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Computational models of infant categorization often fail to elaborate the transitional
mechanisms that allow infants to achieve adult performance. In this article, we apply
a successful connectionist model of adult category learning to developmental data.
The Supervised and Unsupervised Stratified Adaptive Incremental Network
(SUSTAIN) model is able to account for the emergence of infants’ sensitivity to cor-
related attributes (e.g., has wings and can fly). SUSTAIN offers 2 complimentary ex-
planations of the developmental trend. One explanation centers on memory storage
limitations, whereas the other focuses on limitations in perceptual systems. Both ex-
planations parallel published findings concerning the cognitive and sensory limita-
tions of infants. SUSTAIN’s simulations suggest that conceptual development fol-
lows a continuous and smooth trajectory despite qualitative changes in behavior and
that the mechanisms that underlie infant and adult categorization might not differ
significantly.

The ability to form categories of distinct objects is of critical importance in human
cognition. Consequently, there has been a keen interest in understanding how this
ability develops. Following a strategy that has proven successful in the adult cate-
gorization literature, computational models have been applied to infant learning
data to understand the underlying mechanisms (Mareschal & French, 2000;
Mareschal, French, & Quinn, 2000; Quinn & Johnson, 1997; Shultz, 2001).

Although general developmental principles have emerged, it is unclear how
current models of infant categorization can explain the transition to adult compe-
tency. Models built to capture infant performance are often inappropriate for mod-
eling adults. For example, Mareschal and French’s (1997) autoencoder network
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model successfully accounts for catastrophic interference findings in the develop-
mental literature, but adults do not demonstrate this kind of memory interference
(Ratcliff, 1990), and it is unclear how one might extend their model to address this
fact. A complete developmental account of categorization must detail the path
from infant to adult performance (cf. Cohen, Chaput, & Cashon, 2002; Sirois &
Shultz, 1998).

In this article, we apply a successful model of adult learning, the Supervised
and Unsupervised Stratified Adaptive Incremental Network (SUSTAIN) model
(Love, Medin, & Gureckis, 2004), to Younger and Cohen’s (1986) infant learning
data. Although this is SUSTAIN’s first application to developmental data, the
model has accounted for an array of challenging adult data sets spanning a variety
of category learning paradigms including classification learning (Love & Medin,
1998b), learning at different levels of abstraction (Love & Medin, 1998a), infer-
ence learning (Love, Markman, & Yamauchi, 2000), and unsupervised learning
(Gureckis & Love, 2002a, 2002b, 2003).

Despite its newness as a developmental model, SUSTAIN offers some unique
advantages for modeling such data. One advantage is that SUSTAIN is situated in
the experimental task and procedure. SUSTAIN is a trial-by-trial model of cate-
gory learning (i.e., one human learning trial equals one model learning trial).
SUSTAIN begins with a single cluster (clusters are akin to hidden units) and only
adds more in response to a surprising event that happens on a particular learning
trial. In unsupervised learning situations, SUSTAIN’s output is easily related to in-
fant looking time.

In comparison, other models are more divorced from the experimental context.
For example, other models update connection weights in batch mode after a series
of learning trials instead of on a trial-by-trial basis (e.g., Mareschal & French,
2000; Sirois & Shultz, 1998). In addition to time shifting error correction, the num-
ber of learning trials experienced in Sirois and Shultz’s cascade correlation model
depends on which age group is being modeled even for cases in which all age
groups in the actual experiment receive an equal number of learning trials.

Many connectionist models begin with a somewhat arbitrarily chosen and fixed
architecture (i.e., the number of hidden units is chosen by the modeler and does not
change during learning). The motivation for a particular architectural choice is not
always clear, nor is how such models might develop to account for adult competen-
cies. However, this is not generally a concern for SUSTAIN or cascade correlation
models (Fahlman & Lebiere, 1990), which generate their network architecture
during learning.

The way in which hidden units are recruited in SUSTAIN and cascade correla-
tion differs considerably. In cascade correlation, hidden units are placed in a cas-
cading fashion so that each hidden unit receives input from all of the previous hid-
den and input units (Shultz, Schmidt, Buckingham, & Mareschal, 1995). The
primary goal of such architectural changes is to rapidly minimize overall network
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error. In contrast, SUSTAIN adds new clusters to a single layer of its network in an
attempt to optimally represent the stimulus space. Thus, architectural changes in
SUSTAIN are easily interpreted as changes in category representation. Clusters
can be identified at the end of a simulation as representing common category land-
marks such as exceptions, prototypes, and subprototypes.

In the remainder of this article, we introduce SUSTAIN, review Younger and
Cohen’s (1986) key findings, evaluate SUSTAIN’s account of these data, and con-
sider the implications of our results. SUSTAIN offers two complimentary explana-
tions of the developmental progression observed by Younger and Cohen. Both ex-
planations are physiologically inspired and posit that infants have reduced
sensitivity to stimulus differences. One explanation focuses on the ability to form
conjunctive codes in memory, and the other explanation centers on perceptual lim-
itations. In each case, the developmental changes in SUSTAIN are continuous,
even when SUSTAIN’s behavior suggests distinct developmental stages.

DESCRIPTION OF SUSTAIN

We begin our introduction to SUSTAIN by presenting an overview of the operation
of the model. This is followed by a discussion of the key psychological principles
from which the model is derived. Finally, we discuss some advantages SUSTAIN
offers for modeling infant learning data.

This introduction serves to highlight the most important features of the model
and provides sufficient background to interpret the simulation results. The Ap-
pendix details the mathematical equations that follow from SUSTAIN’s general
principles.

Overview of SUSTAIN

SUSTAIN is a network model of human category learning. Figure 1 shows a
graphical overview of the model. On each learning trial, SUSTAIN takes as in-
put a description of the current stimulus item represented to the model by a set
of perceptual feature dimensions. For example, the large, purple square at the
bottom of Figure 1 is represented to the model by the feature dimensions color,
size, and stripe. Like other models of category learning (e.g., Anderson, 1991),
SUSTAIN treats the category membership (or category label) of a stimulus item
as simply another stimulus feature dimension. In Figure 1, SUSTAIN is being
asked to predict which category the current stimulus belongs to, thus there is a
“?” over the category label dimension. Instead of being asked to predict the cate-
gory label, SUSTAIN could also be asked to predict the color of a stimulus given
its size, stripe, and category membership. This flexible strategy allows
SUSTAIN to model inference tasks.
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SUSTAIN maintains a selective attention mechanism that allows it to learn to
focus attention on stimulus dimensions that are particularly useful for the current
categorization task (similar to Kruschke, 1992). In Figure 1, this attentional mech-
anism is illustrated by the exponentially shaped receptive fields positioned above
each input dimension.

The internal representations in the model consist of a set of clusters (denoted by
thecircles in thecenterofFigure1).Categoriesare represented in themodelasoneor
more associated clusters. Initially, the network has only one cluster that is centered
on the first input pattern. As new stimulus items are presented, the model attempts to
assign these new items to an existing cluster. This assignment is done through an un-
supervised procedure based on the similarity of the new item to the stored clusters.
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FIGURE 1 An overview of the SUSTAIN model.
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When a new item is assigned to a cluster, the cluster updates its internal representa-
tion to become the average of all items assigned to the cluster so far.

However, if SUSTAIN discovers through feedback that this similarity-based as-
signment is incorrect, a new cluster is created to encode the current item as an ex-
ception (for a concrete example of this, see Principle 3 in the following section). In
unsupervised learning tasks there is no corrective feedback, so instead SUSTAIN
creates a new cluster if the current stimulus item is not sufficiently similar to any
existing clusters (the threshold for this sufficiency is controlled by a parameter in
the model). Both of these cluster recruitment strategies are unified under the prin-
ciple of “adaptation to surprise” (Gureckis & Love, 2003). In supervised learning,
SUSTAIN creates a new cluster in response to a surprising misclassification,
whereas in unsupervised learning, a new cluster is created when the model encoun-
ters a surprisingly novel stimulus item. Infant category learning studies are typi-
cally unsupervised.

Clusters compete with each other to respond to the current stimulus item. The
cluster that wins this competition passes its activation over connection weights to a
set of output units. These output units replicate the structure of the input dimen-
sions (illustrated at the top of Figure 1). The connection weights are adjusted over
the course of learning so that the association between each cluster and the appro-
priate response for members of that cluster is strengthened. For example, a cluster
with members that are mostly in Category A would develop over the course of
learning a stronger connection to the Category A output unit than to the Category B
output unit. The activation of an output unit is proportional to the strength of the
activation passed from the winning cluster and the strength of the connection
weight. SUSTAIN’s ultimate response is biased toward the most activated output
unit. In this way, classification decisions are ultimately based on the cluster to
which an instance is assigned.

In many unsupervised learning experiments (including the studies discussed
here), there are not contrasting categories into which stimuli are being classified.
In these cases, instead of having Category A and Category B, there is only a single
global category representing items seen during learning. Consequently, SUSTAIN
has only a single output unit representing this global category. The degree to which
this unit is activated indicates the level of familiarity the model has for the item.
Thus, we refer to this unit as the category familiarity unit. The activation of the cat-
egory familiarity unit should be negatively correlated with infant looking time.

The Key Principles of SUSTAIN

With this general understanding of the operation of the model in mind, we now ex-
amine the six key principles of SUSTAIN. These principles highlight the important
features of the model and provide the foundation for the model’s formalism.
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Principle 1: SUSTAIN is directed toward simple solutions. At the start
of learning, SUSTAIN has only one cluster that is centered on the first input item. It
then adds clusters (i.e., complexity) only as needed to accurately describe the cate-
gory structure of the learning task. Its selective attention mechanism further serves
to bias SUSTAIN toward simple solutions by focusing the model on the stimulus
dimensions that provide consistent information.

Principle 2: Similar stimulus items tend to cluster together. In learning
to classify stimuli, SUSTAIN will cluster similar items together. For example, dif-
ferent instances of a bird subtype (e.g., sparrows) could cluster together and form a
sparrow cluster instead of leaving separate traces in memory for each instance.
Clustering is an unsupervised process because cluster assignment is done on the
basis of similarity, not feedback.

Principle 3: SUSTAIN relies on both unsupervised and supervised learn-
ing processes. As discussed previously, SUSTAIN can cluster based on simi-
larity (an unsupervised process). SUSTAIN’s operation is also affected by supervi-
sion when available. Consider the example of SUSTAIN learning to classify stim-
uli as members of the category mammals or birds. Let us assume that a cluster
representing four-legged, hairy land creatures has already been acquired by the
model, as well as another cluster representing small, winged creatures that fly. The
first time SUSTAIN is asked to classify a bat, the model will predict that a bat is a
bird because the bat stimulus will be more similar to the existing bird cluster than
to the existing mammal cluster. After receiving corrective feedback (supervision),
SUSTAIN will note its error and create a new cluster to store the anomalous bat
stimulus as an exception. Now, when this bat or one similar to it is presented to
SUSTAIN, it will correctly predict that the bat is a mammal. This example also il-
lustrates how SUSTAIN can entertain more complex solutions when necessary
through cluster recruitment (see Principle 1).

Principle 4: Clusters are recruited in response to surprising events. As
the previous example illustrates, surprising events lead to new clusters being re-
cruited. In unsupervised learning, a surprising event is simply exposure to a stimu-
lus that is not suffciently similar to any existing cluster (i.e., a very novel stimulus).

Principle 5: The pattern of feedback matters. As the bird–mammal ex-
ample illustrates, feedback affects the inferred category structure. Prediction fail-
ures result in a cluster being recruited; thus, different patterns of feedback can lead
to different representations being acquired. This principle allows SUSTAIN to pre-
dict different acquisition patterns for different learning modes (e.g., inference vs.
classification learning) that are informationally equivalent but differ in their pat-
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tern of feedback. Likewise, item presentation order in unsupervised learning can
affect how items cluster together.

Principle 6: Clusters compete. Clusters can be seen as competing explana-
tions of the input. The strength of the response from the winning cluster (the clus-
ter the current stimulus is most similar to) is attenuated in the presence of other
clusters that are somewhat similar to the current stimulus (cf. Sloman’s, 1997, ac-
count of competing explanations in reasoning).

INFANTS’ PERCEPTION OF CORRELATIONS
BETWEEN ATTRIBUTES: YOUNGER AND COHEN (1986)

Rosch (1978) argued that natural categories are formed around clusters of corre-
lated attributes. Younger and Cohen (1986) explored infants’ ability to acquire cat-
egories organized around correlations at 4, 7, and 10 months of age using a habitu-
ation technique. The stimuli in their four experiments were pictures of imaginary
animals that consisted of three attributes: type of body, type of tail, and type of feet.
Each attribute could assume three different values. For example, the type of body
of the animal could be similar to either an elephant, a giraffe, or a cow. Younger
and Cohen’s basic finding was that 4-month-old infants were not sensitive to the
correlational structure of the stimulus set, whereas 10-month-old infants were. The
performance of 7-month-old infants is not as straightforward to describe but is dis-
cussed here along with the results of all four experiments. Infant looking times are
shown in Figure 2.

Experiment 1

Experiment 1 assessed the sensitivity of 4- and 7-month-old infants to correlations
between stimulus attributes in the absence of independent variation in any other at-
tributes. There were two habituation stimuli in this experiment that had the follow-
ing abstract structure: 1 1 1 and 2 2 2, where a 1 or 2 represents the particular value
of an attribute. For example, the stimulus 1 1 1 might be an item with a elephant
body, a horse tail, and club feet, whereas 2 2 2 might be an item with a cow body, a
fluffy tail, and hoofed feet. In the habituation phase of the experiment, infants were
shown these two stimuli randomly for five blocks (a total of 10 habituation trials).

Three test stimuli (a correlated, an uncorrelated, and a novel item) were created
to assess the degree to which infants understood the relation between attributes.
The correlated, uncorrelated, and novel test stimuli had the following abstract
structure: 2 2 2, 2 1 1, and 3 3 3, respectively. The correlated test item preserved the
relation between attributes that was present in the habituation stimuli, whereas the
uncorrelated item broke this relation by possessing a combination of feature values
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FIGURE 2 A comparison of the infant looking times and SUSTAIN’s predicted looking
times.
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that was not observed during the habituation phase of the experiment. The novel
test item had completely new attribute values that the infants had not seen during
the habituation phase (this item served as a control). If infants were sensitive to the
correlation between features, Younger and Cohen (1986) hypothesized that infants
would dishabituate to (i.e., look longer at) the uncorrelated test item than to the
correlated test item. However, if the infants were remembering information only
about specific features and not relations between features then they would dis-
habituate only to the novel test item.

In this experiment, the 4-month-old infants looked longer on average at the
novel test stimulus than at the correlated and uncorrelated test stimuli. In contrast,
the 7-month-old infants looked longer at both the novel and uncorrelated test stim-
uli relative to the correlated stimulus. The result suggests that 4-month-old infants
cannot detect changes in the correlational structure of the test stimuli, whereas
7-month-old infants can.

Experiment 2

In Experiment 2, children were tested at 4, 7, and 10 months of age. Four stimulus
items were used in the habituation phase of the experiment, each of which had a per-
fect correlation between only two of the three possible attributes (1 1 1, 1 1 2, 2 2 1,
and 2 2 2). The perfect pairwise correlation between the first and second attribute is
here contrasted with independent variation on the third attribute. Infants were shown
these four stimuli in a random order for three blocks (for a total of 12 habituation tri-
als). The test items for Experiment 2 were identical to those used in Experiment 1.
The correlated and uncorrelated stimuli were again composed of feature values that
were seen during the habituation phase of the experiment. The correlated stimulus
item preserved the correlational pattern between the first two attributes seen in the
habituation phase of the experiment, whereas the uncorrelated stimulus item broke
this relation.

As in Experiment 1, the 4-month-old infants dishabituated only to the novel test
stimuli. The 10-month-old infants dishabituated to both the novel and uncorrelated
test stimuli but not to the correlated test stimulus. In this experiment, the
7-month-old infants never reliably changed their looking behavior to any of the ha-
bituation stimuli or the test stimuli.

Experiments 3 and 4

Experiment 3 made a slight modification to the habituation items used in Experi-
ment 2. In Experiment 2, the correlated test item, 2 2 2, was the most similar over-
all to the habituation items according to the multiplicative similarity rule used in
Medin and Schaffer’s (1978) context model. Furthermore, the correlated test item
was also a habituation item, whereas the uncorrelated test item was novel. Experi-
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ment 3 removed the correlated test item from the habituation set, and infants were
habituated to the remaining three items. The test item set was the same as Experi-
ment 2.

Infants were tested in only two age groups (7 and 10 months of age). All other
aspects of the experiment were identical to Experiment 2. The 7-month-old infants
once again failed to habituate in Experiment 3, whereas the 10-month-old infants
demonstrated sensitivity to the correlation. In Experiment 4, Younger and Cohen
(1986) found that, when trained to a criterion metric, the 7-month-old infants re-
sponded much like 4-month-old infants in Experiments 1 and 2.

Summary

The results from all four experiments indicate that 4-month-old children consis-
tently responded to changes in the feature values (the novel stimulus item) but not
to changes in the relation between attributes (the uncorrelated stimulus). This find-
ing suggests that 4-month-old infants are unable to integrate and abstract correla-
tions between different attributes. On the other hand, it seems that the ability to
process correlations between attributes develops by 10 months of age.

MODELING YOUNGER AND COHEN (1986)
WITH SUSTAIN

In all the simulations reported here, the modeling procedure followed the original
experimental procedure as closely as possible. Input to the model consisted of a set
of attributes or feature dimensions that corresponded to the experimentally manip-
ulated stimulus attributes used by Younger and Cohen (1986; i.e., type of body,
type of tail, etc.). Refer to the Appendix for a detailed description of the input cod-
ing method. In each experiment, SUSTAIN was given the exact same number of
learning or habituation trials (organized into randomized blocks) as the infants.
Like infants, SUSTAIN was trained in an unsupervised fashion (i.e., no feedback
was provided) during the habituation phase of each experiment. Throughout this
phase, the model created new clusters and adjusted its weights on a trial-by-trial
basis.

At the end of the habituation phase of each experiment, SUSTAIN was tested
for its familiarity toward the correlated and uncorrelated test stimuli. The habitua-
tion paradigm assumes that the more familiar something is, the less time an infant
will spend looking at it. Thus, looking time is inversely related to the activity of
SUSTAIN’s category familiarity unit. Absolute looking time was predicted by lin-
early regressing infant looking time with the activation of this unit.
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Simulation 1: The Developmental Limitations in Memory
Function Hypothesis

The first set of simulations explores the role of memory limitations on the develop-
ment of infant categorization ability. Schneider and Bjorklund (1998) argued that
infants have a limited memory capacity relative to adults. Such limitations might
actually be advantageous to infants over the course of development by working to
decrease cognitive load and enabling the bootstrapping of knowledge (Elman,
1993; Turkewitz & Kenny, 1982, 1985).

Memory in SUSTAIN is determined by cluster recruitment. In unsupervised
learning, SUSTAIN recruits a new cluster when the current stimulus item is not
sufficiently similar (determined by a model parameter, τ) to any existing cluster.
The higher the setting of the τ parameter, the more clusters SUSTAIN tends to re-
cruit. Thus, the particular setting of the τ parameter has direct relation to the mem-
ory capacity of the model. When the value of τ is low, SUSTAIN collapses all stim-
ulus items into a single global (or prototype) cluster and therefore is only sensitive
to feature frequency (like 4-month-old infants). At increasing values of τ,
SUSTAIN can recruit multiple clusters that capture the covert category structure in
the stimulus set. Thus, SUSTAIN becomes sensitive to correlations between attrib-
utes (like 10-month-old infants).

A related hypothesis is that the ability to detect correlations between features
requires a representational strategy that can express conjunctions of stimulus fea-
tures. Prominent theories of hippocampal function assert that one purpose of the
hippocampus is to facilitate the creation of “conjunctive codes” that bind together
items in episodic memory (Alvarez & Squire, 1994; Marr, 1971; O’Reilly &
McClelland, 1994). The traditional view of hippocampal development holds that
the hippocampus becomes fully maturated relatively late in infancy (for an oppos-
ing position, see Diamond, 1990). Thus, the developmental trends in Younger and
Cohen (1986) can be explained by the maturation of the hippocampus, which
SUSTAIN models by increasing the value of τ.

Simulations and results. We applied SUSTAIN to the Younger and Cohen
(1986) experiments using three different values of τ (one for each age group). The
data from the 7-month-old infants in Experiment 2, 3, and 4 were omitted because
these infants failed to reliably habituate without a change in experimental proce-
dure. However, the 7-month-old data from Experiment 1 were included (in this ex-
periment the 7-month-old infants did reliably habituate).

The 4-, 7-, and 10-month-old infants had a τ of .10, .54, and .66, respectively.
The best-fit value of τ was found using a nonlinear optimization algorithm that at-
tempted to minimize the correlation between the activation of SUSTAIN’s cate-
gory familiarity unit and infant looking times. As predicted, the value of τ rose
with age. All other parameters to the model (see Table 1) were fixed at the values
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used in adult studies (Love et al., 2004). The model was run 10,000 times in each
condition to ensure statistical significance. Infant looking time was regressed onto
the mean activation of SUSTAIN’s category familiarity unit for the data points
considered, R2 = .487, F(1, 8) = 7.59, p < .05, allowing the model to predict looking
time in each experiment. The results are shown in Figure 2.

SUSTAIN captures the key qualitative results of the study. In addition,
SUSTAIN does an admirable job at predicting the actual looking times of the in-
fants. SUSTAIN’s familiarity with the novel stimulus item was not reported here,
but in all simulations SUSTAIN predicts that the novel item will be looked at the
longest by infants. This slight overprediction of looking time could be attributable
to a nonlinear relation between familiarity and looking time that cannot be ac-
counted for by the linear regression (i.e., at some point the infant will stop looking
at an item no matter how novel it is).

SUSTAIN’s explanation of the results. In all cases in which Younger and
Cohen (1986) reported that infants responded on the basis of attribute frequency, as
opposed attribute correlation, SUSTAIN recruited a single cluster. In contrast,
SUSTAIN recruited two clusters in all simulations in which infants demonstrated a
sensitivity to the correlational structure of the habituation stimuli. SUSTAIN can
only show sensitivity to correlation by recruiting multiple clusters.

The clusters and stimuli in SUSTAIN are located in a multidimensional space
(see the Appendix). To gain a better understanding of SUSTAIN’s explanation of
the data, the stimulus and cluster positions were plotted. Figure 3 represents the
spatial arrangement of the habituation stimuli, the test stimuli, and SUSTAIN’s
clusters in the three-dimensional space defined by three stimulus attributes used in
Younger and Cohen (1986). In Experiment 1 there were only two habituation items
(1 1 1 and 2 2 2, which are positioned at opposing corners of the cubes in Figure 3).
In the 4-month-old condition (shown in the left plot of Figure 3), SUSTAIN cre-
ated only one cluster to represent both of these habituation stimuli. As described
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TABLE 1
SUSTAIN’s Parameters for the Studies Considered Here

Function/Adjusts Symbol Value

Learning rate η .0966
Cluster competition β 6.40
Decision consistency d 1.98
Attentional focus r 10.0
Threshold τ .10, .54, .66
Input noise noise .55, .53, .10

Note. All parameter values were used in previous studies, except for threshold
and input noise, which are free parameters. The values of the threshold and input
noise parameters are listed in order for 4-, 7-, and 10-month-old infants.
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earlier, when multiple items are assigned to a single cluster, this cluster moves to
become the average of all the stimuli that have been assigned to it. This is shown in
the left plot of Figure 3 by SUSTAIN’s single cluster (denoted by the star) located
at the midpoint between the two habituation stimuli (the point 1.5 1.5 1.5). The
correlated and uncorrelated test items are illustrated by gray triangles. From the
left plot of Figure 3 it is easy to see that both the correlated and uncorrelated test
items are equidistant from SUSTAIN’s single cluster. Thus, SUSTAIN predicts
equal familiarity for both of these test items (i.e., SUSTAIN will judge both of
these items to be equally similar to its internal representation).

In contrast, the right plot of Figure 3 shows SUSTAIN’s solution for the
7-month-old infants in Experiment 1. In this set of simulations, SUSTAIN recruited
two clusters, one centered on each of the two habituation stimuli (SUSTAIN’s clus-
ters are positioned on top of the two habituation stimuli in this illustration). The cor-
related stimulus item in Experiment 1 (point 2 2 2) has zero distance from one of
SUSTAIN’s clusters, whereas the uncorrelated stimulus (point 2 1 1) is 1.0 distance
units from the nearest cluster. Thus, SUSTAIN predicts that the correlated item will
be more familiar than the uncorrelated item.

SUSTAIN’s explanation of Experiment 2 unfolds along similar lines. Figure 4
shows the spatial configuration of both SUSTAIN’s clusters and the training and
test items from Experiment 2. In the 4-month-old condition (shown in the left plot
of Figure 4), SUSTAIN recruited a single cluster. This time this single cluster rep-
resents the average of the four training items 1 1 1, 1 1 2, 2 2 1, and 2 2 2. However,
once again this single cluster is located in the center of the space and is equidistant
from both the correlated and uncorrelated test items. Given this configuration,
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FIGURE 3 A spatial representation of the habituation stimuli, test stimuli, and SUSTAIN’s
clusters in Experiment 1. Stimuli are represented in this space as three-dimensional points. For
example, the habituation stimulus with abstract structure 1 1 1 is represented here as the carte-
sian point (1,1,1).
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SUSTAIN predicts that both the correlated and uncorrelated test items are equally
familiar.

In the 10-month-old condition of Experiment 2 (shown in the right plot of Fig-
ure 4), SUSTAIN created two clusters. Each of these two clusters represented the
average of two of the four habituation stimuli. One cluster represented the average
of stimuli 1 1 2 and 1 1 1 (located at 1 1 1.5), whereas the other represented the av-
erage of stimuli 2 2 2 and 2 2 1 (located at 2 2 1.5). In this case, this uncorrelated
test stimulus is farther from the nearest cluster than the correlated test stimulus is.
This effect is magnified by SUSTAIN’s shift of attention to the two correla-
tion-relevant attributes. A similar solution describes the results of Experiment 3.

Simulation 2: The Degraded Input Encoding Hypothesis

An alternative explanation of the Younger and Cohen (1986) data is that the ability
to encode stimulus attributes improves with age (Haynes, White, & Held, 1965).
For example, the visual cortex of developing infants is unable to readily perceive
high spatial frequencies (Dobson & Teller, 1978; Salaptek & Banks, 1978). The ef-
fect of such low-pass filtering of the spatial frequencies is to blur the perception of
the retinal image. Like the memory limitations discussed in the previous section,
there might be some advantages to perceptual limitations. Recent work suggests
that the reduced visual acuity of infants is beneficial for acquiring basic-level con-
cepts (French, Mermillod, Quinn, Chauvin, & Mareschal, 2002).

In addition to the issue of acuity, other developmental differences may affect the
ability to encode stimuli. Kelmer (1981) warned that the experimenter-controlled
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FIGURE 4 A spatial representation of the habituation stimuli, test stimuli, and SUSTAIN’s
clusters in Experiment 2. Stimuli are represented in this space as three-dimensional points. For
example, the habituation stimulus with abstract structure 1 1 1 is represented here as the carte-
sian point (1,1,1).
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aspects of artificial stimuli might not be represented by infants exactly as the ex-
perimenter intends.

In our second set of simulations, we explored the role that coding deficiencies
play in infants’ categorization ability. Rather than assuming that attribute values
are clearly represented, we introduced uncertainty or noise into SUSTAIN’s stimu-
lus encoding. The degree of this uncertainty is reduced with increasing age. In the
previous simulations, the value of an attribute was clear and certain. For example,
an attribute displaying the first value would be represented as [1 0 0]. With input
noise set to .5, this same attribute would be represented as [.5 .25 .25]. As the
amount of input noise increases, stimuli become more similar to one another.

Simulations and results. In these simulations, we applied SUSTAIN in the
same manner as we did in the first set of simulations. The value of the τ parameter
was fixed at the value used in the previous simulation for the 10-month-old infants.
Developmental differences between the different age groups were modeled by a
parameter that controlled the amount of noise in the input encoding. The best-fit
value of the noise parameter was once again found using a nonlinear optimization
algorithm that attempted to minimize the correlation between the activation of
SUSTAIN’s category familiarity unit and infant looking time.

The results of the these simulations paralleled the results from the first set of
simulations. For brevity, we do not fully present the results. Once again, in all cases
in which Younger and Cohen (1986) reported that infants responded on the basis of
attribute frequency, as opposed to attribute correlation, SUSTAIN recruited a sin-
gle cluster. In contrast, SUSTAIN recruited two clusters in all simulations in which
infants demonstrated a sensitivity to the correlational structure of the habituation
stimuli.

In fact, the two memory and encoding manipulations considered in this article
actually predict the same pattern of infant performance. In the first set of simula-
tions, a lower setting of the τ parameter for younger infants accounted for the de-
velopmental trends. Lowering the value of the τ parameter decreases the sensitiv-
ity of the model to differences between stimuli. In the same way, introducing noise
to the input representation reduced a priori differences between stimuli. Thus, at
the same setting of the τ parameter, the model is less likely to create additional
clusters as the amount of input noise increases. Of course, it would also be possible
to account for these data by a combination of either of these two approaches.

GENERAL DISCUSSION

In this article, we have taken a step toward modeling the development of categori-
zation ability from infancy to adulthood. We applied a successful model of adult
category learning to infant learning data, and the results were informative.
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SUSTAIN captured the developmental trends in Younger and Cohen’s (1986)
study through gradual changes in its internal parameters. Two compatible develop-
ment explanations of the data emerged. One explanation focused on the role of
memory limitations in the storage and formation of conjunctive codes, whereas the
other explanation focused on limitations in stimulus encoding. A unique benefit of
this account is that SUSTAIN makes a clear distinction between processes that af-
fect learning in a particular task and those that describe developmental changes be-
tween age groups (Thomas & Karmiloff-Smith, in press). However, future re-
search will be needed to tease apart these two candidate explanations of the data.

SUSTAIN’s account of these data suggests a number of novel predictions.
Although we cannot account for the failure of 7-month-old infants to habituate in
the original Younger and Cohen (1986) study, SUSTAIN predicts that the
7-month-old infants were on the cusp of being able to grasp the correlational struc-
ture of the habituation items. Manipulations that make this structure more apparent
should elevate 7-month-old infants’performance to that of 10-month-old infants in
Experiments 2 and 3. One such manipulation is to increase the saliency of attribute
values. SUSTAIN forms multiple clusters (which are necessary to capture correla-
tions between attributes) when differences between stimuli are sufficiently large.
Both of SUSTAIN’s developmental explanations suggest that the threshold for suf-
ficient differences varies over the course of development. Therefore, SUSTAIN
predicts that experimentally increasing the differences between attribute values
will sensitize 7-month-old infants to correlational structures in the stimulus set.

Another method that should boost 7-month-old infants’ performance is to
block the presentation order of the habituation stimuli by feature value pairs. In
Experiment 1, which consisted of only two stimuli, SUSTAIN correctly pre-
dicted that 7-month-old infants would appreciate the correlated structure of the
stimulus set. Blocking the presentation order of stimuli in studies like Experi-
ment 2 (which consists of four habituation stimuli) allows SUSTAIN to establish
a cluster that captures one attribute value pairing prior to exposure to the second
pairing. Once one cluster is firmly established, a stimulus conforming to the sec-
ond attribute value pairing appears sufficiently different to SUSTAIN to warrant
creation of a second cluster, thus capturing the correlational structure of the ha-
bituation items. SUSTAIN’s trial-by-trial operation allows for such a prediction
to be made.

An additional prediction of SUSTAIN is confirmed by Younger (1985). In cases
in which SUSTAIN creates one global cluster, the model predicts that the average
or prototypical item will be the most familiar item to infants. However, in cases in
which SUSTAIN recruits two clusters, SUSTAIN predicts that infants will find the
average item much more interesting as it is not very close to either cluster. Younger
explored a similar hypothesis with 10-month-old infants. She found that, when
presented with an unstructured or broad category, infants had a larger familiarity to
the average stimulus than to the modal stimulus item. However, when infants were
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exposed to a category with two distinct subtypes, infants found the average stimuli
to be less familiar.

Despite these successes, one might still ask whether it makes sense to posit a
common mechanism for infant and adult category learning. This proposition might
not be as unlikely as it seems. There is considerable evidence to suggest that cate-
gorization behavior in infants and adults is, in many ways, quite similar. For exam-
ple, in many cases infants and adults agree on the basic level (Horton & Markman,
1980; Mervis & Crisafi, 1982) and extract the same category prototypes that adults
do (Bomba & Siqueland, 1983; Mervis & Crisafi, 1980). Furthermore, Baldwin,
Markman, and Melartin (1993) found that 9- to 10-month-old infants make the
same kind of inferences from category knowledge that adults do and are capable of
inferring nonobvious properties of category members.

One exciting possibility is that infants and adults have the same basic categori-
zation “hardware” and primarily differ in their knowledge or level of domain ex-
pertise. This position has been argued for in the analogy literature (Gentner, 1988;
Kotovsky & Gentner, 1996). The domain of artificial category learning is ideally
suited for exploring this possibility as it typically involves stimuli that lack prior
associations. Developmental differences in such tasks may be attributable to para-
metric differences in memory and perceptual systems and not to qualitative shifts
in processing or stagelike progressions.
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APPENDIX:
THE MATHEMATICAL FORMULATION OF SUSTAIN

This appendix describes in detail the formalized operation of SUSTAIN, which is
derived from its key psychological principles. We begin by describing our stimulus
representation strategy. Following this we describe the mathematical equations
that govern the model’s operation. Finally, we discuss the parameters used in the
simulations reported here.

Input Representation

Stimuli are represented in the model as vector frames where the dimensionality of
the vector is equal to the dimensionality of the stimuli. The category label is also
included as a stimulus dimension (the terms dimension and attribute are used inter-
changeably). Thus, stimuli that vary on three perceptual dimensions (e.g., size,
shape, and color) and are members of one of two categories would require a vector
frame with four dimensions. A four-dimensional binary-valued stimulus (three
perceptual dimensions plus the category label) can be thought of as a
four-character string (e.g., 1 2 1 1) in which each character represents the value of a
stimulus dimension. For example, the first character could denote the size dimen-
sion, with a 1 indicating a small stimulus and a 2 indicating a large stimulus.

Of course, a learning trial usually involves an incomplete stimulus representa-
tion. For instance, in classification learning all the perceptual dimensions are
known, but the category label dimension is unknown and queried. After the learner
responds to the query, corrective feedback is provided. Assuming the fourth stimu-
lus dimension is the category label dimension, the classification trial for this stimu-
lus is represented as 1 2 1 ? → 1 2 1 1.

On every classification trial, the category label dimension is queried, and cor-
rective feedback indicating the category membership of the stimulus is provided.
In contrast, on inference learning trials, participants are given the category mem-
bership of the item but must infer an unknown stimulus dimension. Possible infer-
ence learning trials for the this stimulus description are ? 2 1 1 → 1 2 1 1, 1 ? 1 1 →
1 2 1 1, and 1 2 ? 1 → 1 2 1 1. Notice that inference and classification learning pro-
vide the learner with the same stimulus information after feedback (although the
pattern of feedback varies).

Unsupervised learning does not involve informative feedback. In unsupervised
learning, every item is considered to be a member of the same global category.
Thus, the category label dimension is unitary valued and uninformative for differ-
entiating between stimuli. However, the degree to which any particular stimulus
activates this category dimension indicates the degree to which the network recog-
nizes the stimulus.
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To represent a nominal stimulus dimension that can display multiple values,
SUSTAIN devotes multiple input units. To represent a nominal dimension con-
taining k distinct values, k input units are utilized. All the units forming a dimen-
sion are set to 0, except for the one unit that denotes the nominal value of the di-
mension (this unit is set to 1). For example, the stimulus dimension of marital
status has three values (single, married, divorced). The pattern [0 1 0] represents
the dimension value of married. A complete stimulus is represented by the vec-
tor I posik where i indexes the stimulus dimension and k indexes the nominal val-
ues for dimension i. For example, if marital status was the third stimulus dimen-
sion and the second value was present (i.e., married), then I pos32 would equal 1,
whereas I pos31 and I pos33 would equal 0. The pos in Ipos denotes that the current
stimulus is located at a particular position in a multidimensional representational
space.

Receptive Fields

Each cluster has a receptive field for each stimulus dimension. A cluster’s recep-
tive field for a given dimension is centered at the cluster’s position along that di-
mension. The position of a cluster within a dimension indicates the cluster’s expec-
tations for its members.

The tuning of a receptive field (as opposed to the position of a receptive field)
determines how much attention is being devoted to the stimulus dimension. All
the receptive fields for a stimulus dimension have the same tuning (i.e., attention
is dimensionwide as opposed to cluster-specific). A receptive field’s tuning
changes as a result of learning. This change in receptive field tuning implements
SUSTAIN’s selective attention mechanism. Dimensions that are highly attended
to develop peaked tunings, whereas dimensions that are not well attended to de-
velop broad tunings. Dimensions that provide consistent information at the clus-
ter level receive greater attention.

Mathematically, receptive fields have an exponential shape with a receptive
field’s response decreasing exponentially as distance from its center increases. The
activation function for a dimension is:

α(µ) = λe–λµ (1)

where λ is the tuning of the receptive field, µ is the distance of the stimulus from
the center of the field, and α(µ) denotes the response of the receptive field to a
stimulus falling µ units from the center of the field. The choice of exponentially
shaped receptive fields is motivated by Shepard’s (1987) work on stimulus gen-
eralization.
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Although receptive fields with different λ have different shapes (ranging from a
broad to a peaked exponential), for any λ, the area “underneath” a receptive field is
constant:

For a given µ, the λ that maximizes α(µ) can be computed from the derivative:

These properties of exponentials prove useful in formulating SUSTAIN.

Cluster Activation

With nominal stimulus dimensions, the distance µij (from 0 to 1) between the ith
dimension of the stimulus and cluster j’s position along the ith dimension is:

where vi is the number of different nominal values on the ith dimension, I is the in-
put representation (as described in a previous section), and H j

posik is cluster j’s posi-
tion on the ith dimension for value k (the sum of all k for a dimension is 1). The po-
sition of a cluster in a nominal dimension is actually a probability distribution that
can be interpreted as the probability of displaying a value given that an item is a
member of the cluster. For example, a cluster in which 20% of the members are
single, 45% are married, and 35% are divorced will converge to the location [.20
.45 .35] within the marital status dimension. The distance µij will always be be-
tween 0 and 1 (inclusive).

The activation of a cluster is given by:

where H j
act is the activation of the jth cluster, m is the number of stimulus dimen-

sions, λi is the tuning of the receptive field for the ith input dimension, and r is an
attentional parameter (always nonnegative). When r is large, input units with
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tighter tunings (units that seem relevant) dominate the activation function. Dimen-
sions that are highly attended to have larger λs and will have greater importance in
determining the clusters’ activation values. Increasing r simply accentuates this ef-
fect. If r is set to 0, every dimension receives equal attention. Equation 5 sums the
responses of the receptive fields for each input dimension and normalizes the sum
(again, highly attended dimensions weigh heavily). Cluster activation is bound be-
tween 0 (exclusive) and 1 (inclusive). Unknown stimulus dimensions (e.g., the cat-
egory label in a classification trial) are not included in this calculation.

Competition

Clusters compete to respond to input patterns and in turn inhibit one another. When
many clusters are strongly activated, the output of the winning cluster H j

out is less:

For the winning Hj with the greatest Hact,

For all other Hj,

where n is the number of clusters, and β is the lateral inhibition parameter (always
nonnegative) that regulates cluster competition. When β is small, competing clus-
ters strongly inhibit the winner. When β is large, the winner is weakly inhibited.
Clusters other than the winner have their output set to zero. Equation 6 is a straight-
forward method for implementing lateral inhibition. It is a high-level description
of an iterative process where units send signals to each other across inhibitory con-
nections. Psychologically, Equation 6 signifies that competing alternatives will re-
duce confidence in a choice (reflected in a lower output value).

Response

Activation is spread from the clusters to the output units of the queried (the un-
known) stimulus dimension z:
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whereC zk
out is the output of the output unit representing the kth nominal value of the

queried (unknown) zth dimension, n is the number of clusters, and wj,zk is the
weight from cluster j to category unit Czk. A winning cluster (especially one that
did not have many competitors and is similar to the current input pattern) that has a
large positive connection to a output unit will strongly activate the output unit. The
summation in the preceding calculation is not really necessary given that only the
winning cluster has a nonzero output but is included to make the similarities be-
tween SUSTAIN and other models more apparent.

The probability of making response k (the kth nominal value) for the queried di-
mension z is:

where d is a response parameter (always nonnegative), and vz is the number of
nominal units (and hence output units) forming the queried dimension z. When d is
high, accuracy is stressed and the output unit with the largest output is almost al-
ways chosen. The Luce (1959) choice rule is conceptually related to this decision
rule.

Learning

After responding, feedback is provided to SUSTAIN. The target value for the kth
category unit of the queried dimension z is:

Kruschke (1992) referred to this kind of teaching signal as a “humble teacher” and
explained when its use is appropriate. Basically, the model is not penalized for pre-
dicting the correct response more strongly than is necessary.

A new cluster is recruited if the winning cluster predicts an incorrect response.
In the case of a supervised learning situation, a cluster is recruited according to the
following procedure:

For the queried dimension z,
if tzk does not equal 1 for the Czk

with the largest output C zk
out of all Cz*,

then recruit a new cluster.
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In other words, the output unit representing the correct nominal value must be the
most activated of all the output units forming the queried stimulus dimension.

In the case of an unsupervised learning situation, SUSTAIN is self-supervising
and recruits a cluster when the most activated cluster Hj’s activation is below the
threshold τ:

if (H j
act < τ), then recruit a new cluster. (11)

Unsupervised recruitment in SUSTAIN bears a strong resemblance to recruitment
in adaptive resonance theory (Carpenter & Grossberg, 1987), Clapper and Bower’s
(1991) qualitative model, and Hartigan’s (1975) leader algorithm.

When a new cluster is recruited, it is centered on the misclassified input pattern,
and the clusters’ activations and outputs are recalculated. The new cluster then be-
comes the winner because it will be the most highly activated cluster (it is centered
on the current input pattern—all µij will be 0). Again, SUSTAIN begins with a
cluster centered on the first stimulus item.

The position of the winner is adjusted:

For the winning Hj,

where η is the learning rate. The centers of the winner’s receptive fields move to-
ward the input pattern according to the Kohonen (1989) learning rule. This learn-
ing rule centers the cluster amidst its members.

Using our result from Equation 3, receptive field tunings are updated accord-
ing to:

where j is the index of the winning cluster.
Only the winning cluster updates the value of λi. Equation 13 adjusts the

peakedness of the receptive field for each input so that each input dimension can
maximize its influence on the clusters. Initially, λi is set to be broadly tuned with a
value of 1. The value of 1 is chosen because the maximal distance µij is 1 and the
optimal setting of λi for this case is 1 (i.e., Equation 13 equals 0). Under this
scheme, λi cannot become less than 1, but can become more narrowly tuned.

When a cluster is recruited, weights from the unit to the output units are set to 0.
The one layer delta learning rule (Rumelhart, Hinton, & Williams, 1986; Widrow
& Hoff, 1960) is used to adjust these weights:
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where z is the queried dimension. Note that only the winning cluster will have its
weights adjusted because it is the only cluster with a nonzero output.

SUSTAIN Parameters

The parameters used in the simulations reported in this study are shown in Table 1.
The learning rate, cluster competition, decision consistency, and attentional focus
parameters were fixed from the best fitting parameter for previously published stud-
ies. Thus, only threshold and blur were free parameters for the reported studies.
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