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SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is
a network model of human category learning. SUSTAIN initially assumes a simple
category structure. If simple solutions prove inadequate and SUSTAIN is confronted
with a surprising event (e.g. it is told that a bat is a mammal instead of a bird),
SUSTAIN recruits an additional cluster to represent the surprising event. Newly
recruited clusters are available to explain future events and can themselves evolve into
prototypes/attractors/rules. SUSTAIN has expanded the scope of findings that models of
human category learning can address. This paper extends SUSTAIN to account for both
supervised and unsupervised learning data through a common mechanism. The modified
model, uSUSTAIN (unified SUSTAIN), is successfully applied to human learning data
that compares unsupervised and supervised learning performances.18
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1. Introduction

Categories provide a crucial function underlying the cognitive abilities of humans.

They allow us to generalize our knowledge to novel situations and to infer unknown

properties of the environment. These abilities are indispensable to any intelligent

system.

Researchers studying human categorization have traditionally focused on

human performance in supervised learning tasks (see Refs. 2, 4 and 7 for some

exceptions). In this experimental paradigm, subjects learn to classify stimuli as

members of contrastive categories through trial by trial learning with corrective

feedback. Theories (and models) of learning are favored that can account for the

relative difficulty of acquiring different category structures.25,30

Although classification learning does capture aspects of human learning, others

are not addressed by this paradigm. For instance, humans can spontaneously

construct categories in the absence of feedback. As an example, many of us have

created the categories “interesting” email and “junk” email in the absence of
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explicit feedback. Such learning is referred to as unsupervised learning. Supervised

and unsupervised learning are often seen as being qualitatively different. Super-

vised learning is characterized as intentional, in that learners actively search for

rules (perhaps by hypothesis testing) and are explicitly aware of the rule they are

considering.26 On the other hand, unsupervised learning is seen as an incidental,

undirected, stimulus driven, and incremental accrual of information.3,8,13,14,17

In contrast to this view, Love18 has found that intentional unsupervised

learning performance is more similar to supervised learning performance than it

is to incidental unsupervised learning performance. This result suggests that the

unsupervised/supervised dichotomy may not be valid. Gureckis and Love10 have

argued that unsupervised and supervised learning can be modeled through a com-

mon mechanism. However, our account has yet to model to a direct compari-

son between supervised and unsupervised learning. Here, we apply Gureckis and

Love’s10 variant of the SUSTAIN (Supervised and Unsupervised STratified Adap-

tive Incremental Network) model, referred to as uSUSTAIN (unified SUSTAIN),

to the Love18 data uSUSTAIN differs from other models that seek to unify un-

supervised and supervised learning, such as Anderson’s1 rational model, in that

uSUSTAIN is applicable to both unsupervised and supervised learning tasks while

not predicting that these tasks lead to equivalent performance (which they do not).

In the remainder of this paper, we overview SUSTAIN and uSUSTAIN. We then

fit uSUSTAIN to the Love18 data and consider the implications of the simulations.

2. The Modeling Approach: SUSTAIN and uSUSTAIN

SUSTAIN has been successfully applied to an array of challenging human data

sets spanning a variety of category learning paradigms including classification

learning,21 learning at different levels of abstraction,20 inference learning,19 and

unsupervised learning.11,22

In the following sections, we discuss SUSTAIN’s operation, its underlying

principles, and the mathematical equations that follow from these principles. We

then introduce a modification to SUSTAIN that enables it to account for supervised

and unsupervised learning data through a single recruitment mechanism. This

mechanism makes use of an intuitive and general notion of surprise to facilitate

learning. This modified version of SUSTAIN is referred to as uSUSTAIN.

2.1. Overview of model

SUSTAIN is a network model of human category learning. On each learning trial,

SUSTAIN takes as input a description of the current stimulus item represented

to the model by a set of perceptual feature dimensions. For example, a stimulus

item depicting a large, purple square will be represented to the model by the fea-

ture dimensions color, size and stripe. Like other models of category learning (such

as Ref. 1), SUSTAIN treats the category membership (or category label) of a sti-

mulus item as another stimulus feature dimension. SUSTAIN maintains a selective
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attention mechanism which allows it to learn to focus attention on stimulus

dimensions that are particularly useful for the current categorization task (similar

to Ref. 16).

The internal representations in the model consist of a set of clusters. Categories

are represented in the model as one or more associated clusters. Initially, the

network has only one cluster that is centered upon the first input pattern. As

new stimulus items are presented, the model attempts to assign these new items

to an existing cluster. This assignment is done through an unsupervised procedure

based on the similarity of the new item to the stored clusters. When a new item is

assigned to a cluster, the cluster updates its internal representation to become the

average of all items assigned to the cluster so far.

However, if SUSTAIN discovers through feedback that this similarity-based

assignment is incorrect, a new cluster is created to encode the current item as an

exception (for a concrete example of this see Principle 3 in the following section).

In unsupervised learning tasks there is no corrective feedback, so instead SUSTAIN

creates a new cluster if the current stimulus item is not sufficiently similar to any

existing clusters (the threshold for this sufficiency is controlled by a parameter

in the model). Both of these cluster recruitment strategies are unified under the

principe of “adaptation to surprise”.10 In supervised learning, SUSTAIN creates a

new cluster in response to a surprising misclassification, whereas in unsupervised

learning, a new cluster is created when the model encounters a surprisingly novel

stimulus item.

Clusters compete with each other to respond to the current stimulus item. The

cluster that wins this competition passes its activation over connection weights

to a set of output units. These output units replicate the structure of the input

dimensions. The connection weights are adjusted over the course of learning so that

the association between each cluster and the appropriate response for members of

that cluster is strengthened. For example, a cluster whose members are mostly in

category “A” would develop over the course of learning a stronger connection to

the category “A” output unit than to the category “B” output unit. The activation

of an output unit is proportional to the strength of the activation passed from the

winning cluster and the strength of the connection weight. SUSTAIN’s ultimate

response is biased towards the most activated output unit. In this way, classification

decisions are ultimately based on the cluster to which an instance is assigned.

2.2. The key principles of SUSTAIN

With this general understanding of the operation of the model in mind, we now

examine the five key principles of SUSTAIN. These principles highlight the impor-

tant features of the model and provide the foundation for the model’s formalism.

2.2.1. Principle 1, SUSTAIN is biased towards simple solutions

SUSTAIN is initially directed towards simple solutions. At the start of learning,

SUSTAIN has only one cluster which is centered on the first input item. It then
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adds clusters (i.e. complexity) only as needed to accurately describe the category

structure. Like other models of category learning (e.g. Ref. 16), SUSTAIN learns

to selectively attend to stimulus feature dimensions that are most useful for

categorization. This focus on a subset of stimulus dimensions also serves to bias

SUSTAIN towards simple solutions.

2.2.2. Principle 2, similar stimulus items tend to cluster together

In learning to classify stimuli as members of two distinct categories, SUSTAIN will

cluster similar items together. For example, different instances of a bird subtype

(e.g. sparrows) could cluster together and form a sparrow cluster instead of leaving

separate traces in memory for each instance. Clustering is an unsupervised process

because cluster assignment is done on the basis of similarity, not feedback.

2.2.3. Principle 3, SUSTAIN learns in both a supervised and

unsupervised fashion

In learning to classify the categories “birds” and “mammals”, SUSTAIN relies on

both unsupervised and supervised learning processes. Consider a learning trial in

which SUSTAIN has formed a cluster whose members are small birds, and another

cluster whose members are four-legged mammals. If SUSTAIN is subsequently asked

to classify a bat, it will initially predict that a bat is a bird on the basis of overall

similarity (bats and birds are both small, have wings, fly, etc.). Upon receiving

feedback from the environment (supervision) indicating that a bat is a mammal,

SUSTAIN will recruit a new cluster to represent the bat as an exception to the

mammal category. The next time SUSTAIN is exposed to the bat or another similar

bat, SUSTAIN will correctly predict that a bat is a mammal. This example also

illustrates how SUSTAIN can entertain more complex solutions when necessary

through cluster recruitment (see Principle 1).

2.2.4. Principle 4, the pattern of feedback matters

As the example used above illustrates, feedback affects the inferred category

structure. Prediction failures result in a cluster being recruited, thus different

patterns of feedback can lead to different representations being acquired. This

principle allows SUSTAIN to predict different acquisition patterns for different

learning modes that are informationally equivalent but differ in their pattern of

feedback. The learning conditions in the Love18 study considered in this paper are

informationally equivalent, but differ in their pattern of feedback.

2.2.5. Principle 5, cluster competition

Clusters can be seen as competing explanations of the input. The strength of the

response from the winning cluster (the cluster the current stimulus is most similar
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to) is attenuated in the presence of other clusters that are somewhat similar to the

current stimulus (see Ref. 31, account of competing explanations in reasoning).

2.3. Mathematical formulation of SUSTAIN

This section of the paper explains how the general principles that govern SUSTAIN’s

operation are implemented in an algorithmic model.

2.3.1. Input representation

Stimuli are represented in the model as vector frames where the dimensionality

of the vector is equal to the dimensionality of the stimuli. The category label

is also included as a stimulus dimension. Thus, stimuli that vary on three per-

ceptual dimensions (e.g. size, shape and color) and are members of one of two

categories would require a vector frame with four dimensions. A four-dimensional

binary-valued stimulus (three perceptual dimensions plus the category label) can

be thought of as a four character string (e.g. 1 2 1 1) in which each character

represents the value of a stimulus dimension. For example, the first character could

denote the size dimension with a 1 indicating a small stimulus and a 2 indicating

a large stimulus.

Of course, a learning trial usually involves an incomplete stimulus representa-

tion. For instance, in classification learning all the perceptual dimensions are known,

but the category label dimension is unknown and queried. After the learner re-

sponds to the query, corrective feedback is provided. Assuming the fourth stimulus

dimension is the category label dimension, the classification trial for the above

stimulus is represented as 1 2 1 ? → 1 2 1 1.

On every classification trial, the category label dimension is queried and

corrective feedback indicating the category membership of the stimulus is provided.

In contrast, on inference learning trials, subjects are given the category member-

ship of the item, but must infer an unknown stimulus dimension. Possible inference

learning trials for the above stimulus description are ? 2 1 1 → 1 2 1 1, 1 ? 1 1 →

1 2 1 1, and 1 2 ? 1 → 1 2 1 1. Notice that inference and classification learning

provide the learner with the same stimulus information after feedback (though the

pattern of feedback varies).

Unsupervised learning does not involve informative feedback. In unsupervised

learning, every item is considered to be a member of the same global category. Thus,

the category label dimension is unitary valued and uninformative for differentiating

between stimuli. However, the degree to which any particular stimulus activates

this category dimension indicates the degree to which the network recognizes the

stimulus.

In order to represent a nominal stimulus dimension that can display multiple

values, SUSTAIN devotes multiple input units. To represent a nominal dimension

containing k distinct values, k input units are utilized. All the units forming a

dimension are set to zero, except for the one unit that denotes the nominal value
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of the dimension (this unit is set to one). For example, the stimulus dimension of

marital status has three values (“single”, “married”, “divorced”). The pattern [0 1

0] represents the dimension value of “married”. A complete stimulus is represented

by the vector Iposik where i indexes the stimulus dimension and k indexes the

nominal values for dimension i. For example, if marital status was the third sti-

mulus dimension and the second value was present (i.e. married), then Ipos
32 would

equal one, whereas Ipos
31 and Ipos

33 would equal zero. The “pos” in Ipos denotes

that the current stimulus is located at a particular position in a multidimensional

representational space.

2.3.2. Receptive fields

Each cluster has a receptive field for each stimulus dimension. A cluster’s receptive

field for a given dimension is centered at the cluster’s position along that dimension.

The position of a cluster within a dimension indicates the cluster’s expectations for

its members.

The tuning of a receptive field (as opposed to the position of a receptive field)

determines how much attention is being devoted to the stimulus dimension. All

the receptive fields for a stimulus dimension have the same tuning (i.e. atten-

tion is dimension-wide as opposed to cluster-specific). A receptive field’s tuning

changes as a result of learning. This change in receptive field tuning implements

SUSTAIN’s selective attention mechanism. Dimensions are highly attended to

develop peaked tunings, whereas dimensions are not well attended to develop broad

tunings. Dimensions that provide consistent information at the cluster level receive

greater attention.

Mathematically, receptive fields have an exponential shape with a receptive

field’s response decreasing exponentially as distance from its center increases. The

activation function for a dimension is:

α(µ) = λe−λµ (1)

where λ is the tuning of the receptive field, µ is the distance of the stimulus from

the center of the field, and α(µ) denotes the response of the receptive field to

a stimulus falling µ units from the center of the field. The choice of exponentially

shaped receptive fields is motivated by Shepard’s29 work on stimulus generalization.

Although receptive fields with different λ have different shapes (ranging from a

broad to a peaked exponential), for any λ, the area “underneath” a receptive field

is constant:
∫

∞

0

α(µ)dµ =

∫

∞

0

λe−λµdµ = 1 . (2)

For a given µ, λ that maximizes α(µ) can be computed from the derivative:

∂α

∂λ
= e−λµ(1 − λµ) . (3)

These properties of exponentials prove useful in formulating SUSTAIN.
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2.3.3. Cluster activation

With nominal stimulus dimensions, the distance µij (from 0 to 1) between the ith

dimension of the stimulus and cluster j’s position along the ith dimension is:

µij =
1

2

vi
∑

k=1

|Iposik − H
posik

j | (4)

where vi is the number of different nominal values on the ith dimension, I is the

input representation (as described in a previous section), and H
posik

j is cluster j’s

position on the ith dimension for value k (the sum of all k for a dimension is 1). The

position of a cluster in a nominal dimension is actually a probability distribution

that can be interpreted as the probability of displaying a value given that an item

is a member of the cluster. For example, a cluster in which 20% of the members

are single, 45% are married, and 35% are divorced will converge to the location

[0.20 0.45 0.35] within the marital status dimension. The distance µij will always

be between 0 and 1 (inclusive).

The activation of a cluster is given by:

Hact
j =

∑m
i=1(λi)

re−λiµij

∑m

i=1(λi)r
(5)

where Hact
j is the activation of the jth cluster, m is the number of stimulus

dimensions, λi is the tuning of the receptive field for the ith input dimension, and

r is an attentional parameter (always non-negative). When r is large, input units

with tighter tunings (units that seem relevant) dominate the activation function.

Dimensions that are highly attended have larger λs and will have greater importance

in determining the clusters’ activation values. Increasing r simply accentuates this

effect. If r is set to zero, every dimension receives equal attention. Equation (5) sums

up the responses of the receptive fields for each input dimension and normalizes the

sum (again, highly attended dimensions weigh heavily). Cluster activation is bound

between 0 (exclusive) and 1 (inclusive). Unknown stimulus dimensions (e.g. the

category label in a classification trial) are not included in the above calculation.

2.3.4. Competition

Clusters compete to respond to input patterns and in turn inhibit one another.

When many clusters are strongly activated, the output of the winning cluster Hout
j

is less:

For the winning Hj with the greatest Hact, Hout
j =

(Hact
j )β

∑n
i=1(H

act
i )β

Hact
j

For all other Hj , Hout
j = 0 ,

(6)

where n is the number of clusters and β is the lateral inhibition parameter (always

non-negative) that regulates cluster competition. When β is small, competing

clusters strongly inhibit the winner. When β is large the winner is weakly inhibited.
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Clusters other than the winner have their output set to zero. Equation (6) is

a straightforward method for implementing lateral inhibition. It is a high level

description of an iterative process where units send signals to each other across

inhibitory connections. Psychologically, Eq. (6) signifies that competing alternatives

will reduce confidence in a choice (reflected in a lower output value).

2.3.5. Response

Activation is spread from the clusters to the output units of the queried (the

unknown) stimulus dimension z:

Cout
zk =

n
∑

j=1

wj,zkHout
j (7)

where Cout
zk is the output of the output unit representing the kth nominal value

of the queried (unknown) zth dimension, n is the number of clusters, and wj,zk

is the weight from cluster j to category unit Czk . A winning cluster (especially one

that did not have many competitors and is similar to the current input pattern)

that has a large positive connection to an output unit will strongly activate the

output unit. The summation in the above calculation is not really necessary given

that only the winning cluster has a nonzero output, but is included to make the

similarities between SUSTAIN and other models more apparent.

The probability of making response k (the kth nominal value) for the queried

dimension z is

Pr(k) =
e(d·Cout

zk )

∑vz

j=1 e(d·Cout

zj
)

(8)

where d is a response parameter (always non-negative) and vz is the number of

nominal units (and hence output units) forming the queried dimension z. When d

is high, accuracy is stressed and the output unit with the largest output is almost

always chosen. The Luce choice rule is conceptually related to this decision rule.23

2.3.6. Learning

After responding, feedback is provided to SUSTAIN. The target value for the kth

category unit of the queried dimension z is:

tzk =

{

max(Cout
zk , 1), if Iposzk equals 1

min(Cout
zk , 0), if Iposzk equals 0

}

. (9)

Kruschke16 refers to this kind of teaching signal as a “humble teacher” and explains

when its use is appropriate. Basically, the model is not penalized for predicting the

correct response more strongly than is necessary.
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A new cluster is recruited if the winning cluster predicts an incorrect response.

In the case of a supervised learning situation, a cluster is recruited according to the

following procedure:

For the queried dimension z, if tzk does not equal 1 for the Czk

with the largest output Cout
zk of all Cz∗, then recruit a new cluster .

(10)

In other words, the output unit representing the correct nominal value must be the

most activated of all the output units forming the queried stimulus dimension.

In the case of an unsupervised learning situation, SUSTAIN is self-supervising

and recruits a cluster when the most activated cluster Hj ’s activation is below the

threshold τ :

if (Hact
j < τ), then recruit a new cluster . (11)

Unsupervised recruitment in SUSTAIN bears a strong resemblance to recruitment

in Adaptive Resonance Theory,5 Clapper and Bower’s qualitative model,6 and

Hartigan’s leader algorithm.12

When a new cluster is recruited it is centered on the misclassified input pattern

and the clusters’ activations and outputs are recalculated. The new cluster then

becomes the winner because it will be the most highly activated cluster (it is

centered upon the current input pattern — all µij will be zero). Again, SUSTAIN

begins with a cluster centered on the first stimulus item.

The position of the winner is adjusted:

For the winning Hj , ∆H
posik

j = η(Iposik − H
posik

j ) (12)

where η is the learning rate. The centers of the winner’s receptive fields move

towards the input pattern according to the Kohonen learning rule.15 This learning

rule centers the cluster amidst its members.

Using our result from Eq. (3), receptive field tunings are updated according to:

∆λi = ηe−λiµij (1 − λiµij) (13)

where j is the index of the winning cluster.

Only the winning cluster updates the value of λi. Equation (13) adjusts the

peakedness of the receptive field for each input so that each input dimension can

maximize its influence on the clusters. Initially, λi is set to be broadly tuned with

a value of 1. The value of 1 is chosen because the maximal distance µij is 1 and

the optimal setting of λi for this case is 1 (i.e. Eq. (13) equals zero). Under this

scheme, λi cannot become less than 1, but can become more narrowly tuned.

When a cluster is recruited, weights from the unit to the output units are set

to zero. The one layer delta learning rule32,28 is used to adjust these weights:

∆wj,zk = η(tzk − Cout
zk )Hout

j , (14)

where z is the queried dimension. Note that only the winning cluster will have its

weights adjusted since it is the only cluster with a nonzero output.
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2.4. uSUSTAIN: a unified approach to supervised and

unsupervised learning

SUSTAIN can model both supervised and unsupervised learning, but it relies on

different recruitment mechanisms. In both cases, a cluster is recruited in response to

a surprising event (i.e. the existing cluster structure does not properly characterize

the current stimulus), but how a surprising event is defined differs. In the supervised

case, the surprising event is a prediction error, whereas in the case of unsupervised

learning the surprising event is an unfamiliar stimulus.

Although the two separate recruitment procedures have been successful, a single

recruitment procedure is preferable. Beyond parsimony, a unified account could

prove useful in clarifying the relationship between unsupervised and supervised

learning. A simple way to integrate the two recruitment strategies is to generalize

the unsupervised procedure so that it is applicable to supervised learning situations.

Under this scheme, a new cluster is recruited when the current stimulus is not

sufficiently similar to any cluster in its category:

For the queried dimension z ,

If Max({Hact
j | µzj = 0}) < τ, then recruit a new cluster ,

(15)

where Hact
j is the activation of cluster j, µzj is the distance [as defined in Eq. (4)]

along the zth dimension of the current stimulus and cluster j’s position along the

zth dimension, and τ is a constant between 0 and 1 (a parameter). The requirement

that µzj be zero specifies that only clusters associated with the category of the

current stimulus are considered. In unsupervised learning, all items belong to the

same global category which represents items the network has seen before. Thus,

Max({Hact
j | µzj = 0}) refers to the most activated cluster overall. In supervised

learning, the most activated cluster predicting the correct category may not be the

most activated cluster overall.

Besides providing a unified framework, this recruitment strategy has a number

of other virtues over SUSTAIN’s original recruitment rule [Eq. (10)] for supervised

learning. For example, the unified procedure will recruit a new cluster when an

unusual item is encountered that does not result in a prediction error whereas the

previous error-driven recruitment scheme would not recruit a new cluster to encode

the unusual item. Assigning a very unusual item to an existing cluster (a cluster the

item is not very similar to) could result in catastrophic interference (see Ref. 27)

as the cluster must undergo radical change to accommodate its newest member.

3. Evaluating uSUSTAIN

In order to evaluate this unified formulation of the model we applied uSUSTAIN

to the studies previously accounted for using separate cluster recruitment mech-

anisms for supervised and unsupervised learning.10 It is important to recognize

that the recruitment procedure that uSUSTAIN uses is, in fact, a generalization of

unsupervised recruitment procedure used by the original SUSTAIN model. Thus,
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uSUSTAIN and SUSTAIN provide equivalent accounts of unsupervised learning.9

uSUSTAIN and SUSTAIN have fit a number of unsupervised learning studies and

have generated novel predictions that have been subsequently tested and confirmed

with human subjects.11

A true test of generality of the uSUSTAIN approach lies in its ability to fit

supervised learning data. Gureckis and Love9 applied uSUSTAIN to a number

of supervised learning studies and found that uSUSTAIN approximated SUSTAIN’s

successes. Despite its simplicity, the unified recruitment procedure in uSUSTAIN

has proven remarkably successful in this domain.

Although uSUSTAIN has demonstrated the ability to account for human

learning performance across a wide range of category learning paradigms, it has

never been applied to a study specifically designed to compare unsupervised and

supervised learning. Given the past successes of the model, it would be informative

to apply the model to a direct comparison between supervised and unsupervised

learning. The following section examines uSUSTAIN’s account of Love’s18 study

that compares incidental unsupervised learning, intentional unsupervised learning,

and supervised classification learning in a controlled manner.

4. Comparing Supervised and Unsupervised Learning

The Love18 study is unique in that it specifically allows for a direct comparison of

supervised and unsupervised learning. In supervised learning, the common depen-

dent measure used to assess learning difficulty is training accuracy.25,30 However,

there is no measure of training accuracy in unsupervised learning (there is no right

or wrong response on each study trial). In order to directly compare learning per-

formance across these two types of learning, a comparable dependent measure was

developed.

To accomplish this, stimuli were created by embedding the category label (which

is typically a verbal label such as category “A” or “B”) into each stimulus as a

fourth binary-valued perceptual dimension (see Table 1). On supervised classifica-

tion study phase trials, subjects were shown the value of the first three perceptual

Table 1. The logical struc-
ture of Types I, II, IV and VI
classification problems tested
in Ref. 30.

Stimulus I II IV VI

1 1 1 1 1 1 1

1 1 2 1 1 1 2

1 2 1 1 2 1 2

1 2 2 1 2 2 1

2 1 1 2 2 1 2

2 1 2 2 2 2 1

2 2 1 2 1 2 1

2 2 2 2 1 2 2
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dimensions and were queried on the fourth. After responding, the correct value of

the fourth dimensions was shown. In the Love18 study, the fourth dimension (i.e. the

“category” dimension) was the border color (either yellow or white) of a geometric

figure. Subjects indicated whether they believed the border color (not shown on the

display) was yellow or white based on the three other perceptual dimensions (which

were shown on the display). After responding, the complete figure was displayed.

On unsupervised study phase trials, all four perceptual dimensions were shown

on study phase trials (the fourth dimension was not queried). In the intentional

unsupervised learning condition, subjects were aware they were in a learning task

and were instructed to actively search for patterns that characterized the training

items. In contrast, subjects in the incidental unsupervised learning condition were

not aware that they were in a learning task and were instructed to simply rate how

pleasant they found each stimulus item.

In each of the three study conditions (supervised classification learning, in-

tentional unsupervised learning, incidental unsupervised learning), subjects were

trained on either Types I, II, IV, or VI category structures (see Table 1) defined by

Shepard, Hovland and Jenkins.30 Type I problem only requires attention along one

input dimension, whereas Type II problem requires attending to two dimensions

(Type II is XOR on the first two dimensions with an irrelevant third dimension).

The categories in Type II problem have a highly nonlinear structure. Type IV re-

quires attention along all three perceptual dimensions with each dimension serving

as an imperfect predictor. Type IV is notable because it displays a linear category

structure. Type VI also requires attention to all three perceptual dimensions and

has no regularities across any pair of dimensions. In all conditions, subjects com-

pleted ten study blocks (a block consists of the presentation of each stimulus item

in a random order).

Category learning performance was measured in a test phase which followed

the study phase. Subjects viewed a pair of stimuli that varied only on the fourth

dimensions (i.e. the category dimension). Subjects were instructed to choose the

item that appeared during the study phase (a familiarity or recognition judgment).

As in traditional supervised classification learning studies, subjects could base

this judgment on their knowledge of the relationship between the category dimen-

sion and other dimensions (e.g. rules, correlations, etc.) as well as on memorized

exemplars. Love18 verified that this testing procedure yields performance scores

that correlate highly with study phase accuracy in the supervised condition. Thus,

test phase accuracy can be used to compare the ability of subjects to learn in each

of the three study conditions.

The results are shown in Table 2. The acquisition patterns for the three learning

conditions differ significantly. Subjects in the unsupervised conditions did not show

a preference for Type II category structure relative to Type IV structure. This ef-

fect was most pronounced in the incidental unsupervised learning condition. One

explanation for this difference between the incidental and intentional unsupervised

learning conditions is that intentional unsupervised learning task encouraged sub-



July 16, 2003 13:32 WSPC/115-IJPRAI 00258

Human Unsupervised and Supervised Learning as a Quantitative Distinction 897

Table 2. The study phase and test phase

results from Ref. 18. uSUSTAIN’s fit is
shown in parentheses.

Problem Study Accuracy Test Accuracy

Supervised Classification Learning

Type I 0.86 (0.74) 0.89 (0.90)
Type II 0.67 (0.63) 0.73 (0.75)
Type IV 0.65 (0.60) 0.70 (0.65)
Type VI 0.59 (0.56) 0.61 (0.58)

Intentional Unsupervised Learning

Type I NA 0.84 (0.86)
Type II NA 0.64 (0.57)
Type IV NA 0.67 (0.66)
Type VI NA 0.54 (0.50)

Incidental Unsupervised Learning

Type I NA 0.85 (0.81)
Type II NA 0.56 (0.51)
Type IV NA 0.67 (0.63)
Type VI NA 0.56 (0.50)

jects to form explicit rules which is an efficient strategy for category structures that

are describable by a compact rule (Type II has an XOR structure, see Table 1)

4.1. Modeling results

uSUSTAIN was trained in a manner analogous to how subjects were trained using

10 randomly ordered study blocks. In the supervised condition, the model was

asked to predict the value of the fourth feature dimension (the category label),

while in both unsupervised conditions, the value of all four stimulus dimensions

was available to the model.

All study phase stimuli were encoded as belonging to a global category. In order

for uSUSTAIN to mimic the forced choice nature of the test phase, the activation of

this global category unit was calculated for each of the two items presented as a pair.

The degree to which this unit was activated indicates the level of familiarity the

model has for the item. The ultimate response of the network was towards the item

in the forced choice that had the strongest response activity using a probabilistic

decision procedure analogous to Eq. (8).

uSUSTAIN’s fit of the data (averaged of 5000 runs) is shown in Table 2 in

parentheses and the best-fit modeling parameters used are shown in Table 3.

uSUSTAIN correctly demonstrates different patterns of acquisition for the three

study conditions. In the supervised classification condition, uSUSTAIN captures

the correct ordering of problem difficulty (Type I is easiest, followed by Type II,

then Type IV, and finally Type VI). In both unsupervised conditions, the model

correctly shows a decrease in test phase accuracy for Type II category structures

relative to the supervised classification condition. Note that uSUSTAIN predicts
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Table 3. uSUSTAIN’s best fitting parameters for Ref. 18 studies.

Function/Adjusts Symbol Supervised Intentional/Incidental Unsupervised

Learning rate η 0.0172 0.0186

Cluster competition β 2.90 0.608

Decision consistency d 14.474 14.442

Attentional focus r 0.475 2.209

Threshold τ 0.568 0.553/0.487

lower accuracy for category structures that are nonlinear (Types II and VI) in both

unsupervised conditions.

The clusters that uSUSTAIN creates were analyzed. The modal number of

clusters recruited in the supervised learning condition exactly matches with previ-

ously reported results using the original version of SUSTAIN to account for the

Shepard, Hovland, Jenkins30 problems.22 Two clusters were created in Type I

condition, which divided the stimulus items on the basis of the first stimulus

dimension. Four clusters were recruited in Type II condition, which captures the

nature of the XOR on the first two dimensions. Six clusters were created in

Type IV problem and eight clusters were recruited in Type VI condition where

each item had to be memorized. In both of unsupervised learning conditions, the

modal number of clusters was two for all problems except Type II under incidental

conditions, which required four clusters.

Using essentially the same set of parameters uSUSTAIN was able to qualita-

tively approximate performance in both the intentional and incidental unsupervised

learning conditions. Only the threshold parameter, τ , was different for the two

studies (τ = 0.533 for intentional unsupervised learning and τ = 0.487 for incidental

unsupervised learning). The increased threshold parameter in the intentional

condition allowed uSUSTAIN to create four clusters in Type II problem which

improves its test phase performance for this problem.

5. Discussion and Conclusions

uSUSTAIN holds that supervised and unsupervised human learning engage common

mechanisms. In both cases, a new cluster is recruited when a stimulus is not

sufficiently similar to any existing cluster belonging to the appropriate category. In

order to evaluate uSUSTAIN’s account of human learning, the model was applied

to Love’s18 data set that compared human performance in supervised classification

learning, incidental unsupervised learning and intentional unsupervised learning.

uSUSTAIN successfully fit these data. An analysis of uSUSTAIN’s clustering

solutions suggests that humans are more likely to aggregate stimulus items in

memory in unsupervised learning whereas they are more likely to segregate stimulus

items and store separate memory traces in supervised learning. Within unsuper-

vised learning, the tendency to collapse items into common clusters is stronger in

incidental learning.
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uSUSTAIN’s fit of the Love18 data suggests that unsupervised learning, par-

ticularly incidental unsupervised learning, is best matched with linear category

structures because the optimal clustering solution for a linear category structure

involves one cluster per category. On the other hand, nonlinear category structures

are not well matched to an unsupervised induction task because nonlinear cate-

gory structures can only be captured with multiple clusters per category. While

the linear/nonlinear distinction has not proved critical in supervised classification

learning,24 Love18 suggested that the distinction may be meaningful in unsuper-

vised learning. uSUSTAIN’s account of the data supports this conjecture.

One counterintuitive prediction that uSUSTAIN makes is that incidental

unsupervised learning may be the preferred induction task for some tasks. In other

words, sometimes humans may be better off not trying to master the learning

problem. One such situation is when numerous stimulus dimensions are weakly

correlated with one another. Under such circumstances, uSUSTAIN predicts that

supervised classification learning and intentional unsupervised learning will lead to

clustering solutions that over-differentiate items and therefore do not fully capture

the intercorrelated structure of the categories. In contrast, incidental unsupervised

learning tends to aggregate items in common clusters and is more likely to cap-

ture the underlying category structure. uSUSTAIN’s lower setting of τ parameter

(which increases uSUSTAIN’s tendency to cluster items together) for incidental

unsupervised learning drives this prediction.

Despite the apparent differences between supervised classification learning,

intentional unsupervised learning and incidental unsupervised learning, all three

induction tasks are modeled through a common mechanism in uSUSTAIN. Beyond

the current project, an important goal of our efforts is to model human learning

across a range of situations and induction tasks. Doing so highlights theoretical

connections across data sets and should lead to a more general understanding of

human learning.
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