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Abstract

Multiple learning systems models hold that separate
learning systems, often organized around discrepant
principles, combine their outputs to support human cat-
egorization. Rather than propose a complex model,
we adopt a complex systems’ viewpoint and propose
that multiple learning systems emerge from a flexible
and adaptive clustering mechanism’s interactions with
the environment. The model, CLUSTer Error Reduc-
tion (CLUSTER), retains the flexibility characteristic
of human learning by building knowledge structures as
needed to support a learner’s goals. Importantly, CLUS-
TER can apply ostensibly different procedures to dif-
ferent parts of the stimulus space, a hallmark of mul-
tiple systems models. We describe a simulation of a
human learning study in which CLUSTER develops dif-
ferent cluster representations for different item types.
Rule-following items are captured by clusters that are
broadly tuned and focused on rule-relevant stimulus as-
pects, whereas exceptions (especially those that violate
high-frequency rules) are captured by narrowly tuned
clusters that focus on item-specific stimulus qualities.
We end by considering the relation between CLUSTER
and findings from the cognitive neuroscience of category
learning.

Introduction
Proposals for category representation are diverse,

ranging from exemplar- (Medin & Schaffer, 1978) to
prototype-based (Smith & Minda, 1998) and include
proposals between these two extremes (Love, Medin, &
Gureckis, 2004). Determining the best psychological
model can be difficult as one model may perform well
in one situation but be bested by a competing model in
a different situation. One possibility is that there is not
a single “true” model.

In category learning, this line of reasoning has led to
the development of models containing multiple learning
systems. These more complex models hold that category
learning behavior reflects the contributions of different
systems organized around discrepant principles that uti-
lize qualitatively distinct representations. The idea that
multiple learning systems support category learning be-
havior enjoys widespread support in the cognitive neu-
roscience of category learning (see Ashby and O’Brien,
2005, for a review and Nosofsky and Zaki, 1998, for a
dissenting opinion).

Multiple system models of category learning detail
the relative contributions of the component learning sys-
tems. The relative contributions can depend on the cir-

cumstances. For example, ATRIUM (Erickson & Kr-
uschke, 1998) contains a rule and exemplar learning sys-
tem. Which system is operable is determined by a gat-
ing system, allowing different classification procedures to
be applied to different parts of the stimulus space. For
example, familiar items could be classified by the exem-
plar system whereas rules could be applied to unfamiliar
items. The power to apply qualitatively different pro-
cedures to different stimuli is the hallmark of multiple
systems models.

Proposing multiple systems begs the questions of how
many systems are present and how do they interact. Are
there two, three, or thirty-four systems? Do some sys-
tems combine outputs whereas others shunt each other?
These questions are not trivial to answer. For example,
a two system model may suffice for one data set, but
a new manipulation could provide evidence for a third
system. As systems propagate, the complexity of the
overall system dramatically increases. Building in this
degree of complexity complicates model evaluation.

Instead of proposing a complex model of category
learning containing multiple systems, we advocate a
complex systems approach to category learning model-
ing in which multiple learning systems emerge from a
flexible and adaptive clustering mechanism’s interactions
with the environment. We evaluate the hypothesis that
a relatively small set of learning principles can effectively
“grow” knowledge structures that satisfy the needs that
multiple systems models are intended to address.

Past Work and Current Challenges

Previous work with the SUSTAIN model, which is the
precursor to the model that we introduce here, has par-
tially delivered on the promise of flexibly building needed
knowledge structures. SUSTAIN is a clustering model
that starts simple and recruits clusters in response to
surprising events, such as encountering an unfamiliar
stimulus in unsupervised learning or making an error in
supervised learning (cf. Carpenter & Grossberg, 2003).
Surprising events are indicative that the existing clus-
ters do not satisfy the learner’s current goals and that
the model should grow new knowledge structures (i.e.,
clusters). These clusters are modified by learning rules
that adjust their position to center them amidst their
members. Dimension-wide attention is also adjusted to
accentuate stimulus properties that are most predictive
across clusters.



Although simple, these growth dynamics allow SUS-
TAIN to address a wide range of human learning data
across various paradigms including unsupervised, infer-
ence, and classification learning (Love et al., 2004). De-
pending on the circumstances of the learning situation
(i.e., depending on what the task stresses and target
categories), SUSTAIN can evolve clusters that resemble
prototypes, exemplars, or rules (Love, 2005). Careful be-
havioral experiments support the conclusion that SUS-
TAIN is not merely mimicking these other models, but
that human learners’ and SUSTAIN’s representations
are in accord (Sakamoto & Love, 2004). In summary,
SUSTAIN accounts for both classical studies of category
learning and the more contemporary work that suggests
that conceptual organization is determined by the inter-
play of information structures in the environment and
task pressures or goals (Markman & Ross, 2003).

Despite these successes, considerable challenges re-
main. Two basic challenges are: (1) to formalize the no-
tion of a goal or task pressure and specify how such fac-
tors direct learning; (2) to endow learning models with
the flexibility to develop representations that approach
the range and richness of the representations that human
learners build when learning from examples.

Although SUSTAIN made strides in capturing the in-
fluence of goals, its notion of goal is underdeveloped.
Ideally, the notion of goal would be more encompassing
and continuous to capture all possible cases from pure
classification learning in which the only goal is to pre-
dict category membership to pure unsupervised learning
in which the goal is to predict every feature (i.e., to cap-
ture the correlational structure of the environment in an
unbiased fashion). Importantly, the formal notion of goal
should directly affect the recruitment and modification
of clusters in a principled way. Learning rules should
update clusters to reflect the goal measure and clusters
should be recruited in light of how well the current clus-
ters satisfy the current goal measure.

In regards to the second basic challenge, current mod-
els like SUSTAIN are too limited in terms of the range
of knowledge structures they can construct. For in-
stance, SUSTAIN’s attentional mechanism accentuates
certain features that are predictive in the current task,
but is constrained such that every cluster is focused on
the same set of properties. In contrast, people stress
different properties in different domains. For example,
when shopping for clothing, color is important, but when
shopping for a computer the type of processor is impor-
tant (a feature not even relevant to clothing). To evolve
these kinds of knowledge structures and to apply differ-
ent “procedures” to different parts of the stimulus space
as multiple systems models do, each cluster needs to be
able to accentuate the features that satisfy the learning
goals for the stimulus aspects it represents. A related
challenge is storing information and capturing regular-
ities at different scales ranging from very specific (e.g.,
Jim’s dog Fido) to very broad (e.g, living things). To ad-
dress these issues, clusters need to fine tune their level
of specificity to satisfy the goal measure. As in the case
of adjusting attention at the individual cluster level, ad-

justing specificity at the individual cluster level allows
for different criteria to be applied to different parts of
the stimulus space, as in multiple systems models.

The model that is introduced in the next section,
CLUSTer Error Reduction (CLUSTER), meets these
stated challenges. CLUSTER incorporates a formal goal
measure that directs cluster development. CLUSTER
has sufficient flexibility to evolve conceptual structures
(i.e., clusters) that reflect key aspects of human knowl-
edge representation. After introducing the model, the
formalism will be presented and a supportive simula-
tion will be discussed. The simulation illustrates how
CLUSTER can evolve cluster organizations that serve
the functions of multiple systems. Finally, we will con-
sider how CLUSTER is consistent with cognitive neu-
roscience findings advocating multiple memory systems
and briefly discuss work that is being done to further
develop and verify the model.

Overview of CLUSTER

CLUSTER is an auto-associative model of human cat-
egory learning in which the “hidden” layer consists of
clusters (see Figure 1). A cluster is a bundle of related
features. A presented stimulus activates the existing
clusters, which pass their activation to the output layer
via connection weights. Like other auto-associative mod-
els (e.g., Kurtz, 2004), CLUSTER attempts to replicate
the input layer at the output layer and in the process
develops internal representations that seize on key regu-
larities.

CLUSTER differs from other auto-associative mod-
els in a critical way. The error term CLUSTER min-
imizes does not uniformly weight reconstruction error
equally across features. Instead, each feature’s error
is weighted according to its goal relevance. For ex-
ample, pure classification learning places all the error
term weighting on the category label features and er-
ror associated with reconstructed perceptual features is
disregarded (as in most category learning models). At
the other extreme, pure unsupervised learning weights
the reconstruction error uniformly across features (as in
most auto-associative models). CLUSTER can capture
every conceivable case in between these extremes, which
is critical as the extremes are likely cartoons that do not
correspond to human learning (e.g., people incidentally
learn about feature correlations in classification learning
and place more importance on predicting certain features
in unsupervised learning).

The error term (with goal weights on each feature) is
the learning goal, formally stated. To satisfy this goal,
clusters adjust their position, attention, and weights to
minimize the error term through gradient descent learn-
ing. Thus, depending on the goal weights, different
cluster organizations will emerge. Unlike most models,
each cluster can adjust its own attention to minimize
error and attention does not sum to a fixed number.
These changes allow additional flexibility for clusters to
emphasize different features and to vary in specificity
(e.g., a specific dog vs. dogs in general). Although Fig-
ure 1’s grouping of features implies dimensional struc-



Figure 1: CLUSTER is an auto-associative learning
model in which the hidden layer consists of clusters that
adjust their position, attention, and association weights
to minimize an error term that reflects the learner’s
goals. In the illustrated example, three clusters have
been recruited and the model is being asked to infer the
category label.

ture, CLUSTER departs from the majority of models
that utilize selective attention mechanisms (e.g., Nosof-
sky, 1986) in that it does not assume a dimensional struc-
ture. Not assuming dimensional structure allows for ad-
ditional flexibility (e.g., the presence or absence of red
can be critical to a cluster, whereas the presence or ab-
sence of blue can be somewhat irrelevant).1

CLUSTER begins with one cluster centered on the
first training example and recruits additional clusters
when the existing clusters are not supportive of the cur-
rent goal. Each newly recruited cluster is centered upon
the current stimulus. Like CLUSTER’s other operations,
the algorithm for cluster recruitment is consistent across
all induction tasks (there are no special cases). Despite
its consistency across situations, CLUSTER retains the
flexibility to build representations that capture many of
the competencies of human learners without proposing
distinct learning systems. CLUSTER is highly princi-
pled (all of its operations are tied to the goal-weighted
error term), but minimal structure is built in to the
model. Instead, CLUSTER evolves the knowledge struc-
tures needed to solve the current task.

1Interestingly, in cases in which contrasts are consistent
(e.g., when red is present, blue is absent, and vice versa),
CLUSTER attends equally to the contrasting features within
each cluster. Thus, CLUSTER may prove to provide some
insight into how dimensional structure arises.

CLUSTER’s Formalism

This section presents the equations that define CLUS-
TER. First, we consider how CLUSTER generates a re-
sponse. Then, we consider how CLUSTER learns.

CLUSTER: Generating a prediction The distance
between the stimulus and each cluster is calculated. The
attention-weighted distance Ij between the all the known
features of stimulus S and cluster j is:

Ij =
m∑

i=1

αj
i (H

j
i − Si)2 (1)

where m is the number of stimulus features, αj
i is cluster

j’s attentional weighting of feature i, Hj
i is cluster j’s

position along feature i (i.e., the value cluster j expects
along feature i). Each Si is 0 (absent) or 1 (present) for
discrete features and ranges between 0 and 1 for con-
tinuous features. Unknown features are ignored when
calculating distance.

The output of cluster j is:

Aj = λj · e−Ij

(2)

where λj is the sum of cluster j’s attentional weight-
ing for all known features. One subtle difference with
most models is that the receptive field function for clus-
ters is Gaussian instead of exponential. This functional
form allows for peak-shift responding in which stimuli
outside the experienced range of examples can lead to
responses more deterministic than for experienced stim-
uli, consistent with rule-based generalization behavior to
unfamiliar stimuli.

Activation passes from the clusters to the output units
via association weights. The output of unit i is:

Oi =
n∑

j=1

wi
j ·Aj + .5 (3)

where wi
j is the association weight from cluster j to out-

put unit i. Outputs are truncated to lie between 0 and
1. The default value of .5 can be conceived of as a prior
over features.

In discrete-feature prediction tasks in which one of a
set of unknown features must be chosen (e.g., predicting
the category label in a classification task), the probabil-
ity of choosing unknown feature k is:

Pr(k) =
(Ok)d∑v
l=1 (Ol)d

(4)

where d is a decision parameter, and l ranges over the
v features forming the choice set. The power response
rule is chosen over an exponential form to enable the
aforementioned peak-shift responding behavior.

In recognition tasks, the recognition strength for stim-
ulus S is given by the sum of all cluster activations re-
sulting from the presentation of S.



CLUSTER: Learning and Cluster Recruitment
After feedback, full stimulus information is known. Gra-
dient descent learning minimizes the error between the
stimulus and CLUSTER’s reconstruction of it at the out-
put layer:

E =
1
2

m∑
i=1

δi · (Si −Oi)2 (5)

where δi is the goal weighting for feature i subject to the
following constraints:

m∑
i=1

δi = 1 and ∀i δi ≥ 0. (6)

Gradient descent learning rules minimize error by ad-
justing each cluster’s position, attention, and association
weights. These learning rules are derived by differenti-
ating the error term with respect to the adjusted quan-
tity (i.e., position, attention, association weights). Each
learning rule has an associated learning rate parameter.

After receiving feedback but prior to applying the
learning rules, new clusters are recruited when the ex-
isting clusters are a poor match to the current stimulus.
Specifically, a new cluster is recruited when:∑n

j=1 Aj ·Gj∑n
j=1 Aj

< τ (7)

where τ is the recruitment threshold parameter and clus-
ter j’s goodness is:

Gj = 1−
m∑

i=1

δi · (Hj
i − Si)2. (8)

A newly recruited cluster is centered on the current
stimulus item. Association weights are set to zero. The
new cluster’s sum of attention for the features known at
the initial stimulus presentation is set to be p (a param-
eter) above the value ξ necessary to prevent recruitment
if the current stimulus was re-presented:

λn+1 = ξ + p (9)

where

ξ =
τ ·

∑n
j=1 Aj −

∑n
j=1 Aj ·Gj

1− τ
. (10)

Attention is allocated uniformly to all features (known
and unknown) and is set to λn+1 divided by the number
of known features at initial stimulus presentation.

Illustrative Simulation
Findings from previous studies exploring rule-plus-
exception learning have been problematic for exemplar
models and have been used to support multiple sys-
tems models, like the RULEX model of category learn-
ing (Nosofsky et al., 1994). RULEX proposes that rule-
following items are captured by a rule system whereas
exception items reside in an exemplar store. Here, we
demonstrate that CLUSTER can accommodate such

findings by applying different procedures to different
parts of the stimulus space and in fact provides an ac-
count superior to RULEX’s.

To test between this dual route account (i.e., rules and
exceptions) and a clustering account, Sakamoto and Love
(2004) revisited the rule-plus-exception design with the
twist that one rule was twice as frequent as the other.
Subjects sequentially classified stimulus items into cate-
gories A and B and received corrective feedback. Each
category was defined by a rule (e.g., if large, then A; if
small, then B). Additionally, each category contained an
exception (e.g., a small member of A; a large member of
B). Table 1 provides the design details of Sakamoto and
Love’s variation in which one experienced category had
twice as many rule-following items as the contrasting cat-
egory. Because subjects reason from stimulus dimensions
to categories in classification learning, the exception in
the smaller category violates the more frequent rule in
Table 1 (i.e., if value 1 on the first stimulus dimension,
then A). Following learning, recognition memory was as-
sessed. In contrast to RULEX’s predictions (across all
explored parameter values), the exception violating the
more frequent rule was better remembered than the ex-
ception violating the less frequent rule (see Figure 2).

Table 1: The abstract stimulus structure for Sakamoto
and Love’s (2004) Experiment 1 is shown. Items A1 and
B1 (indicated by the arrows) violate the imperfect rule
of the first stimulus dimension. Subjects completed 10
training blocks where each block consisted of each item
below presented in a random order. Following learning,
Items A1-5 and B1-B5 were paired with all combina-
tions of novel foils that matched on the first dimension
in forced choice recognition. The actual stimuli were
simple geometric figures. For example, for some sub-
jects the first dimension was size with a 1 indicating a
small figure and 2 indicating a large figure.

Learning Dimension Novel Dimension
Items Values Items Values

Category A
→ A1 21112 N1 11221

A2 12122 N2 12112
A3 11211 N3 12221
A4 12211 N4 12212
A5 11122 N5 12222
A6 12111 N6 21221
A7 11222 N7 22112
A8 11212 N8 22221
A9 12121 N9 22212

Category B N10 22222
→ B1 11121

B2 22122
B3 21211
B4 22211
B5 21122



Figure 2: Mean accuracies in the recognition phase of
Sakamoto and Love’s (2004) Experiment 1 are shown
along with 95% within-subjects confidence intervals (see
Loftus & Masson, 1994). Exc S is the exception of the
small category, Exc L is the exception of the large cat-
egory, Rul S are the rule-following items of the small
category, and Rul L are the rule-following items of the
large category.

CLUSTER was applied to the data to illustrate its
ability to “evolve” multiple systems. Each stimulus di-
mension shown in Table 1 and category membership were
represented by 2 features for a total of 12 features. In
contrast to RULEX (which requires eight parameters to
CLUSTER’s seven for the simulation), multiple sets of
parameters replicated the basic pattern of results, indi-
cating that these findings follow from CLUSTER’s basic
operation and that additional work is necessary to estab-
lish default parameters for CLUSTER. These and other
model evaluation issues, such as consideration of nested
models within CLUSTER’s formalism, are topics cur-
rently being intensely pursued, but are set aside here in
favor of demonstrating CLUSTER’s promise to evolve
multiple learning systems. In this spirit, the following
parameters were selected because of the interpretability
of the resulting simulations: τ = .3250, p = 8.5, and the
learning rates for attention, position, and weights were
.001, 10.0, and .1 respectively. The δ values were set such
that .9 of the total sum of 1 was devoted to the category
label features with the remaining features weighted uni-
formly (i.e., the model’s primary goal was to correctly
classify the stimulus, but some importance was given to
learning about relationships predicting other features).
Finally, because the rule dimension (i.e., the first dimen-
sion) was cued for subjects, this dimension was made
more salient by allocating 91% of attention to the two
features forming this dimension when a new cluster was
recruited. Because the learning data are not discussed

here (CLUSTER does fit the pattern), the d parame-
ter was not used. In forced-choice recognition, the item
with the higher recognition strength was taken as CLUS-
TER’s choice.

Using these parameters, CLUSTER was simulated
10,000 times adopting methods paralleling the human
study (e.g., 10 blocks of training) and the results were
averaged. Adopting the labels from Figure 2, CLUSTER
predicts Exc S=.88, Exc L=.80, Rul S=.58, and Rul
L=.59, which replicates the two major findings: excep-
tions are better remembered than rule-following items
with the exception violating the more frequent rule (i.e.,
the exception in the small category) being best recog-
nized.

CLUSTER recruited 11.4 clusters on average (the me-
dian was 11) to represent the 14 training items. The
number of clusters recruited followed a normal distribu-
tion with solutions ranging from 4 to 23 clusters with a
standard deviation of 2.3. Every solution examined in-
volved devoting at least one cluster to encoding each ex-
ception with many simulations devoting multiple clusters
to each exception. Because CLUSTER is a distributed
model and its predictions for an item depend on the re-
sponses of all clusters, an analysis of the four item types
was conducted that factored in all clusters.

One explanation for CLUSTER’s ability to accommo-
date the results is that it increased attention for clusters
playing prominent roles in coding the exceptions, par-
ticularly for non-rule stimulus features. Encoding these
items at a different specificity than rule-following items
would help reduce confusions between these items and
rule-following items, resulting in both reduced error dur-
ing training and in enhanced recognition for exceptions.
The pressure to enhance attention should be greatest for
the exception violating the more frequent rule as every
rule-following item from the contrasting category pro-
vides an impetus to enhance attention.

To evaluate this explanation, following training, study
items were presented to CLUSTER and a weighted sum
of attention to non-rule features was calculated by mul-
tiplying each cluster’s sum of attention for non-rule
features by its activation. Then, these products were
summed and normalized by dividing by the sum of all
cluster activations. The results for items of the same
type were averaged. The mean results for the four item
types (averaged over 10,000 simulations) are Exc S=1.36,
Exc L=1.32, Rul S=1.28, and Rul L=1.29. As pre-
dicted, these sums perfectly track item recognition. Ex-
ceptions (particularly the exception violating the more
frequent rule) were stored as “hot spots” of focused ac-
tivity whereas clusters coding for rule items were more
broadly tuned and were less apt to code item specific
differences. Distinct representations emerge for the item
types. CLUSTER provides a similar account of related
data sets in which exception memory was manipulated
by varying the similarity between exception types and
contrasting rule items instead of manipulating rule to-
ken frequency (Sakamoto & Love, in press). SUSTAIN
cannot account for these data.



Discussion

Human learners display flexibility in how they represent
category information that outstrips the capacities of tra-
ditional single system models. In response, the field has
developed multiple system models that are themselves
not without problems. Here, we pursue a third approach
– knowledge structures evolve as needed to satisfy the
learner’s goals.

CLUSTER embodies this third position. CLUSTER
has a formally defined notion of goal that spans induc-
tion tasks, recruits clusters when existing clusters fail to
support the learner’s goals, and adjusts clusters’ posi-
tions, attention, and association weights to reduce goal
mismatch. These operations are sufficient to apply dif-
ferent procedures to different parts of the stimulus space,
as multiple systems models do.

How do we reconcile our position with impressive evi-
dence from cognitive neuroscience that multiple systems
underly human category learning performance? We do
not deny that multiple learning systems underly hu-
man category learning. A non-exhaustive list of systems
includes a dopaminergic procedural learning system,
a working memory system engaging cortical-thalamic
loops, and a PFC-hippocampal-perirhinal learning sys-
tem. The latter system is marked by its flexibility and is
adept at creating new conjunctive representations that
link features (i.e., clusters). SUSTAIN (the precursor
to CLUSTER) corresponds to this learning circuit and
has successfully simulated populations with hippocam-
pal deficits by reducing the model’s ability to form new
clusters (Love & Gureckis, under review). CLUSTER
likely corresponds to the hippocampal system as well.
We believe that a fast learning hippocampal system is
shadowing the other learning systems. For instance,
the literature is replete (including Sakamoto and Love,
2004) with cases in which learners are clearly applying
a rule stored in working memory, but are nevertheless
storing additional information about rule-following ex-
amples. Another way to reconcile CLUSTER with a
multiple learning systems view is to view these systems
emerging over an evolutionary time scale.

Much work remains to be done. Efforts are underway
to apply CLUSTER to all the studies to which SUSTAIN
has been applied. The results so far are promising. Ad-
ditionally, we are applying CLUSTER to studies explor-
ing how people partition knowledge and appear to apply
different procedures depending on context (e.g., Yang &
Lewandowsky, 2004). Finally, CLUSTER has been suc-
cessfully applied to Kruschke’s (1993) filtration and con-
densation tasks that were intended to demonstrate the
necessity of dimensional attention (CLUSTER has clus-
ter and feature specific attention). Although CLUSTER
does not have a built in notion of dimensional attention,
dimensional attention emerges (i.e., there is advantage
for aligning all clusters along the same contrasting fea-
tures) much like how what looks like multiple learning
systems emerges out of the Sakamoto and Love (2004)
simulations. While CLUSTER itself is still evolving, it
appears it has the necessarily constraints built in to ac-
count for human learning and no more.
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