21: 36 4 Decenber 2010

[Love, Bradley C.] At:

Downl oaded By:

THINKING & REASONING, 2010, 16 (4), 372-401 \_P Psychology Press

Taylor &Francis Group

When learning to classify by relations is easier than
by features

Marc T. Tomlinson and Bradley C. Love
University of Texas at Austin, TX, USA

Relational reasoning is often considered more resource intensive than feature-
based reasoning. This view implies that learning categories defined by
relational regularities should be more difficult than learning categories defined
by featural regularities. Unfortunately previous studies do not ground featural
and relational information in a common perceptual substrate. After
addressing this concern, a series of experiments compare learning performance
for relation- and feature-based categories. Under certain circumstances we find
faster learning for relation-based categories. The results suggest that
mechanisms rooted in relational processes (e.g., relative stimulus judgement,
analogical comparison) facilitate or hinder learning depending on whether the
relational processes highlight or obscure the underlying category structure.
Conversely, category learning affects relational processes by promoting
relational comparisons that increase the coherence of acquired categories. In
contrast to the largely independent research efforts in category learning and
analogy research, our findings suggest that learning and comparison processes
are deeply intertwined.
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The ability to grasp complex relations is a hallmark of human intelligence
(Penn, Holyoak, & Povinelli, 2008). Evaluative tests such as the SAT
reasoning test, graduate record examination, or Raven’s Progressive
Matrices stress the importance of relational thinking. Most research
comparing relational and featural performance supports the view that
relational processing is a more advanced competency. Children learn
concepts defined by features earlier than those defined by relations
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(Gentner, 1978) and experts differentiate themselves from novices by
organising knowledge within their domain along relational lines (Chi,
Feltovich, & Glaser, 1981; Danovitch & Keil, 2004).

Despite strong interest in understanding these human competencies, there
is a lack of work that examines feature- and relation-based learning under
comparable conditions. Indeed, fundamental differences in the nature of
feature- and relation-based categories make constructing apropos compar-
isons challenging. Membership in feature-based categories is determined by
concrete feature attributes, such as size, shape, and colour, whereas
membership in relation-based categories is determined by fulfilling an
abstract relational role, as in concepts like predator and prey (cf. Markman
& Stillwell, 2001). Additionally, relation-based categories generally exhibit
greater perceptual variability across members than do feature-based
categories (Gentner, 1981).

In laboratory studies comparing feature- and relation-based learning,
acquiring the relation-based categories often requires processing more
attributes (Kittur, Hummel, & Holyoak, 2004; Waltz, Lau, Grewal, &
Holyoak, 2000). Furthermore, no study comparing feature- and relation-
based learning has used stimuli that rely on the same perceptual substrate.
In all cases the perceptual features carrying relational and featural
information are different. In other domains, such as same/different
discrimination (Love, Rouder, & Wisniewski, 1999) and change detection
(Kroger, Holyoak, & Hummel, 2004), this concordance has been achieved,
but never in a learning study. Placing features and relations in the same
perceptual substrate would make it possible to identify factors that
differentially affect the learning rates of categories defined by features and
relations.

Research in perceptual learning and discrimination suggests that there
are many cases in which relational processing is advantaged over featural
processing. For example, there is a consensus that children and adults are
more proficient at making relative judgements (Garner, 1954; Huttenlocher,
Duffy & Levine, 2002) than absolute judgements. Difficulties with absolute
(i.e., featural) judgement are so extreme that models of absolute identifica-
tion have been proposed that rely on sequential effects arising from relative
judgements between stimulus pairs (Stewert, Brown, & Chater, 2005).
Accordingly, relative judgements of sequential stimuli strongly affect
categorisation performance in tasks that ostensibly should and were once
thought to rely solely on memory of featural information (Jones, Love, &
Maddox, 2006; Stewart & Brown, 2004). Difficulties in making absolute
judgements should cause difficulties in learning categories defined by
absolute values of the stimuli.

In addition to effects arising from the nature of absolute and relative
judgements, more elaborate comparison processes, such as those discussed
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in the analogy literature, suggest differences in how categories will be
learned depending on whether learning mechanisms engage featural or
relational processes. Below we discuss predictions for how these more
elaborate comparison processes should impact the learning of feature- and
relation-based categories.

ONLINE RELATIONAL COMPARISONS

Accounts of relational comparison allow for the basis of comparison to be
determined in an online manner. Online comparison can be contrasted with
the inflexibility inherent in accounts that do not differentiate between
features and relations. In these inflexible accounts, correspondences between
features (e.g., Tversky, 1977) or stimulus dimensions (e.g., Shepard, 1964)
are typically predetermined (i.e., determined offline). For instance, in
multidimensional models of similarity, each stimulus is represented by a
point in a common space and the basis for comparison is determined by the
dimensions of the space. For example, the value of one attribute (e.g., size) is
never contrasted with the value of another attribute (e.g., luminance), nor
do the values interact; the stimulus attributes are assumed to be
independent. The independence assumption stipulates that changes in one
attribute should not affect the way changes in another attribute affect
similarity (this independence assumption is separate from that of integral/
separable dimensions).

Violations of these assumptions have been observed when stimuli include
prominent relational content. For example, Goldstone (1996) found that
increasing the number of relational changes between two scenes could
increase the rated similarity of the two scenes instead of decreasing it. In
addition, Love and Markman (2003) showed that even classical features,
such as shape, exhibit signs of relational processing by interacting with other
features such as size, causing conjunctive rules involving shape and size to be
harder to learn. In particular, they found that shape served as the argument
to dimension predicates such as size and colour. In other words, a stimulus
is conceptualised as a large triangle, not as a feature set containing large and
triangle. These findings suggest that comparison processes engaged by
learners may differ from standard accounts when the stimuli contain
relations and that category structure (e.g., which dimensions are relevant to
classification) plays a critical role in modulating the outcomes.

Several popular accounts of relational comparison allow for online
comparison processes, for example, structural alignment, and transforma-
tion. The structural alignment view holds that features, objects, and
relations in compared scenes are put into correspondence (i.e., analogical
mappings are found) according to a number of structural constraints
(Gentner, 1983). Similarity is proportional to the soundness of the mapping
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between the two scenes. For instance, similarity is higher when correspond-
ing objects play like roles in corresponding relations (e.g., the causal agent in
one scene corresponds to the causal agent in the other scene). The
transformational view holds that people apply operators to one scene to
transform it to be identical to the other scene (Hahn, Chater, & Richardson,
2003). According to the transformational view, similarity is inversely related
to the number of transformations that are required.

Both alignment and transformation accounts are consistent with the
idea that relations enable online comparison processes whose basis is not
predetermined. Structural alignment establishes correspondences among
stimulus pairs in an online fashion, as opposed to relying on
predetermined alignments. Relations determine these alignments, although
features can also play a role. For example, in comparing a scene in which
a car tows a boat with a second scene in which a tow-truck tows a car, the
car from the first scene may be aligned (i.e., cross mapped) with the tow-
truck from the second scene because these entities play the same relational
role even though the cars in the scenes are more featurally similar to one
another (Markman & Gentner, 1993). Likewise, according to the
transformational view, the presence of relations can suggest additional
operators (i.e., relational transformations) that can be applied opportu-
nistically to stimulus pairs.

These online views hold that the attributes of a stimulus are not
independent and that changes on one attribute in a complex scene (e.g., head
colour) can affect how differences between other attributes (e.g., tail colour)
are calculated because they can result in different alignments between the
scenes. This can cause non-monotonicities in the similarity ratings, where
the introduction of additional changes between two stimuli increases the
similarity between the items (Goldstone, 1996). These alignment driven non-
monotonicities should play a role in category learning as well, suggesting
that the difficulty of learning a given category structure could change
depending on whether the stimuli exhibit interactions between their
attributes.

Lassaline and Murphy (1997) provided initial evidence that alignment
processes are active during category learning. They found that the number
of Matches In Place (MIPS, e.g., two birds having the same colour head)
and Matches Out of Place (MOPS, e.g., a bird having the same colour tail as
another bird’s head) relate to the difficulty of learning a category. Categories
are easier to acquire when members have many MIPS in common compared
to when they have many MOPS in common. Lassaline and Murphy’s results
provide support for the notion that dimensional correspondences (Gold-
stone, 1994) are critical in category learning. However, their results do not
speak to the role of relational commonalities (i.e., relationships across
dimension values). For example, two birds could share no MIPS or MOPS,
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yet share the relational commonality of having their heads be brighter than
their tails.

In this contribution we consider how people learn categories defined by
such relational matches. We suggest that people use relational comparison
processes (such as alignment) during category learning to match the current
stimulus to stored category examples. Such processes may explain people’s
ability to readily learn purely relational categories from a small set of
examples (e.g., Rehder & Ross, 2001). Indeed, computational models that
incorporate these processes successfully explain how infants, adults, and
animals learn seemingly abstract concepts based on a small set of training
examples (Tomlinson & Love, 2006).

A number of predictions fall out of the view that category learning
involves online relational comparisons to stored examples. One prediction
that we test here is that online relational processing can benefit or hinder
learning depending on the relationship between presented stimuli and
previous exemplars. When the preferred mapping between the current
stimulus and stored stimuli serves to increase the coherence of a category,
learners should benefit from relational processing. However, in other cases,
relational matching processes can actually reduce category coherence by
enabling discovery of non-obvious similarity relations among members of
contrasting categories. In such cases, learning should be retarded and error
patterns indicative of interference arising from relational comparison
processes should be observed. Rather than being a fixed process, one
possibility is that the preferred alignments themselves can change over the
course of learning in order to increase category coherence.

STIMULUS DESIGN

The stimuli used in our experiments consist of simple scenes that were
designed to provide an informative comparison of relation- and feature-
based category learning. To this end, both categories were defined over, and
required processing the same perceptual attributes (i.c., size, luminance) and
the same number of perceptual attributes (two attributes). Because features
and relations are psychologically distinct and are associated with different
processes (see Goldstone, Medin, & Gentner, 1991), in principle, one cannot
construct a stimulus set that does not bias in favour of featural or relational
learning. Fundamentally, relations are defined over distinct entities whereas
features integrate over some range. For example, determining the overall
luminance (a feature) of a scene requires integrating over the entire scene. It
stands to reason that complex scenes consisting of multiple entities would
make such a computation more difficult. Indeed, Duncan (1984) finds that
specifying features across multiple objects increases the time required to
identify the features. Conversely, relational regularities are likely to be easier
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to detect when entities are readily individuated. To appreciate A causes B,
one must be able to clearly discern A and B as distinct entities. In summary,
stimuli that contain a single entity are likely to favour featural processing,
whereas stimuli that contain multiple entities are likely to favour relational
processing.

The norm in the field (e.g., Lassaline & Murphy, 1997) is for each
stimulus to consist of a single entity, thus favouring featural processing.
Because our primary interest is in exploring relational influences on category
learning, we used a stimulus set consisting of scenes composed of two
entities. Although it is not our focus, one interesting question is whether
relational category learning is actually favoured under such conditions
compared to featural category learning. To foreshadow, our results indicate
that it is. Although not discussed in this contribution, we find the
same overall pattern of results, with a bias in favour of featural learning,
when the present studies are conducted using stimuli that consist of a single
entity.

In the studies reported here each stimulus consisted of two circles
appearing side-by-side. Across trials, these two circles varied in their size
(small, medium, large) and brightness (light, moderate, dark). These circles
were combined to give two overall relation attributes (which side was bigger
and which was brighter) and two feature attributes (overall size and overall
brightness). The medium and moderate values were always manifested once
in a scene (see Figure 1).

In summary, in order to balance the perceptual requirements, the
relational attributes defined for these scenes, which side is bigger and which
side is brighter, require the processing of the relationship between the two
objects in the scene to correctly identify the attribute. In contrast, the
evaluation of featural attributes does not require any consideration of the
relational role a specific circle plays in determining an attribute’s value.
The features and relations differ only in how the participant combines the
information about the two circles. For the relations, consistent with
definitions of relational categories (Markman & Stilwell, 2001), information
from each circle plays a distinct role in determining the value of each
relation, whereas for the features, information from each circle is combined
independently in determining the value of each feature. Additionally, the
requirement that the features are separated across the two circles could bias
learning rates towards the relations because features become more difficult
to process when spread across multiple objects (Duncan, 1984).

To foreshadow our results, in Experiment | pair-wise similarity ratings
are collected for the stimuli. The collected similarity ratings between
stimulus pairs are consistent with an online comparison process that
manifests itself as a non-monotonic relationship between the number of
changes across the attributes and their rated similarity. In Experiment 2
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Stimuli Demonstrating XOR Category Structure
Relation-Based Category. A Relation-Based Category B
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Figure 1. The 16 stimuli arranged according to the relational (left vs right) and featural (top vs
bottom) XOR category structure. The circles vary on four attributes: two features and two
relations. The features are overall size and overall brightness (defined over both circles). The
relations are which circle (by left/right spatial position) is bigger and which circle is brighter. The
size-relation based one-dimensional category groups stimuli where the larger circle is on the left in
category A, and those with the larger circle on the right in B. For the size feature, stimuli with large
circles are in one category, while those with small circles are in the other. The feature-based XOR
groups large dark stimuli with small light stimuli, while the relation-based XOR groups stimuli
with darker circles on the left and smaller circles on the right with stimuli that have lighter circles
on the left and larger circles on the right. The grey boxes are not part of any stimulus and are
intended to promote the clarity of the figure by grouping constituent stimulus elements together.

we find that simple relational categories are learned faster than simple
feature-based categories. Although this result may be surprising on the
surface, it follows from our stimulus design (two entities as opposed to one,
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TABLE 1
Predicted learning biases and their effect on the learning rate of the category structures
used in Experiments 2, 3, and 4

Rule Relative processing Online correspondence
Exp. 2 1-D Bias in favour of relations No effect
Exp. 3 XOR Bias in favour of relations Bias in favour of relations
Exp. 4 Four Category Bias in favour of relations Bias against relations

same perceptual substrate for featural and relational information) and
previous findings in relative vs absolute stimulus judgements. Using more
complex category structures, Experiments 3 and 4 consider conditions under
which online relational comparisons promote or hinder learning (see Table
1). In Experiment 3 we find that relation-based category learning is
advantaged over feature-based category learning under conditions in which
relational comparisons allow learners to increase category coherency. In
Experiment 4, using category structures in which relational comparisons
should not increase coherency, we find no advantage for learning relation-
based categories over feature-based categories. Indeed, we observe error
patterns indicative of comparison processes interfering with relation-based
category learning. While Experiments 1-4 support the notion that relational
comparison can shape learning, Experiment 5 finds support for the
complementary position that learning can shape relational comparison.

EXPERIMENT 1

In Experiment 1 we investigate the nature of the comparison process by
looking at similarity rating data for the stimuli. According to relational
accounts of processing, the stimuli should exhibit the non-metrical effects of
an online comparison process. In contrast to metrical views of comparison
and similarity, where distances between stimuli follow a set of strict axioms
and similarity decreases with each difference between the stimuli,
transformation- and alignment-based approaches suggest that stimuli that
differ along both relations might be rated as highly similar (Goldstone,
1996). We predict that ratings will be non-metrical, in that similarity will not
substantially decrease (and may in fact increase) for stimulus pairs
mismatching on both relations compared to stimulus pairs mismatching
on only one relation. Additionally, overall influences of featural and
relational attribute matches can be assessed in the similarity rating data. If
the features or relations of the stimuli play a larger role in determining
similarity then category distinctions on those dimensions could be learned
easier because differences between the stimuli on those dimensions are more
salient.
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Method

Participants. A total of 22 undergraduate students from the University
of Texas at Austin participated for course credit.

Stimuli. The stimuli were the same as those described above. They
varied along four binary attributes: two relational attributes, which side was
bigger and which side was brighter, and two featural attributes, overall
brightness (both circles combined) and overall size (both circles combined).

Procedure. Participants were instructed to rate the similarity of two
presented stimuli on a scale from 1 to 9. Participants were instructed that
each stimulus varied along four binary-valued attributes (overall brightness,
overall size, which circle was brighter, which circle was bigger). On each trial
two stimuli were simultaneously presented on screen with text designating
pair 1 and pair 2, as well as text asking for their similarity on a scale of 1-9.
One pair was displayed on the top of the screen and the other on the bottom.
A line separated the pairs. Participants responded by pressing key 1 through
9. Following the participant’s response, the screen blanked for 500 ms and
the next trial began. Each participant rated 136 pairs of stimuli [(16 * 15)/
2+ 16]: each stimulus paired with every other stimulus, plus each stimulus
paired with itself. The overall order of the trials and the assignment of pairs
to the top or bottom of the screen were randomised.

Results and discussion

For the purposes of analyses, the similarity ratings were grouped according
to how many features or relations were different within the comparison.
Figure 2 illustrates the nine means resulting from this aggregation. A 3 (0, 1,
or 2 relation differences) x 3 (0, 1, or 2 feature differences) within-
participant ANOVA revealed a main effect of both the number of different
relations, F(2, 42)=33.68, p < .001, and the number of different features,
F(2, 42)=204.81, p < .001, as well as a significant interaction between the
number of feature and relational differences, F(4, 84)=36.47, p < .001.
The above interaction is indicative of a non-metrical similarity space
arising from relational processes. To test the predictions of the alignment
account more precisely, a 2 (relation or feature) x 2 (one or two differences)
ANOVA was performed to compare the effects of mismatching on one or
both relations (with both features matching) with the effects of mismatching
on one or both features (with both relations matching). The strong
interaction predicted is shown in Figure 3. An ANOVA revealed a
significant main effect for feature or relation difference, F(1, 21)=26.32,
p < .001, and a main effect for the number of differences, F(1, 21)=23.85,
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Figure 2. Experiment 4’s mean similarity ratings as function of number of feature and relation
differences. Error bars represent approximate 95% confidence intervals.

p < .001, as well as a significant interaction between the type of difference
and the number of differences, F(1, 21)=96.05, p < .001. Planned ¢-tests
revealed that rated similarity was higher when both relations differed than
when only one relation differed, #(21)=2.13, p < .05, whereas rated
similarity was lower when both features differed than when only one
feature differed, #(21) =13.68, p < .001. As predicted by the online relational
processing hypothesis, similarity ratings were non-metrical in that stimulus
pairs differing on both relations were rated as more similar than stimulus
pairs differing on only one relation. These similarity data are consistent with
the learning results from Experiments 1 and 2.

Importantly, as predicted by relational processing accounts, this effect is
constrained to the case of two relational changes and no feature changes (see
Figure 2). For this case, the two stimuli consist of identical circles that have
been transposed (see Figure 1). For the other cases, comparisons involve
stimuli that differ in terms of both features and relations, which complicates
the alignment or transformation process.

To test for differences in salience between the relations and the features, a
regression model was fitted to each participant’s similarity ratings, with the
number of relational differences and the number of featural differences as
independent predictors. A paired f-test was then conducted on the fitted
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Figure 3. A subset of Experiment 4’s mean similarity ratings reveals the strong interaction
consistent with relational flexibility. Mismatching on both relations (with both features
matching) increases similarity, whereas mismatching on both features (with both relations
matching) decreases similarity. Error bars represent approximate 95% confidence intervals.

weights for the relational and featural terms across the participants. This
test showed a significantly larger effect for feature differences on rated
similarity, mean coefficient of 1.68, compared to relational differences, mean
of .77, H21)=5.01, p < .001. This test suggests that the features play a larger
role in determining similarity than the relations.

EXPERIMENT 2

Experiment 1 found the expected non-monotonicity in participants’
similarity ratings of the stimuli, evidence of relational comparison processes.
In addition it showed that the features were more salient than the relations,
e.g., differences in features contributed more to the rated similarity. The next
several experiments look at the implications of relational-processes on the
difficulty of learning various category structures. Experiment 2 examines
participants’ ability to learn simple category structures defined by a single
attribute. Participants learned to classify stimuli as members of one of two
contrasting categories based on a single featural attribute (e.g., items with
big circles are in one category, whereas items with small circles are in the
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other category) or learned to classify based on a single relational attribute
(e.g., items in which circle on the right is bigger are in one category, whereas
items in which the circle on the left is bigger are in the other category).

Whereas in Experiment 1 the relevant stimuli to compare were presented
simultaneously, stimuli in Experiment 2 are presented in isolation and
sequentially. The standard category-learning paradigm used in Experiment
2 requires that any stimulus comparisons be made to representations of
items stored in memory. Because absolute feature judgements are harder to
make than relative judgements (Garner, 1954; Huttenlocher et al., 2002),
one prediction is that relation-based categories will be easier to learn than
feature-based categories despite the fact that features were more salient than
relations, as measured by Experiment 1’s similarity ratings. Participants
learning relation-based categories should have an advantage as attribute
values can be determined by within-stimulus comparisons, as opposed to
comparisons to other representations stored in memory.

Method

Participants. A total of 53 undergraduate students from the University
of Texas at Austin participated for course credit. Participants were
randomly assigned to the brightness-relation relevant (n=13), the size-
relation relevant (n=13), the brightness-feature relevant (z=13), or the
size-feature relevant conditions (n=14).

Stimuli and category structure. The stimuli were the same as those used
in Experiment 1. Participants learned to classify the stimuli according to a
unidimensional rule that was defined over one of the four stimulus attributes
(brightness-relation, size-relation, brightness-feature, or the size-feature). In
Figure 1 the coloured background distinguishes the two categories learned
for the size-relation condition. Those with a grey background belong to one
category (bigger-left), while those with a white background belong in the
opposite category (bigger-right). Similarly for the size-feature condition,
the top four stimuli and the bottom four stimuli of Figure 1 would belong to
one category (overall big), while the middle eight stimuli would belong to
the opposite category (overall small).

Procedure. Participants were presented with a screen of detailed
instructions informing them that they were going to learn to categorise
pairs of circles into two categories, A and B. Participants were instructed
that each stimulus varied along four attributes: overall brightness, overall
size, which circle was brighter, and which circle was bigger. They were told
to look for a rule involving one of those attributes. For each participant the
labels A and B were randomly assigned to the two categories.
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On each learning trial, two circles were presented in the centre of the
computer screen. The stimulus was accompanied by the text prompt
“Category A or B?”. Participants freely responded with an A or B key press
and immediately received either a brief low (wrong) or high (right) pitched
auditory tone concurrent with text containing “WRONG” or “RIGHT”
and the correct category label for the stimulus. The correct category label
and the stimulus were presented for 1250 ms, followed by a blank screen.
After 500 ms the next trial began.

The trials were blocked in groups of 16. Each block consisted of a
random ordering of the 16 stimuli. Participants were not made aware of
transition between blocks. Category training terminated when participants
reached a learning criterion of correctly classifying 12 stimuli in a row or
completed 18 blocks (288 trials) without reaching the criterion.

Results and discussion

The proportion of trials correct for each participant was calculated.
Remaining trials for participants reaching the learning criterion were scored
as correct. Statistical tests found no significant differences between size and
brightness for learning feature- or relation-based categories. Therefore
analyses collapse across size and brightness sub-conditions and focus on the
distinction between feature- and relation-relevant category learning.

The results are displayed later in Table 3. In accord with studies
suggesting an advantage for relative judgements (e.g., Garner, 1954;
Huttenlocher et al., 2002), participants in a relation-based category were
significantly more accurate (.95 vs .76) then those in a feature-based
condition, 7#(51)=4.56, p < .001." All 26 participants in the relation-based
condition reached the criterion, while only 21 of the 27 participants in the
feature condition did so, this difference is significant, Yates’
72(1, N=53)=4.49, p < .05. These results confirm the hypothesis that
relation-based categories can be easier to learn than feature-based
categories.

One explanation for the relation advantage is that relevant commonal-
ities and differences across stimuli could be determined by relative

'One possible concern with this performance measure is that it could inflate estimates for
conditions in which a large proportion of participants reach criterion, as it assumes that
participants reaching criterion would be correct on future trials if they could maintain attention
levels on the mastered task. An alternative analysis is to consider only those trials prior to
reaching criterion. However, while this analysis suffers from the opposite concern, it yields the
same pattern of results when applied to those cases in which the proportion of participants
reaching criterion varies widely across conditions. The significant differences found in
Experiments 2, 3, and 5 persist, #(51)=5.89, p < .001, #50)=3.42, p=.001, and #(21)=3.64,
p=.002, respectively.
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comparisons for relation-based categories, whereas absolute judgements
were necessary to learn feature-based categories. Note that this explanation
is not rooted in saliency. In fact, Experiment 1’s results suggest that feature
differences are more salient than relation differences when stimuli are
presented simultaneously, which alleviates difficulties in absolute judgement
and comparison to memory representations. Using a common stimulus set,
Experiment 2’s results stand in contrast to previous findings (e.g., Kittur
et al., 2004; Waltz et al., 2000) that suggest that relation-based categories are
always harder to learn than feature-based categories.

EXPERIMENT 3

The combined results from Experiments 1 and 2 suggest that relation-based
categories can be advantaged, because of relative comparisons. Experiments
3 and 4 use more complex category structures, consisting of multiple
relevant attributes, which allow for consideration of a broader set of
theoretical issues concerning comparison and category learning. Experi-
ments 3 and 4 probe interactions across attributes and the use of alignment
processes during relation-based category learning.

Relation-based category structures that are supported by alignment
processes should prove easier to learn than their feature-based compatriots,
whereas relation-based category structures that conflict with preferred
stimulus alignments should hinder learning. Table 1 outlines how the two
factors, relative processing (explored directly in Experiment 2) and
relational comparison (explored directly in Experiments 3 and 4) predict
the ease of learning relation- and feature-based variants of the different
category structures. Experiment 3 utilises a non-linear category structure (an
XOR on the two relevant dimensions) in which items that are opposite in
every respect are members of the same category (see Table 2). The relation-

TABLE 2
Category structures
Attr. 1 Attr. 2 Attr. 3 Attr. 4 XOR Four-Category
0 0 Oorl Oorl A A
0 1 0orl Oorl B B
1 0 Oorl Oorl B C
1 1 0orl Oorl A D

Either both features or both relations are relevant to determining category membership for both
the XOR (used in Experiment 1) and Four-Category (used in Experiment 2) structures. For
example, with features relevant in the Four-Category structure: large and bright would be A;
large and dark, B; small and bright, C; and small and dark, D. In the XOR structure, A and D
form one category, and B and C form the other category.
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based version of this category structure should be supported by preferred
stimulus alignments.

In the XOR category structure used in Experiment 3, the most
dissimilar items, those that differ on both relations or both features (see
Figure 1), are placed within the same category. However, it is easy to see
that the initial application a swapping transformation, or by mapping the
stimuli based on role instead of position, during the comparison process
makes the top and bottom stimuli identical. The similarity data from
Experiment 1 support the idea that participants naturally apply this when
comparing those pairs. This means that the within-category similarity for
the relational XOR is probably much higher than it is for the feature-
based equivalent, and this should speed learning (Lassaline & Murphy,
1997, Rosch & Mervis, 1975). Swapping transformations and cross-
mapping operations are not advantageous for the feature-based categories;
this is shown by the monotonic decrease in similarity with the number of
feature changes found in Experiment 1.

The congruence between the category structure and the participants’
preferred manner of mapping the stimuli, combined with advantages for
relative judgements, should result in categories defined by relations being
acquired more readily than comparable categories defined by features.” This
avenue for boosting coherency should not be available to learners of feature-
based categories. Finally, overall performance should be lower in Experi-
ment 3 than in Experiment 2, because the categories in Experiment 3 are
defined by two attributes whereas categories in Experiment 2 are defined by
a single attribute.

Method

Participants. A total of 52 undergraduate students from the University
of Texas at Austin participated for course credit. Participants were
randomly assigned to the feature- (n=27) or relation-relevant (n=25)
condition.

Stimuli and category structure. The stimuli were the same used in
Experiment 1, pairs of circles varying along two relational and featural
attributes. Two of the four stimulus attributes were relevant to determining
category membership. An exclusive disjunction (XOR) rule involving the
two relevant stimulus attributes defined the category structures. XOR is a
non-linear classification rule that requires attention to both of the relevant

*Experiment 4 will provide a counterpoint in which this flexibility impedes learning of
relation-based categories.
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TABLE 3
Summary of results from Experiments 2, 3, and 4
Relations rlevant Features relevant
Accuracy
Rule Accuracy SE  Criterion  Accuracy SE  Criterion  Differences
Exp.2 1-D 95 .02 26/26 .76 .04 21/27 19
Exp.3 XOR 73 .04 14/25 .54 .02 4/27 19
Exp. 4 Four Category 78 .04 22/26 74 .04 22/27 .04

wHEp < 001,

attributes (see Table 2). Stimuli that are opposite one another on both
relevant attributes are placed in the same category. In the relation condition,
the two relation-based attributes were relevant and the features were
irrelevant. The opposite was true for the feature condition.

Procedure. Training followed the same pattern as in Experiment 2.

Results and discussion

The proportion of trials correct for each participant was calculated.
Remaining trials for participants reaching the learning criterion were scored
as correct. The results are summarised in Table 3. As expected, inspection of
Table 3 reveals that Experiment 3’s more complex (defined by two
attributes) category structures were more difficult to acquire than
Experiment 2’s simple (defined by one attribute) category structures.

Participants were significantly more accurate (.73 vs .54) in the relation
relevant than in feature-relevant condition, #50)=5.19, p <.001. A
significantly greater proportion of participants (14/25 vs 4/27) reached the
learning criterion in the relation relevant condition than in the feature-
relevant condition, Yates’ y*(1, N=52)=8.00, p < .01. Experiment 3’s
results demonstrate that more complex categories defined by the relations
can be easier to learn than categories defined by features.

EXPERIMENT 4

The results from Experiments 2 supports the idea that relation-based
categories can be easier to learn than feature-based ones when the categories
are balanced on the number of perceptual attributes and those attributes are
spread across multiple objects. Experiment 3 further suggested that the
flexibility afforded by online, relational comparisons can benefit relational
learners, particularly those who acquired the complex XOR category
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structure used in Experiment 3. Experiment 4 tests this hypothesis more
fully, by attempting to match the speed of relation-based learning and
feature-based learning by utilising a category structure that is not amenable
to relational alignment.

Experiment 4 provides further evidence for this online comparison
account by training participants on a category structure in which alignment
processes should not be advantageous to relational learners. Compared to
Experiments 2 and 3, differences in performance between featural and
relational learners are predicted to compress under these conditions. The
category structure used in Experiment 4 is the four-category structure
specified in Table 2. Unlike the XOR category rule used in Experiment 3, in
the four-category structure items that differ on both relevant attributes are
members of different categories.

Unlike Experiment 3, regularising relational differences in Experiment
4 through online relational processes will not increase within category
similarity, because stimuli that differ on both relations are now in
separate categories. As a consequence of this, relational learners engaging
in such relational processes may in fact increase confusions between
categories that differ on both relations, leading to opposite classification
errors (e.g., confusing members of categories A and D, or B and C in
Table 2).

While it is difficult to make cross-experimental comparisons between the
three experiments, because they contain a different number of categories,
the key predictions for Experiment 4 are that the difficulty of featural and
relational learning should converge. Instead of boosting performance as in
Experiment 3, online relational comparison in Experiment 4 should
manifest itself in more errors to the opposite category for relational
learners.

Method

Participants. A total of 53 undergraduate students from the University
of Texas at Austin participated for course credit. Participants were
randomly assigned to the relation- (n=26) or feature-relevant (n=27)
condition.

Stimuli and category structure. The stimuli were the same as those used
in Experiments 1-3. Participants learned to classify each stimulus as a
member of one of four different categories. The categories were the four
unique combinations of the two values of the two relation attributes in the
relation condition and the two feature attributes in the feature condition (see
Table 2).
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Procedure. The procedure was identical to that used in Experiments 2
and 3, except that participants had to learn to classify the circles as belonging
to one of four categories: A, B, C, or D, by pressing the corresponding key.

Results and discussion

The proportion of trials correct for each participant was calculated.
Remaining trials for participants reaching the learning criterion were scored
as correct. The results are summarised in Table 3. Accuracies were
comparable (.78 vs .74) in the relation- and feature-relevant conditions,
t <1. A comparable proportion of participants (22/26 vs 22/27) reached the
learning criterion in the relation- and feature-relevant conditions, Yates’
»*(1, N=53)=.0039, p=.95.

The pattern of participants’ errors was also analysed. Each incorrect
response was classified as either a mistake to an adjacent category (e.g.,
A—B or C) or as a mistake to the opposite category (ec.g., A — D).
As predicted, participants in the relation-relevant condition made a larger
(34% vs 27%) proportion of errors to the opposite category than did
participants in the feature-relevant condition, #(51)=2.77, p < .01. Rela-
tional learners who tended to make a higher proportion of opposite category
errors relative to adjacent category errors had lower overall accuracy levels,
R*>=.30, F(1, 24)=10.49, p < .01 whereas no such relationship held for
feature learners, R>=0.

As predicted, the relational advantage observed in Experiment 3 was not
observed in Experiment 4. One question is whether this difference across
experiments is statistically significant. Directly comparing Experiments 3
and 4’s results is difficult, because chance performance levels differ across
experiments (50% vs 25%). However, one simple correction for guessing is
to model correct responses as arising from either knowing the correct
response or correctly guessing:

p(correct) = p(know) + [1 — p(know)] * p(correct|guess). (1)

In Equation 1 the second term accounts for the difference in guessing
between the two experiments. Equation 1 can be solved to estimate the
probability that a participant knows the correct response on a trial:

plcorrect) — p(correct|guess)
1 — p(correct|guess) ’

p(know) = (2)

Using this adjusted measure, a 2 (relation or feature) x 2 (XOR or Four-
category) ANOVA was conducted. The interaction between condition and
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experimenter was significant, F(1, 101)=6.37, p=.01. A learning criterion
analysis, which is less susceptible to guessing artefacts, is also supportive of
an interaction between the two variables. A Poisson-based general-linear-
model analysis of the counts of participants reaching criterion indicates a
marginally significant three-way interaction (condition, category type, and
criterion) across experiments, z=1.77, p=.08.

The results of Experiment 4 suggest that when a category structure is
used in which online comparison processes are not beneficial to learning
relation-based categories, featural and relational learning are of equal
difficulty. Indeed, online comparison processes were manifested as a greater
proportion of opposite category errors in the relation relevant condition and
relational learners who showed stronger markers of online comparison
processes were less accurate overall.

EXPERIMENT 5

The previous studies support the notion that relational comparison
processes can affect category learning by increasing (Experiment 3) or
decreasing (Experiment 4) category coherency. We hypothesised that these
effects arise because two stimuli differing in both relational attributes can be
made more similar by a relational alignment (or swapping transformations)
that puts circles that differ in left/right spatial position into correspondence.
This view is also supported by the similarity data from Experiment 1 (see
Figure 2).

A contrasting view is that these results are not driven by a relational
comparison processes, but are a by-product of the participants’ default
representation of the stimuli. In Experiment 5 we probe participants’
preferred correspondences of compared stimuli to more directly test whether
these relational alignments (or swapping transformations) occur. Addition-
ally, we examine how category learning can affect these comparison
processes. Whereas the previous studies support the notion that alignment
affects coherency, in Experiment 5, we examine whether preferred
alignments are altered to maximise category coherency.

To answer this question, as in Experiment 3, participants first were
trained on either feature-based or relation-based categories with an XOR
structure. Following training, participants compared two stimuli and
reported which circles corresponded across the two stimuli. We predict an
interaction such that participants in relation-relevant condition will be more
likely than participants in the feature-relevant condition to put circles in
correspondence that differ in spatial position when stimuli differ in both
relations compared to when the stimuli match on both relations. This
prediction can also be viewed as testing whether attention shifting-like



21: 36 4 Decenber 2010

[Love, Bradley C.] At:

Downl oaded By:

CLASSIFICATION BY RELATIONS VS FEATURES 391

phenomena (e.g., Kruschke, 1992) extend to relational stimuli (e.g.,
Tomlinson & Love, 2006).

Method

Participants. A total of 21 undergraduate students from the University
of Texas at Austin participated for course credit. Participants were
randomly assigned to the feature- (n=11) or relation-relevant (n=10)
condition.

Stimuli. The stimuli were the same as those used in Experiments 1-4.

Procedure. The learning phase of this experiment was conducted exactly
as Experiment 2, with the same instructions detailing the manner in which
the stimuli varied. Participants learned either a relation-based XOR or the
feature-based XOR category structure. After the participants could
correctly categorise 12 stimuli in a row, or after 288 trials, the participants
were transferred to the second phase of the experiment.

In the second phase the participants were instructed that they would see
two stimuli and that one of the circles in one of the stimuli would be
highlighted in red. The participant’s task was to determine which circle in
the other stimulus corresponded to the highlighted circle. Following this
judgement, participants were instructed that they would then be asked to
rate the similarity of the two presented stimuli on a scale from 1 to 9.
Participants were alerted that they could take short breaks between
responses to help maintain concentration.

On each trial, two stimuli were simultaneously presented on screen with
text designating pair 1 and pair 2, along with text asking them to pick the
circle that went with the highlighted circle. One pair was displayed on the
top of the screen and the other on the bottom. A line separated the pairs.
One of the circles (randomly determined each trial) was displayed with a red
box around it. The participant used the mouse to select which of the two
circles from the other stimulus corresponded to the highlighted circle.
Immediately following this judgement, text appeared asking the participant
to rate the similarity of the two stimuli on a scale of 1-9. Participants
responded by pressing a key, 1 through 9. Following the participant’s
response, the screen blanked for 500 ms and the next trial began. The stimuli
were presented in a random order and no participant saw a stimulus paired
with itself, nor the same pairing twice. Unfortunately, due to a coding error,
each participant saw only 105 of the 120 possible stimulus pairs (randomly
determined for each participant).
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Results and discussion

For the learning phase the proportion of trials correct for each participant
was calculated. Remaining trials for participants reaching the learning
criterion were scored as correct. The results replicated those from
Experiment 2. Participants were significantly more accurate (.89 vs .57) in
the relation-relevant than in feature-relevant condition, #(19)=4.52,
p < .001. Similarly, a significantly greater proportion of participants (9/10
vs 4/11) reached the learning criterion in the relation relevant condition than
in the feature-relevant condition, Yates” y*(1, N=21)=4.32, p < .05.

Turning our focus to the correspondence judgements, we calculated the
proportion of times each participant selected circles as corresponding that
matched in spatial position (left or right). The overall proportions (.45 vs
.46) for the relation- and feature-based participants was not significantly
different, r <1.

To test our hypothesis that participants in the relation-based condition
should favour positional correspondences when stimuli are relationally
similar, but disfavour such correspondences when stimuli are relational
dissimilar, we calculated the proportion of positional correspondences for
stimulus pairs that matched or mismatched on both relations for both the
relation- and feature-based condition participants. These four means are
shown in Figure 4. A 2 (relational match/mismatch) x 2 (Condition) mixed
ANOVA found that the predicted interaction was significant,
F(1,19)=11.05, p < .01. Additionally there was a main effect of relational
match/mismatch on the probability of a participant aligning the circles
based on position, F(1, 19)=48.77, p < .001. There was not a significant
main effect of condition, F(1, 19)=2.36, p=.14. Further investigating the
interaction, relation-based learners were marginally more likely to map by
position when no relations changed than were the feature-based learners,
t(19)=1.80, p=.08, whereas they were significantly less likely to map by
position than feature-based learners when the stimuli differed on both
relations, #(19)= —4.5, p < .001.

The previous analysis confirms our predictions, but two questions remain
in regards to the feature-based condition, namely whether participants are
choosing correspondences at random and whether shared category member-
ship affects correspondence judgements. To evaluate these, a supplementary
ANOVA was conducted using the correspondence judgements from the
feature-based participants. A 2 (relational match/mismatch) x 2 (category
match/mismatch) within-subject ANOVA was conducted and found no
interaction, F' < 1. nor a main effect of the category variable, F(1, 10) =2.00,
p=".19. Although it is dangerous to over interpret null effects, the lack of
any significant effects involving the category variable do ease concerns in
our interpretation of the data shown in Figure 4. The ANOVA did indicate
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Figure 4. The mean probability that participants in the feature- and relation-based learning
conditions establish stimulus correspondences based on position as a function of whether there
were 0 or 2 relational differences between the stimuli. Error bars represent approximate 95%
confidence intervals.

a main effect for relational match, F(1, 10)=13.67, p < .01. Rather than
determining correspondences randomly, feature-based condition partici-
pants were more likely (.60 vs .40) to prefer position matches when stimuli
matched than mismatched in their relations, #(10)=3.70, p < .01.

In summary, these analyses support our notion that participants do align
stimuli that mismatch on both relations in a non-positional manner (or
alternatively perform a relational, swapping transformation). Additionally,
as we predicted, participants are more likely to do so after learning relation-
than feature-based categories. This finding is consistent with the notion that
attention-shifting phenomena extend to relational processing. As in strictly
feature-based models of attention (e.g., Kruschke, 1992), the present
findings indicate that attributes (featural and relational) that are more
predictive of category membership receive greater weight. Experiment 5’s
results indicate that these weightings can guide the preferred alignments
when comparing stimuli (see Tomlinson & Love, 2006, for a related
modelling approach).
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GENERAL DISCUSSION

In accord with previous studies, Experiment 1 showed that stimuli
containing relations can exhibit alignment-based non-monotonicities in
their similarity structure. Contrary to accepted wisdom, the results of
Experiment 2 demonstrated that learning to classify by relations can be
easier than by features when the categories are balanced on the number of
perceptual attributes and those attributes are spread across multiple objects.
Experiment 3 showed that this effect persists in a more complicated category
structure, when the category structure is supported by the preferred
alignments between the stimuli based on the relations. Experiment 4
employed a category structure for which online comparisons could be
detrimental to relational learners and this structure tempered any inherent
advantage for relations, as relation- and feature-based categories were
acquired at the same rate. Indeed, relational learners who showed stronger
markers of online comparison processes were less accurate overall.
Experiment 5 supported this conclusion by demonstrating that learners in
the relation-based condition preferred different correspondences for
stimulus pairs than those in the feature-based condition, suggesting that
the stimulus representations are flexible, and change to increase category
coherency.

The combined results from Experiments 1-5 advance our understanding
of the role of online, comparison processes during learning and preclude
alternative explanations based on general biases in favour of features or
relations. These results are important because they suggest revisiting
findings demonstrating relational deficits, not just in adults and children,
but in special populations, such as those suffering from schizophrenia
(Johnson, Lowery, Kohler, & Turetsky, 2005) and Alzheimer’s disease
(Waltz et al., 2004), using the methods and well-matched stimulus set
developed here.

These results suggest a developmental progression from appreciating
feature matches to grasping more complex relational matches (Gentner,
1988; Gentner & Ratterman, 1991; Keil & Batterman, 1984; Kotovsky &
Gentner, 1996; Medin, Goldstone, & Gentner, 1990; Oakes & Cohen, 1990;
Richland, Morrison, & Holyoak, 2006). Even though relational processing
generally requires more cognitive resources, its flexibility offers potential
advantages over purely featural approaches.

Here we strengthen the link between work in relational processing and
category learning. Earlier work, such as Lassaline and Murphy (1997),
demonstrated the importance of considering feature matches across
attributes (through alignment) in determining the difficulty of learning
feature-based categories. Good alignments led to faster learning. We extend
Lassaline and Murphy’s findings to multi-place predicates, which allows for
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exploration of relation-based category learning. Our results support the
view that the flexibility of relational processing can help or hinder learning
with benefits observed when online comparison processes boost category
coherency.

The vast majority of category-learning models only consider cases in
which comparison processes are predetermined (e.g., Kruschke, 1992; Love,
Medin, & Gureckis, 2004; although for exceptions see Goldstone & Medin,
1994; Kuehne, Genter, & Forbus, 2000; Tomlinson & Love, 2006). Thus the
present work bears on the necessity of making provisions for relational
processing in category learning theories and models. In addition, this work
demonstrates the necessity for analogical models that include a learning
component. Experiment 5 provides results that cannot be accounted for by
static models of analogy, as the two groups mapped the stimuli differently
depending on the learning conditions. We believe that our results suggest
integration of research in analogy and category learning (e.g., Tomlinson &
Love).

Our results do not uniquely favour alignment or transformational views
of relational comparison. However our results, as well as response time
measures (collected unbeknown to the participants), do constrain the
specific form successful theories can take. One interesting finding is that
response time in Experiment 1’s similarity rating task was highly correlated
(r=—.93) with rated similarity (see Figure 5). According to the alignment
view, more readily aligned stimuli result in a feeling of fluency, which
influences rated similarity (cf. Johnston, Dark, & Jacoby, 1985). According
to the transformational view, as the number of transformations performed
(or their difficulty) increases, response time should increase and rated
similarity decrease (cf. Shepard & Metzler, 1971).

Response time was also collected during category learning in Experi-
ments 2, 3, and 4. Unfortunately, large differences in learning accuracy and
in the proportion of participants reaching the learning criterion for
Experiment 2 and 3’s relation and feature conditions rendered meaningful
analysis of response times untenable. In Experiment 4 accuracy levels for the
two conditions were roughly equal and, thus, comparing response times is
meaningful. The mean of each participant’s correct median response time
was significantly greater (2501 ms vs 1892 ms) in the relation-relevant than
in the feature-relevant condition, #(42)=2.72, p < .01. According to the
alignment view, this difference follows from the complexity of determining
relational correspondences. According to the transformational view, this
difference is interpreted as a greater difficulty in executing relational
transformations.

The above response time biases also contribute an interesting data point
with regard to whether our stimuli were biased against the features. Duncan
(1984) suggests that processing time for attributes is slowed when the
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Figure 5. The mean of each participant’s median response time was calculated for each cell and
its negative is displayed to ease comparison with the strongly correlated similarity rating data
shown in Figure 2. To reduce visual cluster, error bars are not included, but 95% confidence
intervals on the means are approximately + .55 seconds.

attributes are spread across multiple entities; however the above reaction
times suggest that the participants were still significantly faster at processing
the features than the relations, even when operating at the same level of
accuracy. While this is not conclusive, it certainly warrants further
investigation. One possibility is that the majority of response time is due
to comparison processes rather than to the perception of attribute values.
Overall, our findings add to a growing body of evidence that suggests a
central role for relational processing in categorisation. Many real-world
categories have a strong relational basis (Gentner & Kurtz, 2005; Markman
& Stilwell, 2001), as do many of the features that constitute categories that
we do not view as relational (Jones & Love, 2007). The present work
complements this line of inquiry by examining relation-based learning of
novel categories in a rigorously controlled experimental setting. While
limited to consideration of simple perceptual relationships, we hold hope
that the present findings will inform future work in other domains, as
previous work in relational comparison has revealed common under-
pinnings in perceptual and conceptual domains (cf. Falkenhainer, Forbus, &
Gentner, 1989; Kotovsky & Gentner, 1996). We predict that relational
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learning in many domains will be advantaged in situations in which learners
can exploit mappings or relational transformations that increase category
coherence.

The interplay of featural and relational processes

Although we have framed featural and relational processes as distinct, these
processes likely interface to the benefit of the overall cognitive system. One
possibility is that useful relational comparisons give rise to new primitive
features (cf. Doumas, Hummel, & Sandhofer, 2008). Such a division of
labour is desirable given the distinct strengths of relational and featural
processing. Relational processes can be characterised as powerful and
flexible, but require capacity-limited cognitive resources (cf. Halford,
Wilson, & Phillips, 1998; Waltz et al., 2000). In contrast, feature-based
comparison is somewhat inflexible, but less costly in terms of cognitive
resources. Even for our simple perceptual learning tasks, response times for
relationally guided judgements were greater. Creating new features to recode
frequent relational correspondences would allow the cognitive system to
appreciate relational commonalities without straining limited cognitive
resources. Furthermore, these new features can serve as inputs to relational
processes that in turn lead to the discovery of further category regularities.
Productions systems that compile operations into new chunks follow a
similar logic (e.g., Rosenbloom & Newell, 1983).

Consideration of metaphor use and concepts rarified in language support
our account of the interplay of featural and relational processes. Certain
productive metaphors, such as understanding time in terms of space (e.g.,
“They moved the meeting forward two hours”), appear to be processed in
an online manner (Casasanto & Boroditsky, 2008). In contrast, other
metaphors do not appear to be processed online, but rather are polysemies
or frozen idioms (Keysar & Bly, 1995; Murphy, 1996, 1997). According to
our proposal for the interface of featural and relational processes, these
“dead metaphors™ are akin to the features generated by relational processes
(i.e., repeated application of comparison processes). Likewise, many
relational concepts (e.g., island, thief, predator) are reflected in the lexicon
and perhaps the existence of these labels eases processing requirements and
allows for appreciation of more complex relational regularities. Paralleling
our proposal, this progression from online processing via analogical
processes to operations that rely on static (i.e., pre-aligned) representations
has been used to explain differences seen in the processing of conventional
(e.g., “A soldier is a pawn”) and novel (e.g., “The mind is a kitchen™)
metaphors (Bowdle & Gentner, 2005).

Our experimental methods may prove useful for bringing these ideas into
the laboratory for systematic and controlled evaluation. In Experiment 3,
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Category A in the relation-relevant condition was defined by the bigger
circle being on the left and the darker circle also being on the left, or the
smaller circle being on the left and the lighter circle also being on the left (see
Figure 1). As previously discussed, stimulus items that were opposite on
these two relational attributes can be made more similar by a cross-mapping
or swapping operation. Across studies, our results strongly suggest that
participants engaged in these operations. Alternatively one could learn these
categories by creating the new relational feature “‘the bigger circle of the pair
is also the darker one” to unite all of Category A’s members. Essentially,
such a feature transforms the relational XOR category structure into a
single attribute category structure, much like the category structures used in
Experiment 2. Unfortunately, it is not clear whether any participants in the
present studies discovered such emergent, relational features. Certainly
participants did not quickly discover such a feature as the relational XOR in
Experiment 3 proved much more difficult for participants to learn than
Experiment 2’s single-attribute relational category structure.

Systematic exploration of feature creation operations (cf. Schyns,
Goldstone, & Thibaut, 1998) through relational mechanisms awaits future
research. Our basic framework might prove useful in tackling this important
issue. Following extensive training, we predict that participants will create
new relational features in situations in which such features regularise
category structure (e.g., Experiment 2, relational XOR category structure),
but not in cases in which such features would highlight commonalities
across contrasting categories (e.g., Experiment 4, relational four-category
structure). The overarching idea is that relational processes can create new
features that ease processing requirements and promote category coherency
through relational comparisons (Kurtz, Miao, & Gentner, 2001). Whereas
Rosch and Mervis (1975) focused on how the structure of the environment
biases acquisition towards categories that have high within- and low
between-category similarity, our findings suggest the cognitive machinery
provided for online comparisons can exert a strong influence in regularising
categories to conform to the Rosch and Mervis ideal.
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