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Abstract. Responsive Adaptive Display Anticipates Requests (RADAR) is a 
domain general system that learns to highlight an individual’s preferred infor-
mation displays, given the current context. Previous studies with human sub-
jects in a video game environment demonstrate that RADAR is an effective 
cognitive aid.  RADAR increases situation awareness and reduces cognitive 
load by anticipating and providing task relevant information. Additionally, be-
cause RADAR’s fit to a user’s behavior encapsulates the user’s situation-driven 
information preferences, RADAR also excels as a descriptive and predictive as-
sessment tool.  Here, we focus RADAR as a training aid.  We test the hypothe-
sis that novices can benefit from training under a RADAR model derived from 
an expert’s behavioral patterns.  The results indicate that novices exposed to an 
expert’s information preferences through RADAR rapidly learn to conform to 
the expert’s preferences.  

1 Introduction 

When boarding an airplane, a furtive look into the cockpit reveals a vast array of di-
als, displays, and controls. The expert pilot can make sense of this array of options 
and can appreciate when each instrument is relevant to operating the aircraft. For ex-
ample, expert pilots know which gauges are relevant to different phases of flight. In 
this article, we discuss a context-aware approach to information display named Re-
sponsive Adaptive Display Anticipates Requests (RADAR).  RADAR learns to high-
light the situation-relevant information by observing the user.   

We discuss how RADAR can be used to analyze and describe individual differ-
ences in information needs, as well as present evidence that RADAR can be used to 
allow novices to see the world through the eyes of an expert.  When training under an 
expert’s RADAR model, we find that novices’ information use patterns converge to 
those of the expert from whom the model was derived. 

Related work has attempted to predict user information needs by correctly attribut-
ing intentions, beliefs, and goals to the user.  Plan recognition models tend to sub-
scribe to the Belief-Desires-Intention framework [1]. This line of work relies on 
knowledge-based approaches for user modeling and encoding insights from domain-
specific experts [2].  These approaches can involve identifying a user's subgoals 
through task-analysis [3].  Once a user's beliefs, intentions, and goals are understood, 
a display can be adapted appropriately [2]. 
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Alternatively, instead of focusing on identifying the internal state of the user, some 
approaches rely on input from domain experts. For example, human experts can label 
episodes that can serve as training instances for machine learning models that priori-
tize display elements [4].  Alternatively, input from human experts can be used to 
build expert systems or Bayesian models to prioritize displays [5]. This approach re-
lies on extensive input from human experts, and the ability of those experts to intro-
spect on the reasons for their performance. 

Our approach diverges from the aforementioned work.  Rather than prescribe 
which information source a user should prioritize, RADAR highlights the information 
a user would select if the user searched through all possible options. This approach 
may be preferable in domains where it is unclear what is normative.  Unlike work in 
plan recognition, we sidestep the problem of ascribing and ascertaining the user's in-
ternal mental state.  Instead, RADAR learns to directly predict a user's desired display 
from contextual (i.e., situational) features (see Figure 1). 

 
 

 
Fig. 1. RADAR takes as input the current context (e.g. Recent game history) and outputs its 
preferred display to the HUD.  The user (e.g., the game player) can override RADAR’s choice. 
Such corrections serve as learning signals to RADAR and increase the likelihood that RADAR 
will select the user’s preferred display in similar situations in the future. Over time, RADAR 
approximates the information preferences of a specific user, allowing the user to offload the 
task of selecting the relevant information source (i.e. display) from numerous options.  

Furthermore, RADAR emphasizes the benefits of continuous learning by the dis-
play, as opposed to preprogrammed interfaces [6]. Adopting a learning approach to an 
adaptive display has a number of positive consequences, including the ability to take 
into account individual differences across users [7]. Another positive consequence is 
that minimal input from subject matter experts is required to build a system.  Like 
other context-aware applications that adopt a keyhole approach [8,9], our approach in-
fers a user's preferences without interfering with or directly querying the user [10]. In-
terfaces that highlight recently selected menu items follow a similar logic [11], though 
our approach is more open ended in terms of possible predictors and learnable rela-
tionships from predictors to display preferences. 

Whereas previous work with RADAR [12], which we review below, has evaluated 
RADAR as a cognitive aid and assessment tool, the current experiment evaluates 
RADAR’s promise as a training companion.  The current experiment asks whether 
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RADAR can speed the novice to expert transition by exposing novices to the display 
preferences of an expert (i.e., train under an expert’s RADAR model).  

Our approach has some potential benefits. In some domains, knowledge can be di-
rectly elicited from experts and simple instruction can boost novice performance to 
expert levels [13]. However, in many domains, an expert’s knowledge is not accessi-
ble by self-report [14,15]. In practice, training methods for novices that rely on both 
direct instruction and pattern recognition methods work best [16]. Indeed, having nov-
ices view expert solutions is more effective than even providing corrective feedback 
[17,18].  These findings suggest that there is more to expertise than what an expert 
can report verbally from introspection. This conclusion is not surprising given that 
human learning is subserved by multiple learning systems, only some of which are 
accessible to introspection and verbal report [19]. 

Our training goal is to make novices conform to the information preferences of ex-
perts in order to improve task performance.  In service of this goal, standard verbal in-
structions, coupled with RADAR, provide users with training opportunities that can 
engage both verbal and non-verbal learning systems. A RADAR system trained based 
on an expert’s performance data is a potentially powerful training tool for novices. 
Such a tool might allow a novice to become sensitive to the information preferences 
of an expert while performing the relevant task. Importantly, such a training system 
does not require eliciting explicit knowledge from an expert and can impart expert 
knowledge that is not readily verbalized. We present an experiment that investigates 
how novices trained with an expert RADAR system perform compared to those 
trained under a control model. 

1.1 RADAR’s Operation 

RADAR is designed to operate in task environments in which the user must select 
which display among numerous displays to monitor.  For example, we evaluate 
RADAR in an arcade game environment in which players select which of eight possi-
ble displays to show on a Head-Up Display (HUD). RADAR takes as input the cur-
rent context (e.g., recent game history) encoded as a feature vector and outputs to the 
HUD the display it predicts the user wishes to view (See Figure 1).  The user is free to 
override RADAR's choice.  RADAR learns from the user's acceptance or rejection of 
its display choices and over time converges to selecting the displays the user desires.  
Alternatively, RADAR can observe and learn to mimic a user's display preferences 
offline. 

RADAR employs a two-stage stochastic decision process at every time step.  In the 
first stage, RADAR estimates the probability that a user will update the HUD given 
the current context.  When the sampled probability from the first stage results in a 
display update, RADAR proceeds to the second stage (otherwise the current display 
remains unchanged). In the second stage, RADAR estimates the probability distribu-
tion for the next display choice given the current context, and samples this probability 
distribution to select the next display. 

The motivation for the two-stage approach is both computational and psychologi-
cal.  Separating display prediction into two stages improves RADAR's ability to pre-
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dict display transitions.  The same display currently desired is highly likely to be de-
sired in 250 ms. This constancy would dominate learning if both stages were com-
bined.  The second stage's focus on display transitions allows for improved estimation 
of these relatively rare, but critical, events. 

Psychologically, the first stage corresponds to identifying key events in a continu-
ous (unsegmented) environment, whereas the second stage corresponds to predicting 
event transitions.  To make an analogy to speech perception, people segment the con-
tinuous speech stream into words (akin to RADAR's first stage) in the absence of reli-
able acoustical gaps between words [20].  Akin to RADAR's second stage, people an-
ticipate which word (i.e., event) is likely to follow given the preceding words [21]. 

One view is that event segmentation serves an adaptive function by integrating in-
formation over the recent past to improve predictions about the near future (see [22], 
for a review).  In support of this view, individuals who are better able to segment on-
going activity into events display enhanced memory [23].  People's judgments of 
event boundaries are reliable [24] and tend to show high agreement with others [25].  
For example, two people watching a person make a peanut butter and jelly sandwich 
will tend to agree on the steps involved.  These two people will also both segment off 
surprising or unexpected events, like the sandwich maker dropping the sandwich on 
the floor. 

The probability distributions associated with both stages (event segmentation and 
event prediction) are estimated by simple buffer networks [26].  Buffer networks rep-
resent time spatially as a series of slots, each containing the context (e.g., game situa-
tion) at a recent time slice, encoded as a feature vector.  The buffer allows both ongo-
ing events and events from the recent past to influence display prediction.  Despite 
their simplicity, buffer networks have been shown to account for a surprising number 
of findings in human sequential learning [27].  At each time step, weights from the 
buffer are increased from activated features to the display option shown in the HUD, 
whereas weights to the other display options are decreased.  Over time, this simple er-
ror correction learning process approximates a user's information preferences.  RA-
DAR's weights can be used to assess individual differences and user performance. 
Details of RADAR’s implementation are discussed elsewhere [12]. 

1.2 Previous Work 

Previous experiments with RADAR have shown that it is an effective cognitive aid 
[12].  RADAR model trained from the aggregated data of several domain experts 
have been shown to be better at highlighting important information, than control 
models which only display information using the same base rates as the experts.  Fur-
thermore, when users are assisted in making display choices by an individually tai-
lored RADAR model, their performance is better than when they are solely responsi-
ble for controlling the display. 

RADAR has also demonstrated its usefulness as an assessment tool. By comparing 
model fits between expert and novice players, RADAR revels that there are signifi-
cant differences in the pattern of information usage between the two groups.  Fur-
thermore, a novice player’s success in the game is predicted by how well an expert’s 
RADAR model fits their display choices.  
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As previously discussed, RADAR’s first stage is hypothesized to be akin to scene 
segmentation. The first stage of the model learns to predict when a user  chooses to 
update the display.  The first stage is independent of the second stage which chooses 
the successor display. As discussed above, cognitive load and change in the environ-
ment are greatest at event boundaries (the very times one would want RADAR to up-
date the display).  Results from subjects playing our video game without RADAR 
support the notion that RADAR’s first stage is akin to event segmentation.  For an ex-
ample expert subject, Figure 2 shows the mean number of feature changes in the envi-
ronment over a ten second window before and after display channel changes.  Figure 
2 suggest that change is greatest at display updates, as they are at event boundaries.  
This consequence of people’s interactions with the environment may explain why 
RADAR is effective as a cognitive aid.  Interestingly, there is a lag between the 
change in features and the actual time of the channel change.  We believe this lag 
arises because people are slow to respond to the changing event due to concurrent 
demands in the video game task. 

While experts show individual differences in which channels they choose to view 
at any given moment, they have a remarkable level of agreement on when they should 
change display channels.  This is reflected by assessing the fit of models created un-
der one individual to the actual data provided by another individual. We see that the 
first stage of a given expert fits all experts almost as well as it fits the individual that 
created the model.  In contrast, the second stage shows a marked decrease in fit to 
other experts compared to the individual's own data.  Individual differences arise in 
information preferences (stage 2), but not in event segmentation (stage 1). 

 

 
Fig. 2. Feature change (a proxy for change in the environment) is plotted in z-scores. 
Time on the horizontal axis (in seconds) is relative to display updates (negative is 
prior to update, positive is post update). The plot indicates that feature change is 
greatest prior to a display change. These results support the notion that display up-
dates are akin to event boundaries. 
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2 Training Novices with Expert Displays 

We explore the possibility that novices can learn to sample the environment like ex-
perts following training under an expert’s RADAR model. An expert’s RADAR 
model captures the expert’s situational information preferences.  Thus, a novice train-
ing under an expert’s model can potentially benefit from the expert’s perspective.  Po-
tential advantages of this approach include exposing novices to expert knowledge that 
is not readily verbalizable and providing expert insight in the context of performing 
the relevant task. To test this hypothesis, we had novices play in the tank environment 
with display choices determined by either an expert or control RADAR model.  Sub-
jects alternated between having displays provided to them (either by an expert or con-
trol model) and choosing displays manually.  We compare manual information selec-
tions for these two groups of novice subjects. 

2.1 Methods 

RADAR Training Models  
Subjects trained under various RADAR models.  These models were built from fitting 
three subjects from a previous study.  In the previous study, subjects played for 11 
hours, controlling the display manually for the entire period.  We created an expert 
model for each of three subjects based on the last three hours of play. Rather than use 
all the features available in the game, we determined the features that subjects actu-
ally entertained.  This was done by evaluating subsets of all possible features using 
cross validation [28]. In cross validation, including features that are not psychologi-
cally real decreases performance on the data held out to test for generalization. These 
fits provided our three expert models.  We then created a set of control models.  The 
control models were specified to choose the channel that its corresponding expert 
model is least likely to choose.  The control models also change the channel when the 
expert model is least likely to change, but importantly maintains the same rate of 
changes over time. The first stage of the control models were also decoupled from the 
environment, so that channel changes would not be indicative of the underlying event 
structure.  

Design and Procedure  
Thirty students were recruited from the University of Texas at Austin and were paid 
and given class credit for participation. The subjects played in the tank environment 
for three 1.5 hour sessions over a one-week period.  Subjects were randomly assigned 
to either the expert or control condition.  Subjects in the expert condition were ran-
domly assigned to train under one of the three expert models, whereas subjects in the 
control condition were randomly assigned to one of the three control models. Partici-
pants in both conditions alternated between five-minute blocks of manually control-
ling the display and having their RADAR control the display.  Which RADAR model 
controlled the display is the only difference in procedure across subjects.  
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2.2 Results 

Fit of Subjects’ Manual Play Data by their RADAR Model used in Training 
One question is whether subjects conform to the RADAR model that they trained un-
der.  Here, we assess the probability that a subject’s RADAR model correctly predicts 
the subject’s display choices under manual play. Expert condition subjects’ display 
choices were more accurately predicted (.25 vs. .13) by their RADAR model than 
were control subjects, F(1,18) = 36.10, p < .001.  There was also a main effect of ses-
sion (i.e., improvement over time), F(1,18)=4.61, p<.05.  Importantly, there was an 
interaction of these two factors, such that expert condition subjects came to conform 
more to their model over session, F(1,18) = 8.70, p < .01. The left panel of Figure 3 
shows that the interaction is driven by gains made by subjects in the expert condition. 

Evaluating Novices’ Progression Toward Expert-Like Performance 
The previous analysis demonstrates that subjects come to conform to their display 
model, particularly subjects in the expert condition.  One key question is the degree to 
which people come to behave like experts.  To answer this question, we used all three 
expert models to predict each subject’s display choices and averaged the fit of the 
three models to get a measure of expert-like behavior. There is a main effect of con-
vergence over session, F(1,18) = 13.20, p < .01, although there is no main effect for 
training condition.  Importantly, there is an interaction such that subjects in the expert 
condition become more expert-like over sessions than do subjects in the control con-
dition, F(1,18) = 4.96, p < .05.  In fact, subjects in the control condition show no sig-
nificant difference in expert fit (.24 vs. .25) between the first and last session, t < 1, 
whereas subjects in the expert condition improve (.23 vs. .27) significantly, 
t(15)=3.20, p < .01.  These results suggest that subjects in the expert condition be-
come more expert-like in their information selections, whereas subjects in the control 
condition did not.  Mere experience on task does not appear to guarantee the emer-
gence of expert-like behavior in terms of display choice. 
 
Display Updating as a Function of Training-Mode 
The previous analysis focused on display choice, RADAR’s second stage.  One ques-
tion is whether differences between expert and novice condition subjects exist in dis-
play update (i.e., when to change the display), RADAR’s first stage.  Analyses indi-
cate a main effect for converging to the average expert fit over session, F(1,18) = 
13.01, p < .01, but no effects of training condition were observed. The change pat-
terns of subjects in both the expert and control conditions were fit equally well by the 
expert models (see the right panel of Figure 3). This result is highly suggestive that 
event segmentation, in contrast to display choice, is something that is learned by ex-
perience on task and is not facilitated by training under an expert model. The lack of 
an interaction between session and training condition also agrees with previous work 
that finds that different expert models’ fist stages have higher inter-agreement than do 
their the second stages. 
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Fig. 3. The left panel shows that subjects’ RADAR models better predict their display choices 
in the expert condition and this advantage grows with training.  The right panel shows that ex-
pert and control condition subjects make display updates in roughly the same fashion. The av-
erage fit of the three expert models yields similar results for both conditions with regards to d-
isplay update.  

3 Discussion 

Advances in information technology make large quantities of information available 
to human decision makers. In this deluge of information, finding and selecting the 
relevant piece of information imposes a burden on the user. This burden is particu-
larly onerous for novices within complex, dynamic environments. RADAR is a do-
main-general system that learns to approximate the information search processes of an 
individual user.  

RADAR contains two stages.  The first stage is akin to event segmentation and de-
termines when to update the display.  The second stage determines, given a display 
update, which display to select. Previous work demonstrates that RADAR improves 
user performance [12]. Here, we report results that indicate that subjects who train 
under an expert’s RADAR model learn to choose displays consistent with the second 
stage of expert RADAR models. 

The same result did not hold for display update, embodied in RADAR’s first stage.  
In the case of display update, subjects trained under expert and control RADAR mod-
els both converged to expert-like updates over time. This result supports previous re-
search [12, 24, 25] demonstrating reliability and agreement among people perceptions 
of event boundaries.  Mere task experience appears sufficient to identify basic events 
in a novel domain, although the same is not true of determining proper display choice. 

The above results should not be taken to indicate that subjects are slaves to the 
model they trained under and the task environment.  While subjects did converge to 
the display model they were trained under, subjects in the expert condition appeared 
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to generalize their knowledge broadly.  These subjects showed increased convergence 
over time to the second stage of all three expert models.  In other words, exposure to 
one expert’s view of the world encouraged more general expert-like behavior, rather 
than behavior that was only closely coupled to the particular training model.  Control 
subjects did not show this systematic improvement in fit to all expert models. While 
control subjects might display idiosyncratic behaviors that agree with one expert 
model, they did not learn behaviors that were consistent across experts. 

Overall, our results suggest that related training methods should prove successful 
in expediting the transition from novice to expert-levels of performance. Using an ex-
pert’s RADAR model to train novices sidesteps several thorny issues. RADAR’s fit of 
an expert quantifies the expert’s action patterns (avoiding the limitations and effort 
involved in self-report) and provides a means to communicate this expertise to a nov-
ice in a task-situated manner. 

There is a lot more research to be done before such training methods can be per-
fected. Although not reported above, expert RADAR models differed greatly in how 
well they fit each subject. One expert model fit particularly well, achieving the best fit 
for 18 of the 30 subjects.  Interestingly, the model of the highest performing expert fit 
the subjects in our study the worst, with only 5 subject being well fit by it.  One im-
portant challenge is determining which expert model is most beneficial for each nov-
ice at each stage in training.  One possibility is that novices will vary in terms of 
which expert model is best. Hopefully, RADAR’s formal approach will allow for best 
practices to be determined. 
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