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Abstract

Learning to categorize objects involves learning which sources
of variability are meaningful and which should be ignored or
generalized. In this light, theories and models of category
learning can be viewed as accounts of how people capture
and represent meaningful variation. Similarity-based models,
such as prototype and exemplar models, cannot correctly pre-
dict that humans classify a stimulus halfway between the near-
est members of a low-variability and high-variability category
into the high-variability category. Distributional accounts, de-
scending from the unequal variance signal detection model,
can accommodate the result. We present a simple extension to
similarity-based models that allows them to display the sensi-
tivity to category variability that humans display. We conclude
by discussing what constitutes similarity-based representations
and processes and noting the points of convergence between
similarity-based and distributional approaches.

Humans operate in environments marked by variability. For
instance, categorizing a novel stimulus (e.g., determining
whether a person is friend or foe) involves generalizing from
past experiences that differ from one another and the current
situation.

In this light, models of category learning are accounts of
which sources of variability are meaningful and which should
be ignored (i.e., generalized). For instance, prototype models
abstract (i.e., average) across previous category members to
form a central tendency or prototype (Posner & Keele, 1968).
In prototype models, the meaningful way in which items vary
is in their similarity (i.e., distance) to category prototypes.

Exemplar models deem other sources of variability mean-
ingful. Rather than storing a summary of previously experi-
enced items as prototype models do, exemplar models store
every experienced example in memory (Medin & Schaffer,
1978). In exemplar models, the meaningful way in which
items vary is in the sum of their pairwise similarities (i.e.,
distances) to the exemplars representing each category.

Although prototype and exemplar models offer quite dif-
ferent accounts of how categories are represented, they both
use similarity-based processing and can make overlapping
predictions. Figure 1 illustrates a case in which these mod-
els’ predictions converge. Participants learned to classify
lines varying in length into one of two categories. Training
items are illustrated as dark triangles. The six items (L1–L6)
forming one category are relatively less variable than the six
items (H1–H6) forming the contrasting category. Following
training, participants classified a variety of items, including
some items that were not experienced during training, such
as item N6. These novel items are tests of how participants
generalize. Item N6 is of particular interest as it is halfway

between the nearest trained members (L6 and H1) of the low-
variability and high-variability categories.

Both prototype and exemplar models strongly predict that
participants will classify border item N6 into the low-variance
category because the same similarity metric is used for the
low-variance and the high-variance categories, and the pro-
totype for the low-variance category is closer to N6 as are
the exemplars forming the low-variance category. In con-
trast, distributional approaches, such as general recognition
theory (Ashby & Townsend, 1986) and the category density
model (Fried & Holyoak, 1984), predict that item N6 should
belong to the high-variance category. These distributional ap-
proaches are descendants of the unequal variance signal de-
tection model (Green & Swets, 1966) and represent variabil-
ity information separately for each category. Distributional
approaches seem normative in that they use information about
how members of a category vary from one another and this
information can potentially improve accuracy. In Figure 1,
the density functions of unequal variance depict the category
representations of a distributional model. The density func-
tion for the high-variability category is above the curve for the
low-variability category at N6’s location. Therefore, the dis-
tributional model predicts N6 belongs to the high-variability
category.

To foreshadow the results, participants are sensitive to the
variability across category members as predicted by distri-
butional models and classify the border item N6 into the
high-variance category. This result seems to undermine ex-
isting similarity-based approaches and favor distributional
approaches. However, given the remarkable success of
similarity-based models of categorization, it would be impru-
dent to discard this class of models out of hand. The core in-
tuitions underlying similarity-based models encompass con-
structs like the representativeness heuristic (Tversky & Kah-
neman, 1974). Moreover, findings like the inverse base rate
effect (Medin & Edelson, 1988) are problematic for distribu-
tional approaches. To reconcile this impasse, we present a
simple extension to a similarity-based model that allow it to
develop category representations that are sensitive to distribu-
tional information that unequal variance models can exploit.

In General Discussion, we will present related work in light
of our findings. We should briefly note that although numer-
ous studies have explored the effects of variability on cate-
gorization, the true nature and extent of these effects is far
from clear. Earlier work exploring the influence of category
variability has not been diagnostic in evaluating similarity-
based and distributional accounts (e.g., Homa & Vosburgh,
1976; Posner & Keele, 1968). Fried and Holyoak (1984)
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N1 N2 L1 . . L6 N3 N4 N5 N6 N7 N8 N9 H1 H2 H3 H4 H5 H6 N10 N11

Low-variability category High-variability category

Item

Length in pixels (100 pixels = 33.25 mm)

C1: 120 130 140 150 160 170 180 190 200 210 220 230 250 270 290 310 330 340 350

260 250 240 230 220 210 200 190 180 170 160 150 130 110 90 70 50 40 30C2:

. .

. .

Figure 1: Two categories differing in variability are shown. Dark triangles (L1–L6 and H1–H6) represent training items and
light triangles (N1–N11) represent novel items that did not appear during learning. The item lengths are spaced to scale.
Item N6 is exactly midway between the nearest studied members (L6 and H1) of the low- and high-variability categories.
Items in the low-variability category differ from the nearest studied member by 2 pixels, whereas items in the high-variability
category differ from the nearest studied member by 20 pixels. To eliminate possible influences of absolute line length on
performance, whether the high-variability category had longer (C1) or shorter lines (C2) than the low-variability category was
counterbalanced between participants. Border item N6 has the same length in both conditions. The two density curves illustrate
possible category representations for a distributional model and do not indicate information about the frequency of presentation
during the experiment.

found that critical transfer items that were closer to the low-
variability category but more likely to have been generated
by the high-variability category (under the generating process
used in training) were more likely to be assigned to the high-
variability category. However, it is not clear whether their
finding shows that people are sensitive to distributional infor-
mation above and beyond what similarity-based models track
because of the high dimensionality of the stimuli used and the
variability in stimuli actually encountered by individual par-
ticipants. 1 Thus, a new empirical investigation is needed that
provides a simpler and more direct demonstration of variabil-
ity learning. Here, we provide a strong test that distinguishes
between existing similarity-based and distributional accounts.

Experiment
Fifty University of Texas undergraduates learned to correctly
assign 12 line stimuli (represented by dark triangles labeled

1It has been argued that the critical transfer items in Fried and
Holyoak (1984) could have been more similar to specific training
examples from the high-variability category (e.g., Cohen, Nosofsky,
& Zaki, 2001; Stewart & Chater, 2002), though this might not have
been the case as the two categories did not overlap in their design
and the transfer stimuli were from an untrained region.

L1–L6 and H1–H6 in Figure 1) into category A or B through
trial by trial classification learning with corrective feedback.
The members of one category (L1–L6) varied relatively little
in their lengths, whereas the members of the other category
(H1–H6) were highly variable. The stimulus lengths in pix-
els (100 pixels = 33.25 mm) are displayed in Figure 1. To
eliminate possible influences of absolute line length on per-
formance (Ono, 1967), whether the high-variability category
had longer lines than the low-variability category was coun-
terbalanced between participants (see C1 and C2 in Figure 1).
Notice that item N6 has the same length in both conditions.

On each learning trial, one line was presented horizontally
at the center of a display and the text “Category A or B?” ap-
peared at the top left corner of the display. After responding
A or B, participants received visual (e.g., “Right! The correct
answer is A.”, “Wrong! The correct answer is B.”) and audi-
tory corrective feedback (i.e., a low-pitch tone for errors and
a high-pitch tone for correct responses). The visual feedback
(presented at the bottom left corner of the display) and the
stimulus were displayed for 2000 ms after responding. Par-
ticipants completed 10 blocks of learning trials. A block was
the presentation of each learning item in a random order.2

2The density curves shown in Figure 1 are illustrative of possi-
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Figure 2: Mean proportion of trials in which each stimu-
lus item was assigned to the high-variability category during
the transfer phase is shown. Dark triangles represent stud-
ied items and light triangles represent novel items. Item N6 is
midway between the nearest studied members (L6 and H1) of
the low- and high-variability categories. Items are not spaced
to scale (see Figure 1 for the physical scale).

Following learning, participants answered three addition
problems to prevent rehearsal of information from the learn-
ing phase. Finally, participants completed two blocks of
transfer classification. In each transfer block, participants
classified the 12 studied and 11 novel items (represented by
light triangles labeled N1–N11 in Figure 1) in a random or-
der as they did in the learning phase except that no corrective
feedback was provided in the transfer phase. Our main inter-
est was participants’ performance on the border transfer item
(N6) that was midway between the nearest studied members
(L6 and H1) of the two categories.

Results
As shown in Figure 2, border item N6 was more likely
to be classified into the high-variability than into the low-
variability category. Averaged across the two transfer blocks,
participants assigned item N6 to the high-variability category
with greater than chance probability (.69 vs. .5), t(49) = 3.86,
p < .001. In the first transfer block, more participants (33
of 50) classified item N6 to the high-variability category
than was expected by chance, exact binomial p = .033 (two-
tailed). The same pattern (36 of 50) was found for item N6
in the second transfer block, exact binomial p = .0026 (two-
tailed).

Extending Similarity-Based Models
As discussed in Introduction, existing similarity-based mod-
els, such as prototype and exemplar models, cannot accom-
modate the current finding demonstrating that humans are
sensitive to the variability across a set of category members.

ble mental representations and do not indicate information about the
frequency of presentation during the experiment.

In this section, a simple extension to similarity-based models
that use error-driven learning (e.g., Kruschke, 1992; Love,
Medin, & Gureckis, 2004) is proposed. The simulations of
a prototype (e.g., J. D. Smith & Minda, 1998) and an exem-
plar (e.g., Nosofsky, 1986) version of the model serve as an
existence proof that the similarity-based approaches can be
readily extended to account for findings supporting distribu-
tional approaches. Thus, the main goal of the modeling is to
evaluate the distribution learning mechanisms while keeping
other variables constant.
Prototype model The prototype version of the model rep-
resents each category with a single cluster (i.e., the proto-
type). Activation of cluster i, ai, is a Gaussian function of the
presented stimulus, x:

ai =
1√
2πsi

e
− (x−µi)

2

2s2
i (1)

where µi and si are the cluster’s mean and standard devia-
tion, respectively. The response probability for each category
is proportional to the activation of the corresponding cluster
(i.e., the probability matching response rule). For simplicity
it is assumed that µi corresponds to the true category mean
and is not participant to learning.

Standard deviations are learned by gradient descent:

∆si =−ε ∂
∂si

{1
2
(ti−ai)2} (2)

where ε is a learning rate and ti is the feedback to cluster i,
equal to α if the stimulus is in category i and 0 otherwise.
Equation 2 yields the following learning rule:

∆si = ε(ti−ai)
(x−µi)2− s2

i

s4
i
√

2π
e
− (x−µi)

2

2s2
i . (3)

The model was trained and tested in a trial-by-trial fashion
like the human participants. Figure 3 illustrates the dynamics
of the model simulated on the present experiment. This fig-
ure is based on an average over 100 separate runs, using the
parameter values ε = 28000, α = .04, and s0 = 14.

Prior to training, both clusters have the same standard devi-
ation of 14 and border item N6 is more similar to the cluster
representing the low-variability category because its proto-
type is closer to item N6. The model thus predicts that item
N6 should be classified into the low-variability category be-
fore training. Following training, the cluster encoding the
low-variability category is tightened to minimize unwanted
activations by items from the high-variability category, lead-
ing to a learned standard deviation of 9.5 (averaged across
runs). The cluster encoding the high-variability category is
similarly widened, leading to an average standard deviation
of 20.4. These effects are illustrated in the bottom panel of
Figure 3 (as predicted in Figure 1). Consequently, item N6
more strongly activates the high-variability category’s clus-
ter after learning. The ratio of cluster activations for item N6
leads to a .68 probability of selecting the high-variability cat-
egory, in close agreement with the empirical data.
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Figure 3: The activations of the clusters encoding the low-variability (cluster L) and high-variability categories (cluster H)
in the prototype model are shown for each stimulus item. Before learning, each cluster’s dispersion is equal and item N6 is
fewer standard deviations from cluster L’s than cluster H’s mean (indicated by arrows), leading to greater activation and higher
response probability for the low-variability category. The opposite pattern is observed after learning due to the tightening of
cluster L and the widening of cluster H, which makes the clusters relatively more responsive to their members, and item N6 is
now more likely to be assigned to the high-variability category. This process occurs for every exemplar in the exemplar model.

Exemplar model The exemplar version of the model rep-
resents categories by a separate cluster centered at each stim-
ulus and responds based on summing activations from each
category. The model is otherwise identical to the prototype
version.

The exemplar model learns to tighten the clusters in
the low-variability category and broaden those in the high-
variability category. The model was simulated for 100 runs
using the parameter values ε = 150000, α = .025, and s0 =
20. After learning, the mean cluster dispersions were 15.4 for
the low-variability category and 26.1 for the high-variability
category, leading to a .69 probability of classifying the border
item into the high-variability category. Consistent with the
current modeling, Nosofsky and Johansen (2000) extended
Nosofsky’s (1986) Generalized Context Model to include ex-
emplars with varying dispersions, though they did not specify
a learning rule for updating the dispersions.

A further test of the modeling approach Both the proto-
type and exemplar versions of the model predict that partic-
ipants should initially prefer to assign the border stimulus to
the low-variability category and that this preference should
reverse after training to favor the high-variability category.
Our Experiment demonstrated that participants prefer to as-
sign the border stimulus to the high-variability category after
training, but did not test whether participants initially prefer
the low-variability category. To test this prediction, 25 Uni-

versity of Texas undergraduates completed a one trial experi-
ment that evaluated their pre-training preference to assign the
border item N6 to the low- or high-variability category. Par-
ticipants were shown the two category prototypes and chose
to which category the border stimulus belonged. In this sin-
gle triad task, participants preferred (22 of 25) to classify bor-
der item N6 into the low-variability category, exact binomial
p = .00016 (two-tailed), consistent with the model’s predic-
tions.

Discussion
The current experiment examined the effect of category vari-
ability on classification behavior utilizing a category learning
procedure. Participants were trained on two artificial cate-
gories with one category more variable than the other. When
transferred to novel stimuli, participants classified an item
halfway between the nearest members of the two categories
into the high-variability category, suggesting that humans de-
velop distributional knowledge for categories, which they
use when making category judgments. Existing similarity-
based models, such as exemplar and prototype models, in-
correctly predict the border item should be assigned to the
low-variability category after training. The preference to as-
sign the border item to the high-variability category in the
current experiment is consistent with distributional accounts
but inconsistent with existing similarity-based accounts.
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The present work provides the first experimental demon-
stration of a preference for one category over another based
solely on differences in variability. Stewart and Chater (2002)
observed a preference for the higher-variability category only
when instructional manipulations and simultaneous presenta-
tion of all stimuli alerted participants to the category struc-
tures. Under more standard learning conditions, Stewart and
Chater (2002) found a preference to assign the border item to
the low-variability category, consistent with similarity-based
accounts, and thus their design was unable to discern between
similarity-based and distributional accounts. Rips (1989)
has shown preferences for the higher-variability category in
line with distributional accounts, but only by relying on pre-
existing knowledge and categories, as opposed to utilizing
well-controlled experimental manipulations and training pro-
cedures. Other studies have shown a decrease in similarity-
based responding with distributional manipulations, though
not to the point where the high-variability category was pre-
ferred (Cohen et al., 2001; Hahn, Bailey, & Elvin, 2005).
Cohen et al. (2001) did observe a preference to assign the
border item to the higher-variability category utilizing more
complex two-dimensional stimuli, which could invite atten-
tional explanations of performance.

Certain characteristics of the current experiment’s design
are likely responsible for the strong preference for high-
variability category. In the present design, the spacing be-
tween the low- and high-variability categories is large relative
to that in the previous studies (e.g., Cohen et al., 2001), which
could lead to a stronger influence of variability by decreasing
the border item’s similarity to either category.3 The differ-
ence in internal variance between categories is also larger and
thus more apparent in the current design than in the previ-
ous studies (e.g., Stewart & Chater, 2002). At the same time,
both categories have discriminable internal variance (i.e., par-
ticipants can appreciate that the categories contain multiple
members that vary from one another), in contrast to Cohen et
al.’s Experiment 1 in which the low-variability category con-
sists of a single item. The transfer phase in the present design
uniformly samples the space of possible stimuli, which, in
the absence of corrective feedback, stresses generalizing pre-
vious knowledge and reduces the chances of significant un-
supervised learning occurring during transfer. Furthermore,
the category variances in the present experiment are learned
through direct experience with the items.

We presented a simple extension to similarity-based mod-
els that allows them to address the current findings. Proto-
type and exemplar models were conceived as extreme cases
of clustering solutions in which prototype models devote one
cluster for each category whereas exemplar models devote
one cluster for each item (Love, 2005). In both limiting
cases, the clusters adaptively adjusted their tolerance of vari-
ability through an online training procedure that maximized
correct responding. Both the prototype and exemplar ver-
sions of the model correctly predicted that people’s prefer-
ence to assign the border item should shift from the low-

3We have replicated the same pattern of results in several exper-
iments, using slightly modified category structures. In these exper-
iments we have found a weaker preference for the high-variability
category when spacing between the categories is reduced, suggest-
ing our design benefitted from the large spacing between the two
categories relative to prior studies.

to the high-variability category with training. Because clus-
tering approaches span the gamut from prototype to exem-
plar models, the simulation results have broad applicability
to similarity-based approaches. We should note that although
an exemplar model was constructed to demonstrate the gen-
erality of our extension to similarity-based models, such an
extension seems antithetical to the fundamental tenets of the
exemplar approach as variability is not a characteristic of an
individual example.

Of course, the success of the current simulations raises the
issue of what counts as true similarity-based representations
and processes. The notion of similarity itself has evolved
over the last few decades so that similarity is now more of
a construct to be studied in its own right than a reductionist,
explanatory element. For instance, to explain the perceived
similarity of two objects or scenes, theories in the analogy
literature posit representations containing relations and com-
plex comparison operations that put these representations into
alignment (Gentner & Markman, 1997).

Closer to the present work, studies of variability and cat-
egorization have also found that stimulus representations
and the comparison processes stressed at test play major
roles in shaping performance. For example, Smith and Slo-
man (1994) found that Rips’ (1989) results favoring high-
variability responses to border items do not replicate when
people are given perceptually rich stimuli or do not engage in
verbal descriptions.

Conclusions
In conclusion, similarity-based accounts of category learn-
ing have the virtue of orienting research toward fundamental
representational and processing issues. It should not be sur-
prising if, as in the current work, the set of representations
and processes on which the field converges bears characteris-
tics of normative accounts, such as the distributional accounts
considered here. Indeed, a Bayesian account with a properly
specified prior on the category variability should be able to
accommodate the observed shift in people’s preference to as-
sign the border stimulus to the low-variability category before
training and to the high-variability category after training.

Augmenting similarity-based models has the potential to
ease theoretical conflicts. For instance, extended similarity-
based models may help resolve heated debates between re-
searchers advocating similarity-based representations (e.g.,
McKinley & Nosofsky, 1996) and those advocating distribu-
tional representations (e.g., Maddox & Ashby, 1998).

Furthermore, the present line of research can shed light
on how people categorize more naturalistic stimuli and how
the expertise to succeed at such tasks develops over training.
Though not tested using a supervised learning method, one
explanation for asymmetries in infant categorization (e.g.,
generalizing from dogs to cats but not from cats to dogs)
is that infants are sensitive to category variability (French,
Mareschal, Mermillod, & Quinn, 2004). A number of crit-
ical tasks, such as training non-native speakers to perceive
new speech sounds (e.g., Logan, Lively, & Pisoni, 1991),
depend on the learner’s experiencing a variety of category
members. Theories and models that help us understand how
people come to appreciate and represent meaningful variation
should provide useful guidance in devising training regimens.
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