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Hebart et al. analysed 1.5 million human similarity judgments and found 
that natural objects are described by a small set of interpretable 
dimensions. Such large-scale analyses offer new opportunities to 
characterise how people represent their knowledge, but also challenges 
including scaling to even larger datasets and integrating accounts of 
semantic representation. 
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Judging the similarity of two objects is relatively effortless to the point of appearing trivial. 
However, similarity judgments can reveal a great deal about how people represent and 
compare objects [1]. Although similarity has been studied for decades, only recently have 
cognitive scientists considered this question at scale analysing millions of ratings [1]. In 
some ways, this approach parallels work in machine learning where large datasets are used 
to develop and evaluate models. The ImageNet object recognition database, which consists 
of a large number of images with corresponding human judgments, is one such example [2]. 
 
The similarity at scale approach to elucidating how people represent and compare objects 
differs from prior approaches in which one group of people list features for objects and 
another group rate the features. These semantic norms can consist of thousands of features 
[3], which successfully capture human performance in a number of tasks such as semantic 
priming. However, one potential criticism of this earlier approach is that feature listings rely 
on self-report, which may bias toward features that are easier to verbalise. 
 
One alternative to explicitly listing features is to infer representations in a more wholistic 
and indirect manner, such as through similarity judgments. Multidimensional scaling (MDS) 
[4] was a precursor to the large-scale similarity approach for inferring representation. MDS 
relies on people's similarity ratings but at a smaller scale. Here, quantity has a quality all its 
own. The dimensions one extracts from MDS or any other approach to finding low 
dimensional representations are determined in part by the stimuli considered. For example, 
if nothing edible is included in the stimulus sets, then no dimensions related to flavour will 
be extracted because such dimensions would not explain significant variance in the 
similarity ratings. 
 



A recent study by Hebart et al. [1] addressed this issue by considering a representative and 
large stimulus set consisting of 1,854 objects. They used a triplet task in which participants 
chose which of three objects was the odd one out (i.e., least similar). With over a billion 
possible triplets, exhaustive sampling was not an option. Instead, the authors used an 
embedding approach in which gradient descent learning found a low-dimensional 
embedding (i.e., coordinates for the 1,854 items) that was as consistent as possible with the 
1.5 million triplet judgments the authors collected. Much like word co-occurrence models in 
computational linguistics, information can effectively "spread" from one judgment to 
another (Figure 1a) to calculate an embedding without needing to sample all possible 
judgments.  
 
The embedding the authors uncovered had a number of properties that speak to how 
humans represent objects. Interestingly, and in contrast to feature listing results [3], only 49 
dimensions were required to represent the 1,854 objects and capture human performance 
on triplet judgments. Most of the recovered dimensions were interpretable. Examples of 
the 49 dimensions include metallic, food, tools, and sports. Moreover, many of these 
dimensions exhibited a typicality structure in which objects varied in meaningful ways along 
the dimension. 
 
While valuable in its own right, this work will likely take on greater importance as others 
make use of the embedding space in their own research. The 1,854 images used were 
drawn from the THINGS database [5], which the spotlight's first and last author contributed, 
and for which they have collected fMRI and MEG data. Thus, the work of Hebart et al. adds 
an important component to an interrelated set of resources available to other researchers. 
 
Although the work of Hebart et al. is impressive, no embedding is definitive because the 
particulars of a study, including the selected stimuli and judgment task, will shape the 
results. Additionally, details of the embedding procedure (i.e., algorithm) are critical. For 
example, the authors' assumption that embedding dimensions are non-negative played a 
large role in shaping the results. For non-negative dimensions, each dimension is essentially 
an absent vs. present feature. For example, on the wheel dimension, images without wheels 
would have low values (greater than zero) whereas images of motorcycles and cars would 
have larger values. By forcing values to be non-negative, dimensions can only add on top of 
one another to build representations. Without the non-negative constraint, dimensions 
could interact, much like how interfering waves in a pond can amplify or cancel one 
another. A mathematical analogy would be Fourier decomposition in which the dimensions 
are the sine waves at different frequencies and their amplitudes are the embedding values. 
One practical implication of the non-negative constraint is that more dimensions are 
needed to form the embedding and found dimensions will be more part-like (Figures 1b), 
which may make dimensions more interpretable. Without this constraint, an embedding 
could reside along a nonlinear manifold (Figure 1c). One interesting question is whether the 
brain's representations are more like Figure 1b or 1c. Non-negative representations may 
have advantages in terms of readout (i.e., communication between brain regions) whereas 
less constrained solutions may offer computational efficiencies. The brain may find an 
appropriate trade-off. 
 



The authors' design choices led to an excellent solution, but one that differs from previous 
efforts. As mentioned, feature listing solutions are higher-dimensional [3]. Those solutions 
also contain category-specific features, such "has a beak" that are largely absent in the 
authors' solution. Moreover, many listed features, even for everyday objects, are relational 
or extrinsic in nature rather than intrinsic to the object [6], such as features related to 
function. People view thematically related objects (e.g., predator and prey, a man and his 
tie, etc.) as similar [6,7]. Likewise, embeddings based on people's real-world choices reveal 
that most dimensions are goal-relevant [8]. One interesting question is how different 
embedding spaces relate [9]. 
 
One particularly impressive aspect of the spotlight paper is the scale of the endeavour. To 
push even farther, judgements will need to be sampled non-randomly to focus on the 
informative judgments that reduce uncertainty in the location of objects within the 
embedding. We adopted such an approach using active learning to create an embedding 
space more than an order of magnitude larger using fewer similarity judgments [10]. We 
believe such ideas, combined with the types of contributions exemplified Hebart et al., will 
both help elucidate how people represent concepts and provide valuable resources to 
support allied endeavours. 
 

 
 
Figure 1: Inferring embedding spaces through similarity judgments. (a) Information 
contained in similarity judgments diffuses throughout the embedding. For example, consider 
part of a similarity matrix with unknown values shown in red -- the missing values can be 
guessed from neighbours. Given the constraints from neighbours, "dog" must reside within 
the red circle. (b) A visualization of a non-negative embedding where the stimuli (rows) and 
have sparse values across the different dimensions (columns). Darker cells indicate higher 
values. (c) An analogous non-linear embedding where “feature” dimensions are locally, but 
not globally, interpretable. 
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