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a b s t r a c t

Our understanding of cognition has been advanced by two traditionally non-overlapping and non-
interacting groups. Mathematical psychologists rely on behavioral data to evaluate formal models of
cognition, whereas cognitive neuroscientists rely on statistical models to understand patterns of neural
activity, often without any attempt to make a connection to the mechanism supporting the computation.
Both approaches suffer from critical limitations as a direct result of their focus on data at one level of
analysis (cf. Marr, 1982), and these limitations have inspired researchers to attempt to combine both
neural and behavioral measures in a cross-level integrative fashion. The importance of solving this
problem has spawned several entirely new theoretical and statistical frameworks developed by both
mathematical psychologists and cognitive neuroscientists. However, with each new approach comes a
particular set of limitations and benefits. In this article, we survey and characterize several approaches
for linking brain and behavioral data. We organize these approaches on the basis of particular cognitive
modeling goals: (1) using the neural data to constrain a behavioral model, (2) using the behavioral model
to predict neural data, and (3) fitting both neural and behavioral data simultaneously. Within each goal,
we highlight a few particularly successful approaches for accomplishing that goal, and discuss some
applications. Finally, we provide a conceptual guide to choosing among various analytic approaches in
performing model-based cognitive neuroscience.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Our understanding of cognition has been advanced by two
nearly non-overlapping and non-interacting groups. The first
group, mathematical psychologists, is strongly motived by the-
oretical accounts of cognitive processes, and instantiates these
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theories by developing formalmodels of cognition. Themodels of-
ten assume a system of computations andmathematical equations
intended to characterize a process that might actually take place
in the brain. To formally test their theory, mathematical psycholo-
gists rely on their model’s ability to fit behavioral data. A good fit
is thought to reflect an accurate theory, whereas a bad fit would
refute it (Roberts & Pashler, 2000). The second group, cognitive
neuroscientists, rely on statistical models to understand patterns
of neural activity, often without any attempt to make a connec-
tion to the computations that might underlie some hypothesized
mechanism. For example, some statistical approaches (e.g., multi-
variate pattern analysis) explicitly condition on the neural data to
determinewhich aspects of the data produce better predictions for
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behavioral outcomes. Such an analysis can tell us which brain re-
gions are predictive of a particular behavior and even by howmuch,
but they say nothing about neither how nor why particular brain
regions produce said behavior.

Although both groups are concerned with explaining behavior,
they tend to approach the challenge from different vantage
points. Thinking in terms of Marr (1982)’s levels of analysis,
mathematical psychologists tend to focus on the computational
and algorithmic levels, whereas cognitive neuroscientists focus
more on the implementation level. Although progress can bemade
by maintaining a tight focus, certain opportunities are missed. As
a result of their single-level focus, both approaches suffer from
critical limitations (Love, 2015). Without a cognitive model to
guide the inferential process, cognitive neuroscientists are often
(1) unable to interpret their results from a mechanistic point of
view, (2) unable to address many phenomena when restricted
to contrast analyses, and (3) unable to bring together results
from different paradigms in a common theoretical framework. On
the other hand, the cognitive models developed by mathematical
psychologists are inherently abstract, and the importance of
physiology and brain function is often unappreciated. After
fitting a model to data, mathematical psychologists can describe
an individual’s behavior, but they can say nothing about the
behavior’s neural basis. More importantly, neural data can
provide information that can help distinguish between competing
cognitive models that cannot be uniquely identified based on fits
to behavioral data alone (Ditterich, 2010; Mack, Preston, & Love,
2013; Purcell, Schall, Logan, & Palmeri, 2012).

The many limitations of single-level analyses have inspired
researchers to combine neural and behavioral measures in an
integrative fashion. The importance of solving the integration
problem has spawned several entirely new statistical modeling
approaches developed through collaborations between mathe-
matical psychologists and cognitive neuroscientists, collectively
forming a new field often referred to as model-based cogni-
tive neuroscience (e.g., Boehm, Van Maanen, Forstmann, & Van
Rijn, 2014; Forstmann, Wagenmakers, Eichele, Brown, & Serences,
2011; Love, 2015; Mack et al., 2013; Palmeri, 2014; Palmeri,
Schall, & Logan, 2015; Turner et al., 2013b; Turner, Van Maanen,
& Forstmann, 2015b; vanMaanen et al., 2011). We refer to these as
‘‘approaches’’, because they are general strategies for integrating
neural and behavioral measures via cognitive models, and are nei-
ther restricted to any particular kind of neural or behavioral mea-
sure, nor any particular cognitive model. However, with each new
approach comes a unique set of limitations and benefits. The ap-
proaches that have emerged in the recent years fill an entire spec-
trum of information flow between neural and behavioral levels of
analysis, and deciding between them can be difficult. Given the
overwhelming demand for these integrative strategies, we believe
that an article surveying the different types of analytic approaches
could be an invaluable guide for any would-be model-based cog-
nitive neuroscientist.

Here we survey and characterize the many approaches for
linking brain and behavioral data. We organize these different
approaches into three general categories: (1) using the neural
data to constrain a behavioral model, (2) using the behavioral
model to predict neural data, and (3) modeling both neural and
behavioral data simultaneously. For each specific approach within
each category, we highlight a few particularly successful examples,
and discuss some applications. In an attempt to draw a detailed
comparison between the approaches, we then organize each of
the approaches according to a variety of factors: the number
of processing steps, the commitment to a particular theory, the
type of information flow, the difficulty of implementation, and
the type of exploration. In short, we discuss the ways in which
current approaches bind data at multiple levels of analysis, and

speculate about how these methods can productively constrain
theory.We close with a discussion about additional considerations
in model-based cognitive neuroscience, and provide an outlook
toward future development.

2. Specific analytic approaches

For ease of categorization and subsequent comparison, we will
hypothetically assume the presence of neural data, denoted N , and
behavioral data, denoted B, which may or may not have been col-
lected simultaneously. The neural data N could be neurophysio-
logical recordings, functional magnetic resonance imaging (fMRI),
electroencephalography (EEG), or other physiological measures.
The behavioral data B could be response probabilities, response
times, confidence ratings, or other typical behavioral data col-
lected in a cognitive experiment. Cognitivemodelers are interested
in characterizing the mechanisms – specified in mathematical
and computational terms – that lead to the behavior B observed
in a given experimental condition. Commonly, this characteriza-
tion is derived from fitting a cognitive model to behavioral data,
interpreting the resulting parameter estimates, and comparing
(qualitatively or quantitatively) the observed behavior and the
behavior predicted by the model. Cognitive neuroscientists are in-
terested in uncovering the neural mechanisms that lead to the be-
havior B observed in a given experimental condition. Commonly,
this process involves a statistical analysis of neural data with
respect to observed behaviors and experimental manipulations.
However, model-based cognitive neuroscientists are interested in
integrating neurophysiological information N and behavioral out-
comes B by way of a cognitive model. The central assumption of
these analyses is that information obtained from either source
of data (N or B) can tell a similar story – albeit in different lan-
guages – about some aspect of cognition, and the integration of the
thesemeasures assimilates the differences in languages across data
modalities.

As model-based cognitive neuroscientists, we have many
choices in deciding which story we would like to tell, and these
choices depend on our research goals. In practice, there seems to be
at least three general categories of approaches in the emerging field
of model-based cognitive neuroscience. These three categories are
illustrated in the rows of Fig. 1. The first set of approaches uses
neural data as auxiliary information that guides or constrains a
behavioral model. There are several ways in which the neural
data can constrain modeling choices, and we will discuss three
such approaches in the subsequent sections. The second set of
approaches uses a behavioralmodel as away to interpret or predict
neural data. Behavioral models assume a set of mechanisms that
theoreticallymimic a cognitive process of interest,making theman
interestingway to impose theory in data analyses.Moreover, while
competing cognitive models might predict the same or similar
patterns of behavioral data B, they might differ considerably
in what they predict about neural data N , creating a powerful
approach to model selection. We are faced with many choices
in using these model mechanisms to guide our search for the
interesting neural signatures. In the sections that follow, we will
discuss two such approaches for accomplishing this goal. The third
set of approaches builds a single model that jointly accounts for
the random variation present in both the neural and behavioral
data. With the proper model in place, one can simultaneously
achieve constraint on the behavioral model while retaining the
ability to interpret the neural data. In the sections that follow, we
will discuss two approaches designed to accomplish this goal. We
do not necessarily think this is a comprehensive list; in fact, we
suspect that there is room for further development, and possibly
the creation of entirely new analytic approaches.
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Fig. 1. An illustration of several approaches used for linking neural and behavioral data, organized by specific modeling goals. N represents the neural data, B represents
the behavioral data, N⇤ represents simulated internal model states, and ✓ , �, and ⌦ represent model parameters. When an approach is procedural, progression through
processing stages is represented by arrows of decreasing darkness (e.g., the Latent Input Approach). Dashed lines indicate conceptual constraints (e.g., the Theoretical
Approach), whereas solid lines indicate statistical constraints.

Fig. 1 represents the specific approaches as graphical diagrams
where observable measures (i.e., data) are depicted as shaded
square nodes, latent model parameters are depicted as empty
circles, and arrows depict dependencies. Two of these approaches
(i.e., Two-stage and Latent Input) require several processing
stages, and we have represented the dependency structure of
these stages as increasingly lighter shades of gray. Most of
these approaches require a transformation from the data space
to a (latent) parameter space, and this transformation can be
unimodal (i.e., concerning only behavior data B or neural data N)
or bimodal (i.e., concerning both B and N simultaneously). The
parameters can define a mechanistic model, like those commonly
used by cognitive modelers, or they can define a statistical
model, like those commonly used by cognitive neuroscientists.
When an unimodal transformation is required, we denote the
parameters of the neural model which predict N as �, and the
parameters of the behavioral model which predict B as ✓ . The
neural model parameters � might be slopes or intercept terms
from a general linear model, or something more sophisticated like
those used in topographic latent source analysis (Gershman, Blei,
Pereira, & Norman, 2011). The behavioral model parameters ✓

represent things like discriminability in the signal detection theory
model (Green & Swets, 1966), or the drift rate in the ‘‘diffusion
decision model’’1 (Forstmann et al., 2016; Ratcliff, 1978). When
a bimodal transformation is required, we generically denote the
parameters as ✓ (e.g., the Integrative Approach in the bottom-right
panel of Fig. 1). For example, in the ACT-R framework (Anderson,
2007), the set of parameters ✓ represents a sequence of module
activations, and their values have bimodal effects in the prediction
of both neural and behavioral measures. Some approaches in
our set require a simulation process where the parameters are
used to generate synthetic data, and we will denote these data
with an asterisk (e.g., N⇤ denotes predicted neural data in the
Latent Input Approach). Other approaches assume a secondary
projection from a set of several parameter spaces to a group-level
parameter space, such as in hierarchical modeling. We denote

1 In this article, we refer to this model as the ‘‘diffusion decision model’’
following Forstmann, Ratcliff, andWagenmakers (2016). This samemodel has been
called other names such as the ‘‘the diffusion model’’, the ‘‘drift diffusion model’’,
and the ‘‘Wiener diffusion model’’.
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these higher-level parameters as ⌦ (e.g., the Joint Modeling
Approach in the bottom-left panel of Fig. 1). As an example, the
jointmodeling framework (Turner et al., 2013b) uses a hierarchical
(Bayesian) structure for bridging the connection between neural
and behavioral measures. With these general assumptions and
notation in place, we can discuss how these various approaches
achieve their intended analytic goal.

2.1. Neural data constrain behavioral model

We begin our discussion with approaches that constrain a
behavioral model with neural data. In this endeavor, the neural
data are considered important, but only in the sense that they
inform the mechanisms in the behavioral model. We have
identified three specific approaches (i.e., see Fig. 1): the Theoretical
Approach, the Two-stage Behavioral Approach, and the Direct
Input Approach. We now discuss each of these approaches in turn.

2.1.1. Theoretical approach
In the Theoretical Approach, psychological theories are devel-

oped on the basis of considerations from both neuroscience and
behavioral data. The top left panel of Fig. 1 illustrates the Theo-
retical Approach as statistically independent models of the neu-
ral and behavioral data because the link between these measures
is established only through the researcher themselves (i.e., rep-
resented by the dashed arrow). In this approach, the dominant
procedure uses neural measures to inspire the development of
psychological models. First, the researcher observes particular as-
pects of brain function, such as information about the structure
(e.g., individual neurons or densely connected brain regions) or
function (e.g., dorsal and ventral pathways of visual stimulus pro-
cessing) of the brain. Next, the researcher develops a model of be-
havior that, at its core, abides by these neural observations. With
an initial model structure imposed byN , the researcher is now able
to evaluate the relative merits of nested theoretical assumptions,
and make incremental adjustments in the model to provide better
fits to behavioral data B. Unlike other approaches discussed in this
article, the Theoretical Approach may draw inspiration from phys-
iological or anatomical observations, but there is no mathematical
or statistical link between the neural data N and either the model
architecture or the model parameters that predict the behavioral
data B.

Although the absence of an explicit link between neural and
behavioral data may seem craven, the Theoretical Approach has
proven to be a powerful framework for motivating psychological
theory. Perhaps the most prominent example of a Theoretical Ap-
proach is the enormous class of neural network models. Neural
network models have a long history, with one classic example be-
ing Rosenblatt’s Perceptron machine (Rosenblatt, 1961). In the de-
velopment of the Perceptron, Rosenblattmade choices in hismodel
that reflected operations observed in individual neurons, such as
that the firing of individual neurons should be discrete (motivated
by theMcCullogh–Pitts neuron;McCullogh&Pitts, 1943). Although
these original neural networkmodelswere heavily criticized (Min-
sky & Papert, 1969), pioneering work allowing for continuous ac-
tivations in neuron-like units (Anderson, 1977; Grossberg, 1978;
McClelland&Rumelhart, 1981; Rumelhart, 1977; Rumelhart &Mc-
Clelland, 1982) evolved neural network models into more com-
plex and successful theoretical approaches such as the parallel
distributed processing (PDP; McClelland & Rumelhart, 1986) mod-
els. Superficially, these models allow for the presence of individual
nodes embedded within layers of a network, and these nodes are
massively interconnected across layers, resembling neural struc-
tures in the brain. Through a process known as back-propagation,
PDP models can be trained on behavioral data to learn important

aspects of the decision rule, facilitating further systematic explo-
rations of representation, learning, and selective influence (i.e., by
a process referred to as ‘‘lesioning’’).

As another example, consider the Leaky Competing Accumula-
tor (LCA; Usher & McClelland, 2001) model. The LCA model was
proposed as a neurally plausible model for choice response time
in a k-alternative task. The model possesses mechanisms that ex-
tend other diffusion-type models (e.g., Ratcliff, 1978) by includ-
ing leakage and competition by means of lateral inhibition. These
additional mechanisms have proven effective in explaining how,
for example, time sensitive stimulus information can give way to
differences in individual subject performance. For example, Usher
and McClelland (2001) and Tsetsos, Usher, and McClelland (2011)
have shown the effects of primacy and recency for some subjects
in a time-varying stimulus information paradigm. In these multi-
alternative choice experiments, one response option may receive
the strongest ‘‘input’’ (e.g., the brightness level) for the first 500
ms, but then the stimuli transition such that a different response
option receives the strongest input relative to the first. In both of
these studies, different parameterizations of the LCA model were
used to demonstrate how primacy effects could be appreciated by
having a large value for lateral inhibition relative to the strength of
the input (i.e., the drift rate), and recency effects could be captured
through a large leakage term relative to the input (Tsetsos et al.,
2011; Usher & McClelland, 2001).

As a specific example of how the neurosciences have guided
the assumptions in the LCA model, it is well known that the firing
rate of individual neurons can never be negative. However, these
firing rates can be attenuated by way of inhibition—a process
carried out by other neurons in the system. To instantiate these
neuronal dynamics, the full LCA model enforces a constraint
such that if the degree of evidence for any choice alternative
becomes negative, the degree of evidence for that accumulator
should be reset to zero (Usher & McClelland, 2001). The floor-on-
activation constraint was later found to be critical in capturing
patterns of individual differences in multi-alternative choice that
could not be captured by other diffusion-type models (Tsetsos
et al., 2011). It is worth noting that other neurological constraints
allow the LCA model to provide a unique characterization of
behavioral data that would not otherwise be realized; specifically,
the role of lateral inhibition relative to leakage in the model
plays an interesting role in characterizing subject-specific patterns
in behavioral data (Bogacz, Brown, Moehlis, Holmes, & Cohen,
2006; Bogacz, Usher, Zhang, & McClelland, 2007; Gao, Tortell,
& McClelland, 2011; Ossmy et al., 2013; Purcell et al., 2012;
Teodorescu & Usher, 2013; Tsetsos, Gao, McClelland, & Usher,
2012; Tsetsos et al., 2011; Turner & Sederberg, 2014; Turner,
Sederberg, & McClelland, forthcoming; van Ravenzwaaij, van der
Maas, & Wagenmakers, 2012).

Given the highly subjective nature of the neural constraints
imposed on a behavioral model, it should not be surprising
that a great deal of controversy surrounds some applications of
the Theoretical Approach. While neural network modelers have
undoubtedly derived inspiration from the brain in building their
models, the mechanistic implementation of these inspirations is
often interpreted as a strong commitment, which opens the gates
for scrutiny about plausibility and falsifiability (Massaro, 1988;
Minsky & Papert, 1969; Roberts & Pashler, 2000). Furthermore, in
some cases these additional neural mechanisms do not provide
any advantage in terms of quantitative fit statistics to behavioral
data over their simpler counterparts (e.g., see Ratcliff and Smith
(2004), but also see Teodorescu and Usher (2013) and Turner et al.
(forthcoming) for a different perspective). In some cases, there are
also concerns centered on the level of explanation that the model
provides (cf. Marr, 1982). On the one hand, the study of individual
neurons constitutes an exploration of Marr’s implementation
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level of analysis (Broadbent, 1985; Kemp & Tenenbaum, 2008;
Pinker & Prince, 1988; Smolensky, 1988). On the other, the
development of a cognitive model involves meandering through
the computational level—Marr’s highest level of analysis (Shiffrin
& Nobel, 1997). To what extent should the implementation level
be reflected or imposed on the computational level (e.g., Frank,
2015; Love, 2015; Teller, 1984)? For example, if we believe that
individual neurons have a floor on activation or are inherently
‘‘leaky’’ (i.e., meaning they lose information over time), should this
restriction be imposed on the dynamics of racing accumulators
in a cognitive model (Zandbelt, Purcell, Palmeri, Logan, & Schall,
2015)? These accumulators are intended to reflect the amount of
sensory evidence for each alternative—evidence that is apparently
observed in many brain areas (including the lateral intraparietal
area, superior colliculus, frontal eye field, and dorsolateral
prefrontal cortex;Hanes& Schall, 1996;Hanks et al., 2015;Horwitz
& Newsome, 1999, 2001; Kim & Shadlen, 1999; Purcell et al.,
2010, 2012; Shadlen & Newsome, 1996, 2001), and so it begs the
question:Which – if any – levels of decisionmakingmodels should
reflect the function of individual neurons? If the accumulators
are to reflect the behavior of individual neurons, how might
this connection be formally established (Smith, 2010; Smith &
McKenzie, 2011)? Questions like this have been considered by
many other scientists (e.g., Broadbent, 1985; Frank, 2015; Love,
2015; Marr, 1982; Schall, 2004; Teller, 1984), and the next two
sections discuss two different ideas about how this connection
should be made.

2.1.2. Two-stage behavioral approach
The first formal linking approach uses neurophysiology to

replace parameters of a behavioral model. For example, consider
a model that explains some neural data N with parameters �,
and behavioral data B with parameters ✓ . The neural parameters
� could be divided into a set of parameters characterizing a key
neural signal �1, and a set of nuisance parameters �2 so that
� = {�1, �2}. Now suppose the behavioral model parameters
could be divided into a set of parameters that are reflective of
the behavioral signal ✓1, and a set of parameters ✓2 that are not.
The structure of the Two-stage Behavioral Approach is to simply
replace the set of parameters ✓1 with the parameters of the neural
signal �1. We refer to this approach as the ‘‘Two-stage Behavioral’’
approach because the connection involves two stages, and that
behavioral model parameters are replaced by neural parameters.
This approach makes a strong commitment to how the neural
signal is represented in the abstract mechanisms assumed by the
behavioral model, and as a result, it is a stronger instantiation of
neurophysiology than the Theoretical Approach discussed above.

The Two-stage Behavioral Approach is nicely illustrated by
the work of Wang and colleagues (Wong & Wang, 2006), who
developed a spiking neural network model of perceptual decision
making. This model aims to account for the same kinds of
behaviors as the DDM and the LCA model, but is far less abstract,
with thousands of simulated spiking neurons, dense patterns of
excitatory and inhibitory connections, pools of neurons associated
with a single response, and the dynamics of individual neurons
defined by several differential equations. While the model has
dozens of potentially free parameters, most of them are defined
directly by neural data. For example, the time constants of
integration of different inhibitory and excitatory receptor types are
based directly on physiological measures. While low-level spiking
neural networkmodels of this sort capturewellmany of the details
of neurons and neural circuits and provide reasonable first-order
predictions of behavioral data, they are difficult to simulate and
quantitative fits to behavioral data are simply impossible using
even state-of-the-art computer hardware (see Umakantha, Purcell,
& Palmeri, 2016). Indeed, as a result of this additional complexity,

very few efforts have been devoted to systematically studying
the model’s predictions for choice response time data. However,
a few approximations have been developed for fitting purposes,
and these approximations behave similarly to popular models in
cognitive science such as the LCAmodel (Bogacz et al., 2006; Roxin
& Ledberg, 2008; Wong &Wang, 2006).

2.1.3. Direct input approach
The Two-stage Behavioral Approach represents one way in

which theneural data can guide the behavioralmodel throughneu-
ral model parameters, but it is easy to imagine other approaches
that are more direct. For example, rather than translating the neu-
ral data N to the neural model parameters �, and then using � to
constrain the behavioral model parameters ✓ , we could instead
use the neural data to directly replace dynamics of the behav-
ioral model. This alternative approach is nicely illustrated by the
Vanderbilt group (e.g., Palmeri et al., 2015; Purcell et al., 2010,
2012). They examined perceptual decision making within the se-
quential sampling model architecture assumed by models like the
DDM (DDM; Ratcliff, 1978), and the LCA model (Usher & McClel-
land, 2001), among others. They specifically tested the hypothe-
sis that different types of neurons in the frontal eye field (FEF)
carry out different computations specified in accumulator models,
namely that visually-responsive neurons in FEF encode the drift
rate driving the decision process and that movement-related neu-
rons in FEF instantiate the accumulation process itself. To test this
linking proposition most directly (cf. Schall, 2004; Teller, 1984),
they replaced the parameterized mechanisms thought to be em-
bodied by the visually-responsive neurons, namely the time for
perceptual processing and the drift rate, with the neurophysi-
ological data recorded from visually-responsive neurons. Rather
than having abstract mathematical and computational compo-
nents specified by free parameters drive the decision process, the
neural data (N) drove the decision process directly. To do this,
the neural data were used to directly replace components of the
model that would otherwise have been latent, and would need to
be estimated from behavioral data. The only remaining free pa-
rameters were those that defined the decisionmaking architecture
(i.e., race, feedforward, lateral, or gated accumulation), and that
defined speed-accuracy tradeoffs (i.e., threshold of accumulation).
When constrained by neural inputs, they observed that only some
of the various decision making architectures could fit the full set
of behavioral data (correct and error response time distributions
and response probabilities). They were then able to distinguish
further between models based on how well the predicted accu-
mulator model dynamics matched the observed neural dynamics
in movement-related neurons, the neurons they hypothesized to
carry out an accumulation of evidence (see Latent Input Approach
below).

Although the Direct Input Approach is commonly used to feed
neural data into a cognitive model, one could potentially invert
the direction of influence in Fig. 1 to analyze the neural data as a
function of some behavioral variable, such as accuracy (e.g., Eichele
et al., 2008) or response time (e.g., Hanes & Schall, 1996;
Weissman, Roberts, Visscher, & Woldorff, 2006). Once the neural
data have been sorted as a function of the levels of the behavioral
outcome, one might analyze the distribution of neural data
between these levels (Woodman, Kang, Thompson, & Schall, 2008).
Such a procedure has been the dominant analytic approach in
neuroscience since its inception, but is not model-based, and so
we will not consider it here. However, the model-based analogue
of this analysis would be to use the model’s machinery to drive
the analysis of neural data. We refer to this approach as the Latent
Input Approach, and will discuss it further in the next section.
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2.2. Behavioral model predicts neural data

Another set of analytic approaches involves searching the brain
for areas that support mechanisms assumed in the behavioral
model. Such a procedure allows one to interpret neural data
through mechanisms in the model, which can potentially be
more informative than behavioral data alone. We consider two
approaches for accomplishing this goal: the Latent Input and the
Two-stage Neural Approaches.

2.2.1. Latent input approach
The goal of the Latent Input Approach is a converse of sorts to

the Direct Input Approach. In the Direct Input Approach, the goal
is to use the neural data N to constrain model mechanisms and
parameters ✓ that predict behavior. In the Latent Input Approach,
the cognitive model is used to guide the inference of neural data
N , or to make predictions about N . To perform an analysis within
this approach, one typically carries out three stages, illustrated
in the middle-left panel of Fig. 1. First, the parameters of a
cognitive model ✓ are estimated by fitting the model to behavioral
data B alone. Second, the resulting parameter estimates are used
to generate predictions about neural data N⇤, which typically
represents some ‘‘internal state’’ of the cognitive model in terms
of the neural measure. Third, one searches for correlates of the
model’s internal state N⇤ with the observed neural data N .

One example of an Latent Input analysis using fMRI data would
be a voxel-by-voxel application of the general linearmodel relating
the model’s internal state N⇤ to the neural data N (e.g., O’Doherty,
Hampton, & Kim, 2007). The typical result is a pattern of voxels
representing significant correlationswith the cognitivemodel, and
these voxels are taken as the region of the brain supporting the
mechanism assumed by the model. This univariate approach is
commonly referred to as ‘‘model-based fMRI’’, but of course any
neural measurement could be correlated with the model measure.

The Latent Input Approach is commonly used in reinforcement
learning models to relate mechanisms of learning and prediction
errors to the brain (e.g., Gläscher & O’Doherty, 2010; Hampton,
Bossaerts, & O’Doherty, 2006; O’Doherty, Dayan, Friston, Critch-
ley, & Dolan, 2003; O’Doherty et al., 2007), and has been particu-
larly powerful in the field of clinical neuroscience (e.g., Montague,
Dolan, Friston, & Dayan, 2012; Wiecki, Poland, & Frank, 2015). One
simple example is the Rescorla–Wagner (RW) model that char-
acterizes the process of learning a conditioned response through
repeated presentations of a conditioned stimulus (Rescorla &Wag-
ner, 1972). In the model, the value of the unconditioned stimulus
is represented as u, and the value of the conditioned stimulus on
Trial t is represented as vt . To learn the stimulus environment, the
model assumes that vt is updated sequentially according to a learn-
ing rate parameter ↵, and an evaluation of the prediction error ✏.
Specifically, after a decision is made and the unconditioned stimu-
lus is presented, the model’s internal state of the value of the con-
ditioned stimulus is updated according to the rule

vt = vt�1 + ↵✏. (1)

Eventually, the internal representation of the value v converges
to u, ✏ approaches zero, and the model ‘‘learns’’ the stimulus-
to-response pairing. The value of vt can be directly observed by
assessing the strength of the conditioned response, whereas other
variables are estimated by fitting the model to behavioral data.
Typically, ↵ remains fixed across the trials in an experiment,
allowing one to derive a trial-by-trial estimate of ✏ through Eq. (1).
Hence, the model produces trial-to-trial estimates of the value of
the conditioned stimulus v and the prediction error ✏. As outlined
above, these values can be entered into an fMRI analysis as a
time series by convolving them with a hemodynamic response
function (HRF), and then regressing the result against the fMRI

data through the general linear model. However, the estimates
v and ✏ are not parameters; instead, they reflect the model’s
internal state for value and prediction error, respectively. This
distinction is important because it separates this analytic approach
from other possible Two-stage approaches, such as in van Maanen
et al. (2011), which we discuss below.

As the previous example makes clear, Latent Input Approaches
can identify candidate neural substrates for theoretical concepts,
such as prediction error, that are not directly observable but can be
defined within a cognitive model. Entering latent model measures
into the imaging analyses is relatively straightforward. Indeed,
multiple model measures can be considered simultaneously. For
example, Davis, Love, and Preston (2012) simultaneously analyzed
cognitive operations related to recognition and representational
uncertainty by including two related measures in the imaging
analysis from a cognitive model fit to trial-by-trial category
learning data.
Extensions to model discrimination. One issue with what is
commonly referred to as model-based fMRI is that models tend to
be preferred to the extent that they correlate with many voxels
in the brain. However, it is not clear that this is an appropriate
criterion. Because simple cognitive models do not attempt to
model every process in the brain, they should not be expected
to account for the variance of every voxel. Furthermore, cognitive
states may be coded by brain states that are defined by the pattern
of activation over voxels. This notion of brain state is multivariate
as it depends on the pattern of activity, whereas most model-
based analyses focus on univariate correlations between a model
measure and an individual voxel.

One approach that attempts to address these deficiencies is
model decoding (Mack et al., 2013). Rather than assume a sin-
gle cognitive model as the ‘‘correct’’ model, this generalization
acknowledges that there may be competing cognitive models of
the same phenomenon and uses the neural data to adjudicate be-
tween those competitors. It is well known in mathematical psy-
chology that models assuming very different internal mechanisms
can sometimes predict the same observed behavior. To the extent
that differentmodelmechanisms produce different internalmodel
states, one way to discriminate between models predicting the
same behavior is to compare those predicted internal model states
to observed internal brain states. Models that predict observed be-
havior but cannot predict internal brain states are rejected.

Consider, for example, the work of the Vanderbilt group
discussed earlier (Palmeri et al., 2015; Purcell et al., 2010,
2012). After excluding neurally-constrained models that could
not fit the observed behavioral data, they were then able to
distinguish further between models based on how well the
predicted accumulator model dynamics matched the observed
neural dynamics in movement-related neurons, the neurons they
hypothesized to carry out an accumulation of evidence (see
also Purcell & Palmeri, 2017, in this special issue). Only their gated
accumulatormodel produced accumulator dynamics thatmatched
the observed dynamics of movement-related neurons in FEF.

Consider next the recent work of Mack et al. (2013), who
developed a strategy for evaluating different models of object
categorization on the basis of their consistency with observed
fMRI data. They specifically contrasted two well-known theories
of category representation: exemplar and prototype models (see
also Palmeri, 2014). Exemplar models assume that members of
a category are explicitly stored in memory, and a categorical
decision for a new stimulus is a function of its similarity to these
remembered exemplars. Prototype models assume that category
representations are abstract, averages of experienced category
examples, and a categorical decision is a function of similarity
to the stored category prototypes. In this sense, the prototype
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representation is abstract—a category could be represented in a
location of feature space that is not representative of any particular
known category member. These particular theories of category
representation have been fiercely debated for decades (e.g., Medin
& Schaffer, 1978; Minda & Smith, 2002; Zaki, Nosofsky, Stanton,
& Cohen, 2003). Indeed, in their first analysis, Mack et al. (2013)
showed that both exemplar and prototypemodels provided nearly
indistinguishable fits to the observed behavioral data.

Even though the exemplar and prototype models make similar
predictions about behavior, they do so by assuming very different
kinds of internal representations. Indeed, the degree to which
different test items activate these internal representations –
similarity to stored exemplars for the exemplar model versus
similarity to category prototypes for the prototype model – differs
considerably between the two models. Mack et al. (2013) asked
whether the pattern of brain activity elicited by different test
items would be more similar to the pattern of activation of
internal representations for the exemplar model or the prototype
model. They specifically evaluated the mutual information shared
between brain andmodel state usingmachine learning techniques
like multivariate pattern analysis (MVPA) and representational
similarity analysis (RSA). The patterns of brain activity across
trials showed better correspondence to the internal state of the
exemplar representation than the prototype representation. These
findings serve as a powerful example of how the neurosciences
– combined with a Latent Input Approach – allow us to draw
conclusions regarding competing cognitive models that we might
not otherwise reach.

These model decoding approaches represent an important
departure from the Latent Input Approach discussed above.
Namely, these methods do not assume that the model used to
interpret the neural data is correct. Instead, they posit a set
of competing models for the underlying cognitive process, and
the best explanation is to be determined from each model’s
correspondence to the neural data. Once a cognitive model is
selected, it can then be used as a lens on the brain data, using
any existing technique, such as the aforementioned univariate
approaches or representation similarity analysis (RSA). This stage
of the analysis can be seen as confirmatory—the winning model
has been established and is used to help interpret the neural data.
Pairing model decoding with a model-based analysis approach
allows for information from brain and behavior to be mutually
constraining through the bridge of the cognitive model. This extra
step of selecting a model based on neural data is atypical of Latent
Input Approaches, and this step is not illustrated in Fig. 1.

2.2.2. Two-stage neural approach
The second approach we will discuss that uses behavior

to predict neural data is related to the Two-stage Behavioral
Approach discussed above, except that here, the parameters of the
behavioralmodel ✓ are used to guide the analysis of the neural data
N instead of vice versa. While a subset of neural model parameters
� could be replaced with a subset of behavioral model parameters
✓ akin to the Two-stage Behavioral Approach, in practice, this is
rarely done. Instead, relationships between ✓ and � are formed
through correlational or regression analyses. The correlational
approach has been especially successful in the field of perceptual
decision making (Mulder, van Maanen, & Forstmann, 2014).
For example, Forstmann et al. (2008), Forstmann et al. (2010),
and Mansfield, Karayanidis, Jamadar, Heathcote, and Forstmann
(2011) show in various experimental setups that accumulator
model parameters that reflect response caution correlate with
averaged BOLD responses in pre-supplementary motor area and
striatum, two regions in the brain that are thought to be involved in
mediating cognitive control. These studies illustrate that individual
differences in behavior, captured by hypothesized processes, are

driven by individual differences in how the brain works. This
approach thus strengthens our understanding of the role of certain
brain areas in cognition, but it also adds credence to the type of
cognitive model that is adopted to describe behavior.

In the regression approach, parameters of a behavioral model
are used as predictors in a regressionmodel of the neural variables.
In the context of fMRI, behavioral model parameters are often
entered as regressors in a general linear model that quantifies the
BOLD response in certain brain areas (e.g., Mulder, Wagenmakers,
Ratcliff, Boekel, & Forstmann, 2012; Summerfield & Koechlin,
2010; White et al., 2014). Usually, this is done in addition to
regressors that relate to the experimental manipulations, yielding
statistical maps of brain activation that reflect the predicted
change in neural activation (i.e., in �) for a fixed change in
behavioral model parameter (✓ ), in addition to the standard notion
of a change in � as a function of the experimental manipulation.

Some properties of behavior are difficult to cast in experimental
conditions. For example, fluctuations that occur as part of a time
series of observations are ideally analyzed as such (Wagenmakers,
Farrell, & Ratcliff, 2004). Moreover, these fluctuations may be
related to incorrect (Dutilh et al., 2012; Eichele et al., 2008)
or task-unrelated responses, for example due to attentional
lapses (Mittner et al., 2014; Weissman et al., 2006). For these
situations it can be useful to study fluctuations in brain and
behavior over time.

To understand how the variability in brain measures from trial
to trial adds to the behavioral variability, some researchers have
developed models in which parameters are estimated on a trial-
by-trial basis (Behrens, Woolrich, Walton, & Rushworth, 2007;
Brunton, Botvinick, & Brody, 2013; Erlich, Brunton, Duan, Hanks,
& Brody, 2015; Hanks et al., 2015; van Maanen et al., 2011).
For example, Behrens et al. (2007) used an optimal model that
updates the expected reward for one of two responses on a trial-
by-trial basis. The parameters of this model were also updated
on a trial-by-trial basis, based on the actual trial outcome (i.e.,
the choice of the participant) and the expected outcome (i.e., the
model prediction). Behrens and colleagues found that the level
at which participants were responsive to changes in the rewards
was predictive of anterior cingulate cortex activation on a trial-
by-trial basis, supporting the idea that anterior cingulate cortex
activation reflects changes in the environment (e.g., Rushworth,
Mars, & Summerfield, 2009).

A slightly different approach was taken by Van Maanen and
colleagues (Boehm et al., 2014; Ho et al., 2012; van Maanen
et al., 2011). Using the LBA model, these authors estimated
the most likely combination of drift rate and starting point of
evidence accumulation, given the distribution of these parameters
across trials. The most likely combination of parameters is
determined by the set of parameters that specify the response
time. While powerful, this method is difficult because the most
likely parameter estimates are highly uncertain, due to the large
variability in the joint distribution of the model parameters, and
due to the simplification of the model to include only two sources
of variability. Nevertheless, van Maanen et al. (2011) showed that
trial-to-trial fluctuations in BOLD in pre-supplementary motor
area correlated with the trial-to-trial measure of threshold, but
only for speed-stressed trials. This finding was corroborated
by Boehm et al. (2014), who found a similar correlation between
the trial-to-trial model parameter and a trial-to-trial estimate of
the Contingent Negative Variation (CNV). The CNV is a slow rising
potential, thought to represent neural activation in a cortico-basal
ganglia loop including the supplementary/pre-supplementary
motor areas (Nagai et al., 2004; Plichta et al., 2013).

Although the Two-stage Neural Approach has been instrumen-
tal in elucidating various mechanistic explanations of neural data,
the framework neglects an important source of constraint. Namely,



72 B.M. Turner et al. / Journal of Mathematical Psychology 76 (2017) 65–79

by analyzing the neural and behavioral data independently, the
secondary analysis does not statistically guide our understand-
ing of how these variables are related. In this way, Two-stage
frameworks are not statistically reciprocal because the neural
data cannot influence the parameter estimates of the behavioral
model (cf. Forstmann et al., 2011). To accomplish such a goal, a
framework would need to automatically learn the covariation of
the neural and behavioral parameters in harmony with the analy-
sis of the neural and behavioral data. Such a framework is the topic
discussed in the next section: Simultaneous Modeling.

2.3. Simultaneous modeling

At this point, we have discussed two general analytic ap-
proaches that apply unidirectional statistical influence: modeling
and analysis of one source of data guides the modeling and analy-
sis of another source. The primary motivation of these approaches
is that one measure is particularly well suited for answering a
key theoretical question. In this way, one measure carries more
‘‘theoretical importance’’ than the other. However, some model-
ing approaches are agnostic in specifying which measure is more
important, and instead posit a bidirectional link between the two
measures. Similar to the subdivisions in other research goals above,
the level at which the link is established is an important distinction
between the two approaches, which we will now discuss in turn.

2.3.1. Joint modeling approach
The next approach we discuss is the recently developed Joint

Modeling framework (Turner, 2015; Turner et al., 2013b, 2015b).
The Joint Modeling Approach is conceptually similar to the Two-
stage Neural Approach in that it attempts to relate the parameters
of the behavioral model to the parameters of the neural model.
However, statistically speaking, the Joint Modeling Approach is
unique in the way it bridges this connection. Specifically, it
assumes an overarching distribution that enforces an explicit
connection between these parameters. The bottom-left panel of
Fig. 1 illustrates this connection via the parameters ⌦ that link
✓ to �. In this illustration, the connection enforced by ⌦ is
clearly abstract; one must make a specific assumption about how
✓ and � should coexist in their explanation of the underlying
cognitive process. As an example, one simple linking function
used in practice has been the multivariate normal distribution
where ⌦ consists of the hyper mean vector and the hyper
variance–covariance matrix. This connection is important because
it allows the information contained in the neural data N to affect
the informationwe learn about the behavioralmodel parameters ✓ .

Perhaps the greatest benefit of the Joint Modeling Approach is
its flexibility—it can be applied to different modalities (e.g., fMRI
or EEG data), make different assumptions about the underlying
cognitive process (i.e., changing the behavioral submodel), and
establish a link at any number of levels in a hierarchical model.
For example, Turner et al. (2013b) used structural diffusion
weighted imagining data to explain differences in patterns of
choice response time data across subjects. They showed how a
jointmodel equippedwith information about the interconnectivity
of important brain areas could make accurate predictions about
a subject’s behavioral performance in the absence of behavioral
data. Turner et al. (2015b) extended this approach to build
in brain state fluctuations measured with fMRI into the DDM.
The problem Turner et al. (2015b) addressed centered on a
lack of information about within-trial accumulation dynamics.
In behavioral choice response time experiments, following the
presentation of a stimulus, researchers can only observe the
eventual choice and response time. These data are then used to
estimate parameters of a cognitivemodel, following an assumption
that the data observed on each of these trials arises from the

same psychological process. However, this assumption – known as
stationarity – is a strong one, and is seldom observed in empirical
data (e.g., Craigmile, Peruggia, & Zandt, 2010; Peruggia, Van Zandt,
& Chen, 2002). Turner et al. (2015b) used a multivariate model to
describe the joint activation of a set of brain regions of interest,
and used this description to enhance the classic DDM. In a cross
validation test, they showed that their extended model could
generate better predictions about behavioral data than the DDM
alone, demonstrating that neurophysiology can be used to improve
explanations about trial-to-trial fluctuations in behavior.

Effectively, the Joint Modeling Approach is a strategy for
treating groups of parameters as covariates, and this covariation
is learned through hierarchical modeling. However, one could
imagine an approach for performing model-based cognitive
neuroscience that is similar to the Two-stage Neural approach,
but instead of correlating or regressing variables after independent
analyses, the parameters of the regression equation are estimated.
Such an approach can be thought of as a Joint Modeling Approach,
except the linking parameters ⌦ are deterministic. Recently,
this approach has been used in cognitive neuroscience to link
decision models to neural fluctuations. For example, Nunez,
Srinivasan, and Vandekerckhove (2015) used EEG data on a
perceptual decision making experiment as a proxy for attention.
They controlled the rate of flickering stimuli presented to subjects
to match the sampling rate of their EEG data, a measure known
as the steady-state visual evoked potential. Importantly, Nunez
et al. (2015) showed that individual differences in attention
or noise suppression was indicative of the choice behavior,
specifically it resulted in faster responses with higher accuracy.
In a particularly novel application, Frank et al. (2015) showed
how models of reinforcement learning could be fused with the
DDM to gain insight into activity in the subthalamic nucleus
(STN). In their study, Frank et al. (2015) used simultaneous EEG
and fMRI measures as a covariate in the estimation of single-
trial parameters. Specifically, they used pre-defined regions of
interest including the presupplementary motor area, STN, and
a general measure of mid-frontal EEG theta power to constrain
trial-to-trial fluctuations in response threshold, and BOLD activity
in the caudate to constrain trial-to-trial fluctuations in evidence
accumulation. Their work is important because it establishes
concrete links between STN and pre-SMA communication as a
function of varying reward structure, as well as a model that
uses fluctuations in decision conflict (as measured by multimodal
activity in the dorsomedial frontal cortex) to adjust response
threshold from trial-to-trial.

The major limitation of the Joint Modeling Approach is its com-
plexity, which hinders our ability to use the approach effectively
in two ways. First, to estimate all of the model parameters, we
must use a sophisticated system of Markov chain Monte Carlo
sampling with updates on separate blocks of model parameters
(see Turner, 2015; Turner et al., 2013b; Turner, Sederberg, Brown,
& Steyvers, 2013c; Turner et al., 2015b, for details). This involves
deriving the conditional distribution of blocks of parameters, and
if desired, establishing conjugate relationships between the prior
andposterior for effective estimation. One example of this has been
the use of a multivariate normal assumption to link neural and
behavioral submodel parameters (Turner et al., 2013b, 2015b). In
this approach, an increase in any neural measure automatically
scales the increase in the behavioral model parameters, and vice
versa. Second, a great deal of data must be available to appreciate
the magnitude of the effects of interest. This result is driven by a
complexity/flexibility tradeoff we discuss below, but the basic idea
is that as the number of parameters increases, the influence the
data can have on the joint posterior distribution decreases. When
a model is complex relative to the data, one simple approach to
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reduce the complexity is to reduce the number of model parame-
ters (Myung&Pitt, 1997). In hierarchicalmodels like the JointMod-
elingApproach, oneway to accomplish this is to reduce the number
of levels in the hierarchy by removing its submodels (i.e., models
within the Joint Model that explain one subset of the data). Such a
strategy constitutes our final approach: the Integrative approach.

2.3.2. Integrative approach
In the Integrative approach, the goal is to develop a single

cognitive model capable of predicting both neural and behavioral
measures. This approach, illustrated in the bottom-right panel of
Fig. 1, uses one set of parameters ✓ to explain the neural N and
behavioral B data jointly. Notice that the Integrative approach
differs from the Joint Modeling Approach because the parameters
✓ are directly connected to the data—there is no overarching
distribution ⌦ to intervene between the data sources. Integrative
approaches allow the neural data N to have a greater influence on
the behavioral data B, a statistical property that can be measured
by mutual information.

Of the approaches we have discussed, the Integrative approach
is arguably the most difficult to develop. Its use requires strong
commitments to both the underlying cognitive process and
where this process is executed in the brain. One technical
hurdle in using an Integrative approach lies in the description of
random variables with different temporal properties. For example,
neurophysiological measures are typically observed on amoment-
by-moment basis, detailing activation in the brain throughout
the trial. By contrast, behavioral data are typically observed only
at the end of a trial, such as in any number of perceptual
decision making tasks. So, in the instantiation of a cognitive
theory that uses the Integrative approach, we would need a
moment-by-moment prediction of neural data, and a trial-by-
trial prediction of the behavioral data, usually assumed to be the
result of a series of unobservable (i.e., latent) processes. Given
the unique structure of Integrative approaches, properly fitting
them to data is a difficult task, often involving sophisticated
techniques such as Hidden Markov Models (e.g., Anderson, 2012;
Anderson, Betts, Ferris, & Fincham, 2010), or Bayesian change point
analyses (e.g., Mohammad-Djafari & Féron, 2006).

Some recent applications of ACT-R have aimed for this Inte-
grative Approach. ACT-R assumes the presence of distinct cogni-
tive modules that are recruited sequentially during a task. The
recruitment of these modules across the time course of the task
can be represented as a vector of binary outcomes, such that a 1
indicates that a module is being used, and a 0 indicates it is not
being used. This vector naturally lends itself to convolution with
the canonical HRF in the same way as experimental design vari-
ables. The result of the convolution is a model-generated BOLD
signal that can be compared to empirical data. In this way, the
ACT-R model can actually be used in both exploratory and confir-
matory research. When used for exploration, the model-generated
BOLD signal is regressed against the data in a voxel-by-voxel fash-
ion through the general linear model (Borst & Anderson, 2013;
Borst, Taatgen, & Van Rijn, 2010b). From this analysis, clusters
of voxels typically emerge, and these clusters are taken to rep-
resent brain areas where the modules are physically executed.
This explorative analysis more closely resembles the Latent In-
put Approach. However, the ACT-R model can also be used in a
confirmatory fashion (Anderson, 2007; Anderson, Byrne, Fincham,
& Gunn, 2008a; Anderson, Fincham, Qin, & Stocco, 2008b; Borst,
Taatgen, Stocco, & Van Rijn, 2010a). To do this, Anderson and
colleagues have identified which brain areas should become ac-
tive during the recruitment of different modules (Anderson et al.,
2008b; Borst, Nijboer, Taatgen, Van Rijn, & Anderson, 2015). These
brain areas were identified primarily from several exploratory

analyses (Anderson, 2007), but recent work has taken these ex-
plorations to generate out-of-sample, confirmatory predictions for
neural data. In these confirmatory studies, the specific pattern of
module activations (i.e., the parameters ✓ ) in the model simulta-
neously affects the model’s predictions for the BOLD response and
the behavioral outcome. Although global, whole-brain predictions
could be made within this framework, the strict assumption of
localized module activity in the brain constitutes a fully confirma-
tory Integrative approach, where predictions for neural activity –
as well as behavioral data – can be quantitatively evaluated.

The ACT-R framework provides an unique perspective on per-
forming the integration between neural and behavioral measures,
but actually testing these models is nontrivial. The major limita-
tion is that one must assume a set of specific modules, and the ac-
tivation of these modules in the behavioral model is latent, which
makes their activation difficult to identify in behavioral data. Al-
though neural data facilitate this identification process, current
solutions rely heavily on assumptions about how modules are
represented in patterns of neural activity (Anderson, 2012). Fur-
thermore, it is unclear how one would objectively decompose
other cognitive models into a discrete set of modules while pre-
serving their key theoretical and convenient properties (for exam-
ples of cognitive models in the style of ACT-R, see van Maanen &
Van Rijn, 2010; van Maanen, Van Rijn, & Borst, 2009; van Maa-
nen, Van Rijn, & Taatgen, 2012). For example, the Linear Ballistic
Accumulator (LBA; Brown & Heathcote, 2008) model has enjoyed
widespread success due to its parsimony and remarkable math-
ematical tractability. Breaking the LBA model down into its con-
stituent parts could compromise this tractability in such away that
estimation of the model’s parameters would be nontrivial. Hence,
it is clear that not every cognitive model can easily be transformed
and prepared for an analysis using the Integrative Approach. At this
point, a natural question to ask is, underwhat conditions should an
approach be used for an analysis?

3. Comparing the approaches

It is important to supplement our discussion of approaches to
model-based cognitive neuroscience with a guide to how these
approaches compare. This comparison is difficult and likely to
be highly subjective. How should the various approaches be
evaluated? Along what dimensions should they be compared
and contrasted? Do these approaches cover all possible types of
linkage between neural and behavioral measures? Despite our fear
of improperly considering these questions, we will persist and
attempt to organize the six core approaches discussed in this article
along dimensions that are relevant for practical implementation
(note that we have grouped both types of Two-Stage approaches
together for this discussion). Table 1 provides a list of key factors
that can be used to compare the strengths and weaknesses of the
approaches.

3.1. Number of stages

The first factor we could compare the approaches on is the
number of processing stages. The fewest number of stages occur
when the approach considers both measures simultaneously.
Because both the Joint Modeling Approach and the Integrative
approach make formal assumptions about how both behavioral
and neural measures arise, a full computational model is fit to the
entire set of data in one stage. Another approach requiring only one
stage is the Direct Input Approach, where the neural data replace
dynamics of the behavioral model. Here, only the behavioral data
are consideredwhile fitting themodel to data, but this process still
only requires a single processing stage. The Latent Input and Two-
stage approaches typically require the greatest number of stages at
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Table 1

A comparison between the six different analytic approaches on five important factors. Note that these descriptions have been formed on the work we are familiar with, and
the factors represent considerations that are especially important to us.

Factor Theoretical Two-stage Direct Input Latent Input Joint Modeling Integrative

Number of stages {2, 3, . . .} { 2, 3 } 1 { 2, 3 } 1 1
Commitment to a particular theory None Weak Medium Weak Weak Strong
Type of information flow Conceptual One-way One-way One-way Two-way Two-way
Difficulty of implementation High Low Medium Medium High High
Type of exploration Exploratory Exploratory Confirmatory Either Either Confirmatory

two or sometimes three. If a separate simulation stage is required
to generate neural predictions N⇤, Latent Input Approaches have
three stages, whereas if the internal state of a model can be
directly inferred when the behavioral model is fit to behavioral
data (e.g., as in the reinforcement models described above), then
the Latent Input Approach only requires two stages. In the Two-
stage approach, if the parameters of the behavioral model can
be regressed (or correlated with) the raw neural data, then only
two stages are required. However, if some preliminary analyses
of the neural data are required, then the Two-stage approach
will require three stages. Finally, the Theoretical Approach can
require anywhere from two to an infinite number of stages. In
the simplest scenario, the first stage consists of observing some
pattern or phenomena of interest in the neural data, and the second
stage consists of the development of a behavioral model. However,
Theoretical Approaches can also be complex to implement because
they can involve an extensive, iterative process of running new
experiments and refining a developing model (Shiffrin & Nobel,
1997).

3.2. Commitment to a particular theory

The second factor involves the role of flexibility in applying
new theories to the data. For example, we consider the Two-stage
Approach to have weak commitment to any particular theory:
one could freely use the same procedure to test any number of
behavioral models on the same neural data. The commitment
to a particular theory is similarly weak in the Latent Input and
Joint Modeling Approaches, where behavioral models can easily
be switched out and fits to data compared. We consider the Direct
Input Approach to be more committed to a particular theory than
these aforementioned approaches. For example, while Purcell et al.
(2010) used neural data to test different assumptions about the
accumulation process, they still maintained a commitment to the
sequential sampling framework for these models. In this way,
their analysis relies on some theoretical assumptions about the
accumulation process, but not in a way that is inflexible. Going
one step beyond this is the Integrative Approach, which requires
strong commitments to a particular modeling framework such as
in Anderson and colleagues’ work (e.g., Anderson et al., 2008b;
Borst et al., 2015). In this approach, it is difficult to imagine
testing different models that are not contained within a similar
overarching theory. Finally, the Theoretical Approach makes no
commitment to any particular theory, instead it uses the data to
guide the development of the theory itself.

3.3. Type of information flow

Another factor to consider is the type of information flow. In
Table 1, we consider three types: conceptual, one-way, and two-
way. In the Theoretical Approach, the neural data can only guide
the development of the behavioralmodel conceptually—there is no
formal relationship between the behavioral and neural measures.
At the other extreme, both the Joint Modeling and Integrative
approaches use the information contained in either measure to
directly constrain the estimates of the models’ parameters. Hence,

we refer to this type of information flow as two-way because
information flows in both directions. When one source of data
enforces direct constraint on the other measure, we refer to
this type of information flow as one-way. All of the remaining
approaches use information flow that is one-way to maximize
constraint in their models.

While on the surface, a one-way information flow may seem
like a weakness, there are sometimes important theoretical
reasons for enforcing this strict directionality. Consider, for
example, the illustrated uses of the Latent Input Approach for
model discrimination (Mack et al., 2013; Palmeri, 2014; Palmeri
et al., 2015; Purcell et al., 2010, 2012). Here the goal was to use
neural data to help discriminate between models of perceptual
decision making or models of categorization that make the same
behavioral predictions. The models were fit to the behavioral data
in exactly the same way they might be fit if neural data were not
even considered. No compromisesweremade in the behavioral fits
to take into account the neural data, as might be the case for the
Joint Modeling or Integrative Approaches. Only after the models
were fit to the behavioral data were the predicted internal states
of the model then compared to observed neural states in the brain.
Finally, models were rejected if they could not adequately capture
those observed neural states in the brain.

3.4. Difficulty of implementation

From a pragmatic perspective, it is also important to consider
the difficulty of performing analyses with these six approaches.
Perhaps the easiest approach to implement for the readers of this
special issue is the Two-stage Approach, where the parameters
of a cognitive model are simply regressed against a neural signal
of interest. Of medium difficulty are the Direct Input and Latent
Input Approaches, because they often require model simulations
or additional theoretical overhead to fit the models to data.
The Joint Modeling and Integrative Approaches are considered
difficult to implement because they either require sophisticated
partitioning of the parameter space (e.g., Turner et al., 2015b), or
estimation of hidden Markov model parameters (e.g., Anderson,
2012; Anderson et al., 2010). Perhaps the most difficult approach
to implement is the Theoretical Approach, where models must
be carefully constructed and iteratively fit to data as a test of
specific assumptions. To makematters worse, there is no clear end
point when developing a new cognitive model in the Theoretical
Approach.

3.5. Type of exploration

A final consideration is the type of exploration that can be used
under a specific approach. Approaches can be used for exploratory
or confirmatory purposes, or some mixture of the two. The
Theoretical and Two-stage Approaches are considered exploratory
because the general strategy involves a sequence of tests, iterating
toward a solution or explanation of the data. The Direct Input
Approach is considered a confirmatory approach because the
neural data are used to directly replace certain mechanisms in
the model, providing a test of the neural measure’s plausibility
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in predicting the behavioral response. The Integrative Approach
is also confirmatory because it makes specific assumptions about
how both measures arise, where good fits to data support the
assumptions of themodel, and poor fits refute them.We regard the
Latent Input Approach as being exploratory when used in a typical
‘‘model-based’’ analysis, but confirmatory when used to compare
models to one another as in Mack et al. (2013) and Purcell et al.
(2012). In this way, the Latent Input Approach is listed as ‘‘either’’
because the specific usage depends on the situation. Finally, the
Joint Modeling Approach is also considered both confirmatory and
exploratory, because its usage depends on the how the linking
function is specified. For example, one could use a general linear
model as the linking function – a confirmatory approach – or one
could use ambiguous priors on hyperparameters that specify a
multivariate Gaussian linking function – an exploratory approach.
Furthermore, the specific prior used on the hyperparameters
allows the Joint Modeling Approach to mix between confirmatory
and exploratory roles in an analysis.

4. Choices and limitations

In this article, our goal was to highlight and discuss the
prominent approaches to analysis in the emerging subfield of
model-based cognitive neuroscience. However, we have not yet
provided a guideline for choosing between them, nor have we
discussed in greater detail the limitations of choosing a particular
approach. In this section, we will address both of these issues.

4.1. Choosing between approaches

Although we have described, compared, and contrasted six im-
portant approaches for analysis, we have not provided a guideline
for how these approaches could be used to advance psychological
theory. We believe that each of these approaches have their own
utility in the pursuit and development of computational models,
and the primary factor in choosing between them is the goal of the
analysis. Furthermore, as a theory progresses, it is important to re-
alize that the goals of an analysis should change. To this end,we ad-
vocate using all of these approaches to move from an exploratory
analysis to a confirmatory one.

To see how this would work in practice, consider the following
stages of model development. In the initial stages, one approach
is to develop a cognitive theory by acknowledging patterns in
the data from both the brain and the behavior. For example,
knowing that the brain must first encode stimulus information in
lower-level visual areas before a representation of the stimulus
can be perceived and acted upon could be used to impose
order in a behavioral model. Such knowledge might motivate the
development of a visual encoding component of the model that
precedes the development of an accurate stimulus representation.
Instantiation of the encoding process in the behavioral model
is an implementation of the Theoretical Approach, because the
development is motivated by brain data. Here, our goal was to
simply develop amodel that abides by certain physiological timing
restrictions as a way to establish a more constrained stimulus
processing order.

After the development of the model, our goals have advanced—
suppose we now wish to identify where this encoding component
of our model is carried out, and specifically, which areas of the
brain contribute to this process. To accomplish this goal, we
would elect to use an exploratory analysis, such as the Two-
stage or Latent Input Approach. In the Two-stage analysis, we
would simply fit our behavioral model to the behavioral data,
and correlate the parameters regulating the encoding process of
our model to say, parameters of the HRF in our neural data.
Similarly, in the Latent Input analysis, we would use the timing of

the encoding component in our model to search for temporally-
related activations in the brain. Both of these analyses constitute
searches through our neural data as a way to better understand
how the brain produces behavior from a mechanistic perspective.
In this way, these analyses are unidirectional and do not validate
or confirm our model, but this is perfectly acceptable because it is
consistent with our current goals.

Our exploratory analyses have paved the way for subsequent
investigations, and now suppose we wish to use the neural data
to better constrain our behavioral model. We now have well-
defined hypotheses about which brain areas are involved in
stimulus encoding, and we suspect that the systematic activations
in these brain areas have a correspondence to the encoding phase
of our model. At this point, we must reconsider our specific
goals. If the goal of our analysis is to predict behavior, we might
use the Direct Input Approach to map activations in the key
brain areas directly to the encoding component of our model.
By contrast, if our goal is to infer relationships between the
neural and behavioral measures, we might use the Joint Modeling
Approach to test specific impositions of brain activations to the
parameters regulating the encoding process in our model. Both
of these approaches are more confirmatory because they rely
on specific hypotheses and assumptions that were derived from
our exploratory analyses; however, they still only guide our
inference. In the Direct Input analysis, because our goal was to
predict the behavioral data, we have compromised our ability to
evaluate the model’s suitability for the neural data. We cannot
make predictions about neural data that we have conditioned
on, as so we cannot evaluate how well the model captures
these aspects of our (neural) data. On the other hand, the Joint
Modeling Approach attempts to capture both aspects of the data
simultaneously, and as a result, its predictions for the behavioral
data are compromised by the model’s obligations to the neural
data. Because the Joint Modeling Approach does not explicitly
condition on either variable, it can reveal interesting generative
properties of our model, but its discriminative (i.e., predictive)
power is somewhat diminished (Bishop & Lasserre, 2007).

At this point, we have now developed our model and evaluated
the relationships between brain and behavior in a variety of
analytic approaches. We know better than anyone in the world
where the encoding part of our model is carried out in the brain,
and howdifferences in the pattern of activation in these brain areas
contribute to behavioral differences. As a final test and validation
of our model, we can nowmove to the most confirmatory analysis
we have discussed here: the Integrative Approach. To establish an
integrative model, we must first make some specific assumptions
about how activations in key brain areas map to the encoding
component of our model. This can be a difficult process, but
suppose for now that we have formally articulated this mapping
in our model, derived from our previous exploratory analyses.
Our goal now is to show that this integrative version of our
model can produce patterns of data that match all aspects of
our data. That is, adjustments of one model parameter should
make specific predictions about how the pattern of neural and
behavioral measures changes, and ideally, how these changes
could be selectively influenced experimentally (e.g., Heathcote,
Brown, & Wagemakers, 2015). In our opinion, this integrative
analysis represents the strongest test of psychological theory, but
such a test would be misguided if not first informed by the less
integrative approaches.

4.2. Limitations of using these approaches

In our working example above, we identified a few limitations
of using various approaches. First, the balancing of fit between
behavioral data, neural data, or both is a key consideration
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in model-based cognitive neuroscience. In general, to optimize
predictions for say, behavior, it would be better to condition
on neural data. However, if one is more interested in the joint
distribution of both neural and behavioral measures, then the
modeling goals are more generative than discriminative, and
conditioning on one variable would introduce limitations. The
authors of the present manuscript have deliberated between these
three modeling goals, and arrived at only an ambiguous solution:
decisions must be made on a case-by-case basis, always with the
researcher’s goals in mind.

Second, constraint is not always a good thing. If one does
not have strong intuition about how components of a model are
carried out in the brain, it would be unwise to impose strong
constraints on a model. One way of autonomously carrying out
justifiable constraint is to use the approaches discussed here
along a continuum of increasingly more confirmatory research.
As another tack, one could use some of the approaches discussed
here to impose varying levels of constraint, moderating the levels
of analyses between exploratory and confirmatory. For example,
in the Joint Modeling Approach, one can impose a completely
uninformative prior on the parameters of the linking function and
specify that all parameters of the behavioral model be mapped
to the neural data. Such an analysis is wildly explorative, would
be difficult to implement, and would convey little information
about the covariation between the measures. To move toward
a more confirmatory regime, one could impose a stronger prior
derived from say, previous research or investigation of the prior
predictive distribution (Vanpaemel, 2010, 2011; Vanpaemel & Lee,
2012). Similarly, one could constrain the set of parameters that are
related to the neural data by simply setting elements of the linking
function to zero. Such an analysis would provide a greater test of
the model, but would also force the model to rely more heavily on
the joint distribution of the measures.

Third, in this article, we have emphasized structural connec-
tions that are largely at one level. This is a limitation because
the behavioral data can be thought of as the end result of some
brain process, again highlighting the mismatch between Marr’s
(1982) implementation and computational levels of analyses we
discussed earlier. Another approach would be to impose structural
connections that are multi-level, where a model uses the imple-
mentation level to drive somemechanisms, and the computational
level to drive others. As a hypothetical example, the implementa-
tion level could be used to drive an evidence accumulation process
that remains unaffected by experimental instructions (i.e., compu-
tational goals), whereas other mechanisms such as boundary sep-
aration or bias could be carried out by other brain areas that are
systematically adjusted in response to task demands. Such amodel
would bridge the levels of analysis in a way that might actually be
reflected in the brain (Frank, 2015).

Finally, the imposition of structure need not arise from amodel
of behavior. In this article, we have oriented the approaches to
analysis around determining where mechanisms in the model are
carried out in the brain. However, one can easily imagine reversing
the orientation to determining how structural and functional
differences in the brain manifest behaviorally. Such an endeavor
begins with the development of a generative model of the neural
data, usually formed by observing the interconnectedness of key
brain regions (Cavanagh et al., 2011; Frank, 2006; Ratcliff & Frank,
2012; Wong & Wang, 2006), and ends in mapping the systematic
activations of these brain areas to a model of the behavioral
data. These models can be difficult to implement and test in the
traditional cognitive modeling way (e.g., Busemeyer & Diederich,
2010; Heathcote et al., 2015; Lee & Wagenmakers, 2013; Shiffrin,
Lee, Kim, & Wagenmakers, 2008), because they rely on many
parameters and complex simulations to validate them. However,
newmethods have been developed to better elucidate simulation-
based models (for applications in psychology, see Turner, Dennis,

& Van Zandt, 2013a; Turner & Sederberg, 2012, 2014; Turner et al.,
forthcoming; Turner & Van Zandt, 2012, 2014), and as a result, we
may gain new insight and interest in these network-style models
in the coming years.

4.3. Other approaches

Although the approaches we have presented here encompass
the most prevalent approaches to model-based cognitive neuro-
science, other approaches have been used to gain a better un-
derstanding of how the brain produces a behavior. One structural
example is to use some experimental variable that hypothetically
affects the neural data to split the behavioral data into differ-
ent levels. Once the behavioral data is divided, the data can be
fit and evaluated on the basis of differences in parameter values.
One example of this is in Parkinson’s Disease, where drug therapy
is commonly administered to compensate for decreased levels of
dopamine. Frank (2006) make predictions for behavioral data for
subjects on and off medication in a Go/NoGo task, and a probabilis-
tic learning task. They used a computational neural networkmodel
tomake concrete predictions for differences in task behavior based
on activation of the subthalamic nucleus. Frank (2006) found that
their model accurately captured the dynamics of activity in areas
of the basal ganglia, and how this pattern of activity related to dy-
namic adjustments in response thresholds. A similar mechanism
was later found in impulse control for Parkinson’s patients with
deep brain stimulation using a similar analysis design (Cavanagh
et al., 2011).

The examples above illustrate an analytic approach where
experimental variables guide the analysis of the behavioral data
on the basis of how those variables affect the neural data.
Another type of analysis takes the effects of the neural data
one step further (e.g., Kiani, Hanks, & Shadlen, 2008; Mazurek,
Roitman, Ditterich, & Shadlen, 2003; Ratcliff, Cherian, & Segraves,
2003; Ratcliff et al., 2011; Ratcliff, Hasegawa, Hasegawa, Smith,
& Segraves, 2007; Ratcliff, Philiastides, & Sajda, 2009). For
example, Ratcliff et al. (2009) used single-trial amplitudemeasures
of EEG activity in a perceptual decision making experiment to
divide their behavioral data into separate groups. Next, Ratcliff
et al. fit theDDM to the data fromeach of these separate groups and
used estimates of thedrift rate parameter to showearly component
EEG signals were not reflective of the decision process, whereas
late component EEG signals showed a positive correlation to the
stimulus evidence (i.e., the drift rate). This type of analysis is similar
to the Latent Input Approach, but with the flow of information
moving from the neural measures to the behavioral ones. By using
the neural data to guide the search for differences in behavioral
model parameters, we can better understand the mechanistic
properties of these neural features by interpreting them in the
native language of the decision model.

5. Conclusions

The field of cognitive science has only begun to realize the full
potential of combining brain and behavior as a way to study the
mind. However, the field relies on the various approaches devel-
oped by different groups of methodological experts. Due to the
seemingly disjoint ways to study cognition, many neuroscientists
and cognitive modelers are unaware of their modeling options, as
well as the benefits and limitations of different approaches. In this
article, we have described the currently prominent general meth-
ods for integrating neural and behavioral measures, while provid-
ing some examples of their use in cognitive neuroscience. We then
attempted to organize these approaches on the basis of a variety
of factors: the number of stages, the commitment to a particular
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theory, the type of information flow, the difficulty of implemen-
tation, and the type of exploration. We concluded with a discus-
sion of limitations and further considerations in approaching the
integration problem. Our comparison of the approaches (see Fig. 1,
and Table 1) highlights that a broad spectrum of methods exist
for performing model-based cognitive neuroscience, and there are
important considerations and limitations of each approach. In the
end,we conclude thatmodel-based approaches in cognitive neuro-
science are extremely important (cf. Forstmann et al., 2016, 2011;
Mulder et al., 2014; Schall, 2004; White & Poldrack, 2013), and the
choice of analysis strongly depends on the research goal. It seems
to us that having a clearly articulated analytic goal in mind serves
as the impetus for successful integration between neuroscientific
measures and cognitive theory.
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