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Abstract: Cognitive scientists often infer multi-dimensional representations from data.

Whether the data involve text, neuroimaging, neural networks, or human judgments, re-

searchers frequently infer and analyze latent representational spaces (i.e., embeddings). How-

ever, the properties of a latent representation (e.g., prediction performance, interpretability,

compactness) depend on the inference procedure, which can vary widely across endeavors.

For example, dimensions are not always globally interpretable and the dimensionality of

different embeddings may not be readily comparable. Moreover, the dichotomy between

multidimensional spaces and purportedly richer representational formats, such as graph rep-

resentations, is misleading. We review what the different notions of dimension in cognitive

science imply for how these latent representations should be used and interpreted.
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Glossary

• Observable Data: Data associated with a directly observable measurement (e.g., a

photodiode measuring photon wavelength).

• Input Data: Data that is input into an embedding algorithm. The input data may be

directly observed or the outcome of a previous processing step. Input data does not

have to be multidimensional, for example it may be text or graph-like.

• Embedding or Encoding Algorithm: An algorithm that trains a mathematical entity,

sometimes called an encoder, using input data and (optionally) target data.

• Encoder: A mathematical entity that maps from input space to a latent space.

• Latent or Embedding Space: The learned multidimensional space that is a transforma-

tion of the input space. Typically, embedded data captures some notion of proximity,

i.e., similar items from the input data tend to be neighbors in the embedding. The

specific notion of proximity is determined by the particular algorithm used to infer the

embedding.

• Dimensionality: The number of dimensions present in a given multidimensional repre-

sentation, which is a consequence of both the input data and the embedding algorithm.

• Manifold: A relatively contiguous lower-dimensional space that exists within a higher-

dimensional space.
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Inferring the unobservable

Formal models of cognition are a cornerstone of cognitive science. Broadly speaking, formal

models use various mathematical entities—such as vector spaces and functions—to explicitly

describe mental representations (the content) and mental processes (how mental content is

transformed). When a cognitive model adequately mirrors a biological target, the model

provides a tantalizing glimpse of the representations and processes used by the brain. Mod-

eled representations reveal how people experience the world and open the door to answering

age-old questions, such as “Do two people experience the color red the same way?”. But

modeled representations can do so much more, they can reveal what people notice and what

they miss. For example, a dermatologist may quickly recognize that a skin lesion is malig-

nant while a novice remains oblivious to the diagnostic features. In other words, modeled

representations reveal the boundaries of thought; the frontiers of one’s experienced reality.

Unfortunately mental representations cannot be directly observed, they must be inferred.

And the inference process opens Pandora’s box.

Since mental representations are not directly observable, the inferred mathematical en-

tities are often referred to as hidden representations, latent representations, or embeddings.

To infer latent representations, researchers leverage observable data (see Glossary) from

a variety of sources such as human judgments, neuroimaging data, image datasets, large

text corpora, and neural network models. Across these diverse sources of data, the general

objective remains the same; discover informative latent dimensions. For example, it is not

the pixels in a photograph that are interesting, but the increasingly abstract latent features

(such as edges, corners, and faces) that empower the brain to make sense of the world. In
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other words, observable data are merely a stepping stone towards revealing the statistical

regularities that a brain exploits.

A rich space of techniques exists for extracting insightful latent dimensions, loosely re-

ferred to as encoding algorithms or embedding algorithms. Widely used examples

include Principal Component Analysis (PCA) [1, 2] and t-SNE [3], but a bustling zoo of

familiar and exotic algorithms exists for discovering latent dimensions [1, 2, 4, 5, 3, 6–8].

Although all embedding algorithms share the same general objective, there are meaningful

differences. On the input side, different algorithms place restrictions on the type of data

they can ingest. On the output side, different algorithms prioritize different latent space

properties—such as prediction performance, transformation type, interpretability, and com-

pactness. Collectively, these differences create a space of trade-offs, where researchers must

decide which properties best suit their goals. Seemingly minor algorithmic differences can

have unintuitive consequences for the inferred latent space. For example, the latent space

dimensions may have limited interpretability. Or the dimensionality of the latent space

may be unrelated to the number of so-called “true” dimensions of the task. Or structurally

dissimilar latent spaces may fit the input data equally well. The remainder of this ar-

ticle expands on key considerations when inferring latent spaces. Before diving in, it is

worth pausing for a moment to unpack the metamorphosis that occurs during an embedding

transformation.
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Dimensions before and after

A dimension is a basic building block that contributes to a multidimensional structure. But

the meaning of a dimension changes when mapping from dimensions defining an observable

space to those defining a latent space. Observable data is fundamentally anchored in reality;

it is as close as we can get to an objective measure of something that physically exists.

In the case of multidimensional observable data, each dimension quantifies how a specific

observable feature varies, such as the wavelength of light absorbed by a single photodiode.

After observable data are embedded, the meaning of a dimension is altered in two funda-

mental ways. First, the new latent dimensions are not guaranteed to correspond to something

globally interpretable. In other words, the new dimension may not have an easy to articu-

late label since each latent dimension may use a sprinkling of all observable dimensions. We

return to the issue of interpretable dimensions later.

The second fundamental difference is that latent dimensions do not necessarily exist in

the real world. Latent dimensions are unobserved variables that can be estimated from input

data. When someone looks at a photograph of a bird, the latent features burst into awareness

so rapidly that there is an illusion that the features always existed out there. But photons

do not carry metadata stating “the last thing I bounced off of was an orange beak”. Latent

visual features like an orange beak do not actually exist in the visual world—they must be

inferred and rendered by the perceptual machinery of our minds. You might be thinking, of

course the bird beak exists. While that is true, the bird exists in terms of physical atoms.

The visual features are inferred by our mind and at least one processing step removed from

reality. This distinction is made apparent by converting the pixels of a photograph into a
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table of numbers. Reformatted this way, our existing perceptual machinery is completely

derailed and the latent dimensions fail to materialize in our mind’s eye.

At times, it is easy to think nothing profound has occurred when mapping from observ-

able dimensions to latent dimensions, but good latent dimensions are the heart of cognitive

models. Despite the unquestionable utility of latent dimensions, “latent” is still a polite way

to refer to something made-up, albeit in a data-driven way. Given the data-driven aspect

of embeddings, it is important to recognize that an new set of input data could drastically

change the inferred latent space. There is a balance to be made between researchers sharing

out imaginary (but promising) dimensions and reminding fellow researchers to hedge their

bets. In the absence of extraordinary evidence, the research community should remain cau-

tious of designating a particular latent space as having the final say. At any time, a new

embedding approach could be invented or additional data could become available that shakes

up the status quo.

Engineering desirable latent dimensions

Observable data by itself, provides limited insight and must be processed using algorithms

that reveal valuable informative dimensions. It may be tempting to believe that the inferred

latent dimensions are the objectively “true” dimensions. However, it is important to recog-

nize that different algorithms optimize different properties; meaning that there is no single

latent space that is objectively correct. Rather, the optimal latent space is the one the best

suites the research question. For example, both the Big Five Inventory[9, 10] and HEXACO

[11] provide low-dimensional latent spaces for describing personality traits, but HEXACO

6



may make better predictions for moral and ethical behavior. Likewise, inferred latent dimen-

sions are highly dependent on the input data. When the input data is primarily derived from

undergraduates in western universities, the latent dimensions may not be representative of

the wider world [12].

When selecting an embedding algorithm there are five key considerations. On the input

side, (1) one must select an algorithm that accommodates the structure of the input data.

On the output side, different algorithms prioritize different latent space properties: (2)

prediction performance, (3) transformation type, (4) interpretability, and (5) compactness.

A small preview of embedding algorithms and their properties are summarized in Table

1. For a brief discussion of practical considerations see Text Box 2. These properties often

trade-off against one another, forcing researchers to prioritize based on their objectives. Each

of these considerations is unpacked in more detail below.

Input source and structure

Observable data can be obtained from remarkably different sources. Intuitive examples in-

clude measurements of sensory modalities, such as as photon wavelengths, audio frequencies,

and the outputs of gas chromatography-olfactometry. Various techniques also yield observ-

able data beyond everyday sensory information. MRI sensors detect the energy released

from protons, yielding multidimensional voxel data. EEG measures electrical activity, where

each electrode channel yields a separate dimension.

Embedding algorithms can directly ingest observable data, but more generally ingest

input data that is derived from observable data, but has already undergone an arbitrary
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Table 1: Properties of a handful of latent space algorithms.
Method Input Structure Transformation
PCA multidimensional linear
ICA multidimensional linear
Factor analysis multidimensional linear
Fourier transform multidimensional linear
Linear Discriminant Analysis multidimensional linear
Canonical Correlation Analysis CCA multidimensional linear
Kernel PCA multidimensional nonlinear
Isomap multidimensional nonlinear
Locally linear embedding (LLE) multidimensional nonlinear
Hessian LLE multidimensional nonlinear
Laplacian eigenmaps multidimensional nonlinear
Generalized discriminant analysis (GDA) multidimensional nonlinear
Autoencoders multidimensional nonlinear
Nonnegative Matrix Factorization (NMF) multidimensional nonlinear
t-SNE multidimensional nonlinear
t-STE inequalities nonlinear
UMAP inequalities nonlinear
Poincaré inequalities, graphs nonlinear
GloVe text corpora nonlinear
Word2Vec text corpora nonlinear
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number of transformations. For example, raw photodiode readings are first converted into

discrete pixel values via low-level photo-processing steps. Likewise, fMRI signals are first

converted into calibrated voxel data via sophisticated processing pipelines like fMRIPrep [13].

Embedding steps can also be chained to create an arbitrary sequence of data transformations

where the output of one embedding step is passed as input to the next embedding step; as

is the case in deep neural networks.

So far we have outlined how input data varies along two axes: (1) variety in source

and (2) variety in the extent of prior processing. A third axis concerns the structural form

of input data. For example, the input data may be arranged as a table of numbers (i.e.,

multidimensional data), a set of ordinal relationships (e.g., human preference judgments),

a graph of nodes and edges, or a large body of text. Historically, embedding algorithms

have focused on ingesting multidimensional data, such as in the case of PCA [1, 2], ICA [4],

autoencoders [7, 8], and t-SNE [3]. But embedding algorithms can embed arbitrary input

data in a multidimensional space.

In cognitive science, a common source of data comes from collecting human similarity

judgments (e.g., stimulus Q is more like stimulus A than stimulus B). A diverse family

of embedding algorithms exist that transform ordinal similarity judgments into a multidi-

mensional representation where each stimulus is represented as a point in the latent space

[14–27]. Many of these algorithms do not have formal names, but fall into the general fam-

ily of multidimensional scaling algorithms or psychological embeddings. The inferred latent

dimensions formalize the notion of psychological distance; where similar items occur close to-

gether (Figure 1e). Analogous embedding algorithms also exist for categorization confusion

matrices, pairwise ratings [28, 29], odd-one-out judgments [30], arrangement data [31, 32],
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and non-human paradigms [33, 34]. Embedding algorithms can also be guided by asking

participants to rate the degree that a particular stimulus (image of a cat) exhibits a particu-

lar feature (“is stealthy”) [35, 36, 29]. In all of these efforts, the similarity function chosen to

model behavior may be pragmatic or reflect theoretical assumptions, such as how the brain

represents and processes information [37].

Embedding algorithms can also ingest text corpora in order to produce multidimensional

word embeddings [38, 39] and sentence embeddings [40]. Perhaps easiest to understand are

word embedding algorithms that leverage the co-occurrence statistics of words, which counts

how often a pair of words co-occur within a specified window (Figure 1f). Words that co-

occur in similar contexts likely have similar meanings. For example, pet animal words are

likely to co-occur with the phrase “water bowl”. Word embeddings have also been extended

so that every word is represented as a multivariate Gaussian distribution in the multidi-

mensional space [41]. In such a space, the covariance matrix of the Gaussian can capture

properties like lexical entailment. For example, the concept “mammal” may exhibit a large

Gaussian that overlaps the concepts “bear”, “otter”, and “whale”. Modern multidimensional

word embeddings have been shown to capture linguistic hierarchical structure [42], further

demonstrating the breadth of possible meanings for multidimensional spaces.

The notion of latent dimensions can even capture graph structure, where connected nodes

are embedded as nearby points (Figure 1d). Graph embeddings deserve special mention

because hierarchical graphs have long been argued as a case that multidimensional spaces

struggle to adequately model [43–45]. Modern embedding algorithms have demonstrated

that graphs can be embedded in multidimensional spaces [46–48]. Hierarchical graphs can

be embedded in multidimensional spaces by exploiting properties of hyperbolic spaces [49,
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50], which tend to require fewer dimensions relative to their Euclidean counterparts when

modeling hierarchical data [49]. Some behavioral data, such as smells, are well-described by

a hyperbolic space [51]. Graph embedding algorithms highlight how the distinction between

graph data and multidimensional data can be superficial. Sometimes it is possible to generate

topological signatures to assess whether data are better described by the curvature in a

Euclidean or hyperbolic latent space [52], which have been used to argue spatial maps are

hyperbolic [53].

Prediction performance

Perhaps the most important property of an embedding algorithm is the preservation of

information when mapping from input space to latent space. A good latent space will

retain the key statistical regularities present in the input data while discarding noise. The

appropriate metric for assessing preservation of information will vary by application, but can

be loosely described as the prediction performance of the latent space. For example, after

applying PCA one could measure the total variance explained by the latent dimensions.

Likewise, if the latent representation is used in a downstream image classifier, then the

embedding algorithm could be scored on its ability to embed a test image among neighbors

of the same category. Prediction performance can be expounded further by considering

whether an approach permits out-of-sample predictions and estimates of uncertainty.

Prediction performance may vary for trained items (i.e., within-sample) versus test items

(i.e., out-of-sample). Out-of-sample predictions are important because they enable an en-

coder to generalize to novel situations. For example, a mammogram encoder will have
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limited practical value if it cannot embed X-ray images obtained from new patients. Inter-

estingly, many algorithms cannot perform out-of-sample generalization, although much work

has been done to extend popular approaches [54, 55]. In contrast, artificial neural networks

naturally make predictions for novel inputs. Out-of-sample generalization may suffer from

overfitting, which can be framed as a separability versus generalization trade-off [56] or an

efficient versus robust trade-off [57].

A second factor in prediction performance is the ability to generate uncertainty esti-

mates. Algorithms can learn point estimates or distributions for each embedded sample.

Learning an embedding with uncertainty estimates has the advantage of describing both the

most likely location (e.g., mode) of the embedding point and how confident we can be of

the embedded location. Various techniques are available to learn uncertainty embeddings,

such as variational inference autoencoders [8], variational psychological embeddings [23] and

epistemic neural networks [58]. Uncertainty information can help inform downstream anal-

ysis, such as identifying latent space regions that exhibit individual differences, estimating

the significance of a treatment condition, or computing expected information gain within a

active learning paradigm [23, 59].

Transformation type

The type of transformation has a large impact on the final inferred latent space. Broadly

speaking, the type of transformation can be characterized by the linearity of the embedding

transformation and the change in dimensionality. A transformation of the input space is typ-

ically (but not always) performed with the additional goal of discovering a lower dimensional
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latent space. A lower dimensional latent space is typically desirable because it transforms

a large number of (likely) uninformative dimensions into a smaller number of informative

dimensions. For example, face space is a low dimensional space that can be used to describe

the perceived similarity between human faces and can help explain face distinctiveness [60].

In contrast, an embedding transformation can also be used to discover a larger dimensional

latent space, such as when ICA is applied to image pixels to discover a rich set of latent

dimensions that look remarkably like V1 receptor fields [61].

When restricted to linear transformations, the new dimensions embody relatively simple

changes (Figure 1a-b). Popular methods of linear transformations include PCA [1, 2], ICA

[4], Fourier transform, factor analysis [62], and tensor-based dimensionality reduction [63, 64].

In contrast, a nonlinear transformation—such as t-SNE [3]—allows the new dimensions to

describe a drastically different space, potentially twisting and turning through the original

space (Figure 1c).

The consequences of dimensionality reduction are different for linear and nonlinear ap-

proaches. For linear approaches, dimensionality reduction may involve identifying a set of

latent dimensions that explain the most variance and excluding any remaining latent di-

mensions (Figure 1a). For example, if two input dimensions are highly correlated then one

of the dimensions can be dropped. In contrast, nonlinear dimensionality reduction algo-

rithms often assume that data are not distributed in a uniform way, but that the data points

are distributed in relatively contiguous sheets (i.e., manifolds) that twist and turn in a

larger multidimensional space. When the manifold assumption is true, the empty parts of

the original space can be “squeezed” or “flattened” out (see Text Box 1 for an example).

This assumption is known as the “manifold hypothesis”. Widely used nonlinear dimension-
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ality reduction algorithms include ISOMAP [5], t-SNE [3], UMAP [6], and various flavors

of autoencoders [7, 8]. Other nonlinear dimensionality reduction algorithms include kernel

methods [65], local linear embedding [66], Laplacian eigenmaps [67], Hessian eigenmaps [68],

and local tangent space alignment [69].

Cognitive scientists have developed a diverse set of application-specific dimensionality

reduction methods. Neuroscience has been particularly prolific in developing dimensionality

reduction algorithms that can ingest neural population activity [70]. Neuroscience specific

methods range from diffusion embedding for connectivity data [46], delayed latents across

groups (DLAG) for neurophysiological recordings [71], and calcium imaging linear dynamical

system (CILDS) [72]. The concept of low-dimensional manifolds has invigorated discussions

around the brain’s latent representations, proving fruitful for studying motor [73] and spatial

representations [53].

Interpretability

Cognitive scientist are often interested in uncovering psychologically interpretable dimen-

sions in order to advance mechanistic hypotheses. For example, latent dimensions can define

a motor space with separate preparation and execution dimensions [73]. While the interpre-

tation of a observable dimension is self-evident, the interpretation of a latent dimension is

not straightforward. The specifics of the embedding algorithm—such as linear or nonlinear

latent dimensions—influence the manner of interpretation.

There are two forms of interpretability. In its strong form, interpretability means that

each dimension has a clear interpretation independent of the other dimensions. For example,
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the second dimension of a latent space may correspond to “wingspan of a bird” where lower

values mean smaller wingspan. The strong form can be framed as global interpretability—the

interpretation holds for the entire dimension regardless of where you are on the dimension.

This strong form of interpretability is often referred to as a disentangled representation in

machine learning [74]. In contrast, a dimension may only have local interpretability—the in-

terpretation of the dimension changes as you gradually move along the dimension (Figure 2c).

Given sufficient input data that is not pure noise, an embedding should at least have local

interpretability. In practice, an embedding may not appear to exhibit local interpretability

if the input data contains too few samples. For both global and local interpretability, al-

though the dimensions capture a clear statistical regularity, it may be difficult to articulate

a description of the dimension using natural language.

In our estimation, when cognitive scientists discuss dimensions they are often referring

to globally interpretable dimensions, perhaps because such dimensions are the most intu-

itive and the simple stimuli of early methods yield such spaces. The colloquial prominence

of globally interpretable dimensions is likely encouraged by cognitive models that deploy

dimension-wide attention to expand or shrink the extent of a dimension, thus altering per-

ceived similarity [75–77]. Relatedly, globally interpretable latent dimensions are a highly

desirable outcome since such representations provide actionable insight, such as helping re-

searchers understand how representation spaces in the brain change as a function of learning

[78–81]. Interpretable latent dimensions could be used to design more efficient training pro-

grams. For example, if the latent dimensions reveal a diagnostic dimension of malignant skin

lesions, then training can be structured to emphasize learning the diagnostic dimension.

If globally interpretable dimensions are a high research priority, this property should be
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deliberately balanced with other properties. To bias the inferred latent space towards glob-

ally interpretable dimensions, one option is to use algorithms that employ non-negativity

constraints that force the discovery of sparse, part-like representations [30, 20, 82]; although

this will likely come at the cost of needing a latent space with substantially more dimensions.

By employing non-negative constraints, each dimension is biased to code for part-based fea-

tures, promoting compositional representations that tend to be easy to articulate. Similarly,

demixed PCA is capable of exposing the dependence of the neural representation on task

parameters such as stimuli, decisions, or rewards [83, 84].

Compactness

In light of the properties introduced above, one can see why it is problematic to make

absolute claims about the number of “true” latent dimensions. For example, one could trade

a lower dimensional, locally interpretable space for a method that yields a higher dimensional,

globally interpretable space. Although both solutions may fit the input data equally well,

they will differ in the number of dimensions recovered. Going the other direction, a researcher

could employ non-linear transformations or hyperbolic spaces in order to obtain a compact

lower dimensional representation. When work indicates that the measured dimensionality

of the neural representations in PFC is high [85], that neural codes are confined to low-

dimensional latent spaces [70, 84], or that neural codes actually exist in high-dimensional

spaces [86], it is important that these results are also qualified by employed embedding

technique and the corresponding properties being prioritized.

A potential improvement over reporting dimensionality, is to report the intrinsic dimen-
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sionality, which can be thought of as the smallest dimensionality possible at the expense of

all other properties. However, methods for computing intrinsic dimensionality can still be

sensitive to factors like the distribution of points and curvature of the latent space, so care

must be taken to use modern methods that are robust to these complications [87, 88].

Regardless of reporting dimensionality or intrinsic dimensionality, it is our view that

researchers should make clear which latent space properties are being prioritized (e.g., pre-

diction performance, globally interpretable dimensions, compactness). Dimensionality by

itself is not a good indicator of the amount of information in a representational space.

Rather, one should aim to make dimensionality comparisons between representations that

are derived with comparable assumptions [79]. High-quality work that includes analyses

of the functional or intrinsic dimensionality of a dataset [86, 89] is still bounded by the

assumptions baked into intrinsic dimensionality computations.

Selecting and comparing latent spaces

If one is seeking a one-size-fits all embedding solution, the trade-offs introduced above should

make it clear that such a solution does not exist. The natural course of research will inevitably

lead to a need to select the latent space(s) that best meet the research objective. Model

selection can be performed by directly comparing candidate embeddings spaces or indirectly

comparing embeddings via performance on a downstream task.

A direct comparison can identify how two latent spaces agree and diverge, which in turn

suggests information that is shared or distinct between the two sources of input data. For

example, one may want to know whether the latent representation of fMRI data from a
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particular brain region is capturing high-level semantic information (such as “this item is

edible”) versus lower-level feature information (“this item is yellow”). One way to address

this question is to compare the latent representation of fMRI data to latent representations

based on category membership (limes and tennis balls will be in distinct clusters occurring

far apart) versus latent representations based on low-level features (limes and tennis balls

will be intermixed because they are both round and green) [90]. Likewise, one may want

to compare the latent represent of fMRI data from a particular brain region to the latent

representation of different layers of a deep neural network in order to find which parts of a

neural network best correspond to specific regions of a brain [91]. Many different types of

representation comparisons are popular in cognitive science, such as brain versus behavior,

model versus brain, model versus model [92], and language versus language. For example,

the function of a brain region can be clarified by finding a correspondence between a latent

space derived from a region’s brain activity and a latent space derived from a cognitive model

fit to behavior [93]. All of these comparison enable researchers to quantify differences and

highlight deficiencies in a candidate embedding.

Latent spaces are in agreement if they display second-order isomorphism [94]. For exam-

ple, the image of a crow is the nearest neighbor of the image of a raven in both latent spaces.

Second-order isomorphism does not require the coordinate values or the dimensionality of the

two spaces to match. Instead, the notion of match is more abstract—the patterns between

the points in the two spaces need to display the same relations. For example, consider a set of

points randomly arranged in a two-dimensional space. If one made a copy of this space and

rotated it by 90 degrees, the new space would have a completely different set of coordinate

values, suggesting that the two representations are different. If instead one considered the
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relationships between the points—such as pairwise distances—one would conclude that the

two spaces describe an identical set of relationships. In this simple example, the two spaces

are perfectly isomorphic, but in practice matches are imperfect and evaluating alignment

between two spaces can be challenging.

The optimal method for comparing representations is an ongoing research problem.

Numerous techniques exist and each has limitations and built-in assumptions. Popular

techniques for comparing representations include representational similarity analysis (RSA)

[95, 90] and canonical correlation analysis (CCA) [96–98]. Briefly, RSA is a method for

comparing two representations that assesses the correlation between the implied pairwise

similarity matrices. CCA is a method that compares two representations by finding a pair of

latent variables (one for each domain) that are maximally correlated. While RSA and CCA

remain popular, their limitations have spurred researchers to develop more robust methods

[99, 100]. Adjustments to RSA include the similarity metric Centered Kernel Alignment

(also known as the RV coefficient) [101–103], unbiased CKA [104], feature-reweighted RSA

[105], and extensions for handling noise [106]. Numerous CCA variants have been intro-

duced to make the approach more widely applicable, such as probabilistic CCA [107, 108],

kernel CCA [109], deep CCA [110], sparse CCA [111], and projection weighted CCA [92].

Techniques also exist beyond RSA and CCA, such as pattern component modeling [112].

One practical strategy for selecting between different latent spaces is to assess perfor-

mance on a downstream task. For example, one could evaluate the ability of deep neural

network embeddings to correctly predict different aspects of human behavior, such as simi-

larity judgments [18, 23], categorization performance [113, 114], categorization performance

using degraded images [115] and trial-by-trial categorization error consistency [116]. The
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advantage of this strategy is that it allows comparing latent spaces with very different as-

sumptions since the downstream task can be agnostic to the particular embedding details.

The drawback of this approach is two-fold: researchers must define how the embedded

coordinates are mapped to observable behavior and the target behavioral data (e.g., catego-

rization performance) may not be available. In practice, one can evaluate multiple methods

for assessing correspondence and choose the one that performs best on some gold standard.

Following machine learning best practice, one suggestion is to use holdout data, or simulated

data to select the most appropriate procedure.

Concluding remarks

Embedding algorithms provide an exciting and powerful technique for understanding the

content of mental representations. Embedding arbitrary input data is a key component of

cognitive science research with many open avenues for research (see Outstanding Questions).

When studying and communicating results it is important to realize that different algorithms

bestow different interpretations on the recovered dimensions. Multidimensional representa-

tions are extremely flexible: capable of condensing high-dimensional representations down to

low-dimensional spaces, representing part-like features with high interpretability, and cap-

turing graph-like relationships. The extreme flexibility of multidimensional spaces means

that superficially different representations can capture underlying structure equally well.

As a consequence, gross measures like dimensionality convey little on their own; more di-

mensions does not mean more information. Instead, researchers need to make controlled

comparisons paying attention to the strengths and weaknesses of different comparison meth-
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ods. Defaulting to a single comparison method like intrinsic dimensionality, CCA, or RSA

risks overlooking novel insight. While this focuses on comparisons between latent spaces for

purposes of data analysis and theory evaluation, one exciting possibility is that biological

systems also balance these trade-offs (see Text Box 3) and learning itself may proceed by

comparing and aligning different latent spaces in an unsupervised fashion [117].
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Elements

Figure 1 Caption: Examples of latent dimensions derived from six different datasets.

Each sub-panel depicts the input data and any input dimensions (gray), followed by the

latent dimensions (red) that best capture the structure of the data. (a) Latent dimensions

are linear and orthogonal to one another (e.g., PCA). (b) Latent dimensions are linear,

but not necessarily orthogonal to one another (e.g., ICA). (c) Latent dimensions can be

nonlinear, curving through the original space (e.g., ISOMAP, t-SNE, UMAP). (d) Latent

dimensions are derived from a hierarchical graph and embedded in a hyperbolic space (e.g.,
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Poincaré embedding). (e) Latent dimensions are inferred from ordinal similarity relations.

For example s1: s2 > s3 means that given stimulus s1, participants judge s2 to be more

similar than s3. (f) Latent dimensions are inferred from a text corpora.

Figure 2 Caption: Example demonstrating the difference between global and local in-

terpretability of multidimensional spaces. (a) input dimensions (columns) of a set of input

data composed of nine concepts (rows). A darker cell means more of a particular feature.

(b) A two-dimensional projection of the first two input dimensions where each dimension is

globally interpretable. (c) An analogous non-linear embedding of the input data where the

latent dimensions are locally, but not globally interpretable.

Text Box 1: Manifold example As a simple example of a twisty manifold, consider a set

of images that are each 100×100 pixels, where each pixel can be either black or white. Each

image depicts a single black circle on a white background. All images are unique since the

circles vary in both size and location. In its input form, each image has 10,000 dimensions

(one dimension for each pixel). With respect to input space, each image can be thought of

as a point in the 10,000 dimensional space. Even with many unique images, vast regions of

the 10,000 dimensional space will be unoccupied. For example, you will never encounter an

image with an isolated black pixel, so all coordinates corresponding to an image with isolated

black pixel will be unused. Occupied parts of the space will tend to be clumpy—circles that

have a similar radius or slightly different center will occur close together in pixel space. The

vast unused regions of pixel space suggest that a lower dimensional latent space is possible.

By construction, we know this to be true. The data associated with these images can be re-
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described using three latent dimensions: an x- and y-coordinate describing the center of the

circle and the radius of the circle. The new latent space is more concise and the underlying

structure of the stimuli is made clearer.

Text Box 2: Practical considerations In addition to key theoretical considerations,

practical considerations must also be taken into account when selecting an embedding algo-

rithm. The impact of computational efficiency varies by application, but typically becomes

more important as the problem size grows. For small problems on the order of a few hun-

dred data points, popular embedding algorithms easily find solutions within a few seconds

on widely available hardware and most computational inefficiencies can be ignored. But as

problems grow, it becomes increasingly difficult to ignore computational inefficiencies be-

cause poor design choices can preclude discovering solutions within a reasonable timeframe.

Some algorithms will be more or less prone to getting stuck in local optima and finding

degenerate solutions. Different algorithms will also have varying memory and storage re-

quirements. For example, non-negative embedding algorithms typically require substantially

more dimensions—thus more memory and storage—than an equally accurate unconstrained

embedding algorithm. In this case, there is a substantial trade-off between interpretability

and model size. In a similar vein, estimating uncertainty using Markov chain Monte Carlo

methods will scale poorly compared to variational inference [118].

Text Box 3: Trade-offs in biological systems Biological systems, like researchers,

also aim to balance potentially competing demands. The balance can shift depending on the

task and available resources. In some cases, interpretability may be of primary importance
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whereas in other cases compactness may be paramount. Almost all of the points above also

apply to an organism’s point of view. For example, brain regions need to communicate with

one another and eventually affect behavior. This “inside view” is sometimes neglected but

should be adopted to understand the function of biological systems.

The nature of the neural computation may determine what is the best representational

format. For example, when information is passed from one region to another region via

biological neural networks akin to a linear transformation then globally interpretable dimen-

sions may offer advantages. In this case, a linear transformation can more readily extract the

relevant information than when the same information is embedded in a lower-dimensional

manifold where dimensions have no obvious interpretation. Moreover, globally interpretable

dimensions may offer communicative benefits as they can readily align with language (e.g.,

the dimension of size easily maps to codified relations in language such as “bigger than”).

In other cases, the opposite may be true and the brain may choose not to decorrelate dif-

ferent dimensions in order to promote redundant communication across brain areas [119] or a

brain region may favor cells that have a mixed selectivity to boost coding capacity [89]. Like-

wise, low-dimensional manifolds with local interpretability may better support inter-region

communication when the readout network functions as a tuned receptive field, as in artifi-

cial radial basis networks. For example, the sparse coding of cells that selectively respond

to a particular celebrity [120] may be repackaged into a low-dimensional representation to

facilitate inter-region communication.

Latent representations may also exhibit varying degrees of specialized compartmental-

ization. At one extreme, a region may create a vast unified latent space, such as recently

proposed for category-selective visual regions [121]. At the other extreme, rather than ex-
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tracting a single shared latent space, the brain may find it worthwhile to maintain a set

of (nearly) orthogonal subspaces [122], as in the case of whisker contacts in rodents [123].

Resource costs in terms of required cells, metabolism, and wiring may lead the brain to favor

(when possible) more compact solutions that lack global interpretability, but invest in more

expensive solutions when it pays off.

Given the different trade-offs associated with latent space properties, it is plausible that

different brain regions emphasize different properties. The success of neuroscientists using

imaging techniques with limited spatial and temporal resolution in uncovering embedding

spaces suggests that in some cases neural representations are somewhat smooth and regular

[124]. The brain itself is not uniform in its circuitry and function, which means that globally

interpretable dimensions may be less likely in certain regions, such as prefrontal cortex [125].

Even within a region such as prefrontal cortex, the dimensionality found may be quite low

[126] or high [127], perhaps due to task differences. For example, over-training on a task

may lead to fine-grain, essentially overfit, representations. Even within the same region

of visual cortex with the same stimuli, minor task differences in how many aspects of a

stimulus is relevant for a decision can affect dimensionality estimates [79]. Activity in some

brain regions indicates representations live in a hyperbolic latent space [128], such as spatial

representation in the CA1 region of the rodent hippocampus [53] and early visual cortex

[129]. One possibility is that people rely on multiple embedding spaces with the relative

importance of each varying with context [130].
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