral data, such as identification and catego-

rization behavior. Spurred by the success of GCM, other models of category learning have

proposed mechanistic update rules for how representations change with experience. CGM

and the weighted Minkowski distance has stimulated the development of many additional

models of category learning. For example, ALCOVE (Kruschke 1992) proposed rules for

updating attention weights based on the errors an agent experiences while performing a

task. Similarity can also change on a trial-by-trial basis where features come online one at

a time (Lamberts 2000) or based on a sampling process (Braunlich & Love 2022).

Both ALCOVE and GCM use a summed similarity approach that assumes each stimu-

lus is represented independently in psychological space. This assumption defines a class of

models called exemplar models. Exemplar models are often contrasted with prototype mod-

els, which explicitly represent each category—instead of each exemplar—in psychological

space.

In between the two extremes of exemplar and prototypes, category learning can also

be formalized as a rational, cluster-recruitment (Love & Medin 1998, Love et al. 2004),

or nonparametric Bayesian model (Navarro & Griffiths 2008) where model complexity is

adjusted based on the agent’s experience. Such a model begins with a representation with

zero or minimal instances in psychological space. As surprising stimuli are encountered, the
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representation grows to accommodate the new experiences. The new representations can

correspond to a single exemplar or represent a set of exemplars (i.e., a prototype) depending

on which representation is more economical. The advantage of nonparametric approaches

is that it provides a unifying paradigm for exemplar and prototype models. Past empirical

work suggests that some tasks are characterized by a shift from a prototype-based mode to

an exemplar-based mode of representation (Smith & Minda 1998). Recent research suggest

that the hippocampus works this way for human learning, going from episodes to semantic

clusters (Mack et al. 2018). This mirrors the shift that occurs in nonparametric models

when modeling nontrivial categorization tasks. While there is general agreement that the

information used to support categorization can be modified with experience, there is less

agreement on the characterization of this shift (Johansen & Palmeri 2002).
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5. GENERAL DISCUSSION

Psychology inherited the tricky philosophical problem of understanding the nature of per-

ceived reality. Modern psychology builds on the relativistic framework of philosophy, ac-

cepting that humans cannot know reality in an absolute sense. Focusing on relative com-

parisons, or similarity, is more than a clever philosophical work-around. Over a hundred

years of research, from Fechner’s early psychophysics work to modern deep neural networks,

have made it clear that similarity is a common currency of perception and cognition. In

addition to operating at all levels of cognition, similarity—or more accurately, the second-

order isomorphism defined by a set of similarity relations—has been a powerful tool for

analyzing and comparing psychological spaces.

It is important to recognize that a computed psychological similarity value is depen-

dent on both a psychological similarity function and a psychological representation. A given

similarity function and psychological representation exist in a balance that produces mean-

ingful relationships in a psychological space (e.g., the color red is more similar to orange

than to blue). Unilaterally altering one aspect of the similarity-representation duality risks

distorting—and potentially destroying—the meaning of the psychological space.

In principle, a psychological space can be formalized using any data structure that

permits a similarity computation. In practice, three data structures dominate the literature:

geometric, set-theoretic, and network structures. All data structures—along with their

permissible similarity functions—exhibit strengths and weaknesses, such as computational

efficiency and interpretability. The affordances of different psychological spaces are relevant

for the human-led design of cognitive models and nature-led design of brains.

Psychological spaces can be constrained by a wide variety of data. The perception-action

cycle provides one way to think about the different sources of data: stimulus information,

neural activity, and behavior. Classical approaches to inferring psychological spaces focused

on using behavior (e.g., MDS). Modern approaches often take advantage of more that one

source of data and leverage recent advances in machine learning (e.g., DNNs). A coherent

integration of these pieces will be critical for scaling up the size and scope of cognitive

models.

Perceived similarity can change with context and experience. Psychological spaces can

be extended to do the same. An early, and still widespread, approach is to use a parameter-

ized similarity function where attention weights stretch and contract the different dimen-

sions of the psychological space. Complementary to a parameterized similarity function,

the psychological representation can be updated following proscribed rules. For example,

neural networks can be used be used to model sequentially dependent psychological spaces

(i.e., network layers) where changing weights between the layers reflects changing experi-

ence. While existing approaches are powerful, current models fall short of capturing the

full dynamics of human-perceived similarity.

SUMMARY POINTS

1. Relative comparisons and second-order isomorphism are a recurring principle in

cognitive science. The principle occurs at multiple levels of analysis, from the

neurophysiology of early vision to the analysis of human similarity judgments.

2. The similarity-representation duality states that a representation is only meaningful

in the context of a similarity function. Likewise, a similarity function is only mean-
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ingful in the context of a defined representation space. Consequently, the choice of

a similarity function and representation is not arbitrary.

3. Three popular frameworks for psychological spaces are geometric, set-theoretic, and

graph. While these frameworks have different affordances and capabilities, research

has resolved some of these differences (such as representing hierarchies) with modern

generalizations (e.g., non-Euclidean geometries).

FUTURE ISSUES

1. Scaling up cognitive models by using modern techniques and machine learning best

practices.

2. Combat bias present in off-the-shelf modules such as CCNs and LLMs. Without

appropriate intervention, these modules can amplify existing bias.

3. Continuing to discover theoretical connections between different types of psycholog-

ical spaces, potentially resulting in a standard framework for studying psychological

spaces.

Moving forward, large datasets, machine learning advancements, and new technologies

present significant opportunities and challenges. In particular, there are opportunities to

scale up. Scaling up means using increasingly larger datasets at all levels: stimulus, neural,

and behavioral data. Scaling up requires the integration of modern techniques for stor-

ing and processing large datasets. Fortunately, the ability to use large datasets is baked

into standard machine learning frameworks like TensorFlow and PyTorch. Machine learn-

ing frameworks pull in state-of-the-art approaches for efficient training, such as the latest

gradient decent optimizers, learning rate schedules, regularization techniques, and early

stopping. Collectively, all of these tools reduce the barrier to training cognitive models on

large datasets.

Scaling up also inherits some challenges. First, Psychology researchers must become

well-versed in current software tools and best practices. Second, Models are only as good as

the data they are trained on and it is has become abundantly clear that many models—such

as LLMs—pass on and potentially amplify historical biases. Likewise, datasets and models

can differ in their respect of personal privacy. For example, as of March 11, 2021, the

ILSVRC image dataset is available will people’s face blurred and it is strongly encouraged

that researchers use the new privacy-aware version. Psychology researchers will have to

stay vigilant; implementing custom remediations when possible or quickly adopting the

remediations shared by others. In the absence of vigilance, the psychological research risks

disseminating biased knowledge and making things worse. With these pitfalls in mind, the

opportunities for wide-scale, high-impact research is enormous.

Research has generated a diverse zoo of models that depend on psychological spaces.

Along the way, interesting connections have been made between seemingly distinct ap-

proaches. The debate between similarity functions based on Laplace of Gaussian distribu-

tion was resolved by taking into account encoding noise If Euclidean approaches are general-

ized to include hyperbolic spaces, then the weakness highlighted by Tversky and colleagues

(Tversky & Gati 1982, Tversky & Hutchinson 1986) is largely resolved. Shepard’s theory of
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generalization can be case in a more general Bayesian framework that subsumes a version

of Tversky’s set-theoretic model of similarity (Tenenbaum & Griffiths 2001). The cognitive

models GCM and ALCOVE are closely related to a statistical model called kernel logistic

regression (Jäkel et al. 2008). There is even a deep connection between deep neural net-

works and exemplar-based (i.e., RBF networks) (Maruyama et al. 1992). Future work will

continue to resolve differences and assemble stronger, more versatile psychological spaces.
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