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Abstract

The ability to make informative comparisons is central to human cognition. Comparison involves
aligning two representations and placing their elements into correspondence. Detecting correspondences
is a necessary component of analogical inference, recognition, categorization, schema formation, and
similarity judgment. Connectionist Analogy Builder (CAB) determines correspondences through a sim-
ple iterative computation that matches elements in one representation with elements playing compatible
roles in the other representation while simultaneously enforcing structural constraints. CAB shows
promise as a process model of comparison as its performance can be related to human performance
(e.g., solution trajectory, error patterns, time-on-task). Furthermore, CAB’s bounded working memory
allows it to account for the inherent capacity limitations of human processing. CAB’s strengths are its
parsimony, transparency of operations, and ability to generate performance predictions. In this paper,
CAB is evaluated against benchmark phenomena from the analogy literature.
© 2003 Cognitive Science Society, Inc. All rights reserved.
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1. Introduction

The ability to make informative comparisons is central to human cognition(James, 1985).
This competence supports tasks ranging from simple perceptual judgments to complex rea-
soning. This paper presents a model of how humans detect correspondences when making
comparisons. The model is intended to be applicable to a broad spectrum of comparisons,
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though we focus on analogical comparisons here as these comparisons are the most demand-
ing in terms of representation and processing.

The proposed model, Connectionist Analogy Builder (CAB), determines which elements
of two representations play compatible roles and places them into correspondence. CAB is a
connectionist system that respects the compositionality of structured representations. Like other
connectionist systems (e.g.,Rumelhart, Hinton, & Williams, 1986), CAB uses a learning rule
to continuously update weights among homogenous nodes. CAB displays desirable properties
stereotypically associated with both connectionist and symbolic approaches. This synergy
is achieved by pairing a constraint satisfaction approach to comparison with directed graph
representations that capture variable bindings.

CAB places compatible elements across representations into correspondence using a simple
iterative computation that reflects the inherent capacity limitations of the human brain. CAB
makes a wealth of processing predictions (e.g., solution trajectory, error patterns, time-on-task,
and the effect of working memory capacity), yet is parsimonious (i.e., CAB consists of a small
set of equations and parameters, and makes minimal representational assumptions) and its
operation is highly interpretable.

The remainder of this paper is organized as follows. First, we discuss some characteristics
of human comparison. We then consider CAB’s general account of comparison and follow
this with a detailed description of CAB’s operation. Then, we describe a set of simulations
that demonstrate that CAB is consistent withMarkman and Gentner’s (2000)benchmark phe-
nomena of human analogy. We conclude by comparing CAB to existing models of analogical
comparison and by considering how CAB will be further developed.

2. Taxonomy of comparisons

Comparisons vary in their degree of complexity. Simple perceptual comparisons probably
constitute the most basic of comparisons. For such comparisons, correspondences between
stimulus dimensions are largely predetermined. For example, when comparing simple stimuli,
size is compared to size. The size of one stimulus is not put into correspondence with the
color of another stimulus. The basis for aligning two representations is predetermined by the
dimensional structure of the stimuli. In such cases, stimuli can be represented and compared
within metric frameworks like multidimensional scaling (MDS;Shepard, 1962). MDS repre-
sentations have proven useful in modeling a number of tasks that rely on comparing stimuli,
such as category learning(Nosofsky, 1986). Multidimensional representations, in which each
stimulus is a point in a metric space, have even been applied to modeling analogy. For example,
Rumelhart and Abrahamson’s (1973)model completes analogies of the form “A is toB asC is
to blank” by calculating the vector difference betweenA andB and adding it toC to compute
whatblankshould be.

One problem for MDS techniques is that there is more than one way for two objects to
differ (Markman & Gentner, 1993a). Alignable differences are differences that are related to
commonalities (e.g., common dimensions). For example, a car and a motorcycle both have
wheels but differ in the number of wheels. Non-alignable differences are differences in which
a dimension is present for one representation but not the other. For example, the dimension of
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“restraining device” with value “seat belt” is present for the representation of a car while no
corresponding dimension exists in a motorcycle’s representation. Alignable differences and
non-alignable differences are psychologically distinct. Objects with alignable differences tend
to be remembered better, are rated as being more similar, and show advantages in feature listing
tasks(Markman & Gentner, 1996, 1997). These results are difficult for MDS models to address.
How would an MDS model explain why objects with many alignable differences tend to be
similar when such differences should increase the distance between the two representations and
therefore reduce similarity? Although feature set approaches (e.g.,Tversky, 1977) were devel-
oped to address the shortcomings of metric models, these critiques also apply to such models.

These observations suggest that representations do not reside in a common space. Instead,
common stimulus dimensions are aligned during processing. However, in some tasks even the
proper dimensional correspondences are unclear. Such difficulties are not restricted to abstract
representations. In perceptual domains, people often put into correspondence dimensions from
different modalities, like pitch and brightness(Marks, 1989). Such non-trivial correspondences
are common in analogies involving relations. For example, the solar system and the atom
can be seen as similar because the Sun can be put into correspondence with the nucleus
because electrons revolve around the nucleus as the planets revolve around the Sun. The relation
“revolves” assists in establishing these mappings, which allow for other correspondences to be
drawn such as attraction due to difference in charge corresponding to attraction due to difference
in mass(Gentner, 1983). Systematic mappings between relational systems can lead to objects
being placed into correspondence that are actually quite dissimilar(Gentner & Toupin, 1986;
Markman & Gentner, 1993b).

In the remainder of this paper, we discuss CAB. CAB is an account of how people put
representational elements into correspondence. Putting elements into correspondence is a nec-
essary component of analogical inference, recognition, categorization, schema formation, and
similarity judgment.

3. Description of CAB

CAB’s output is a set of correspondences between two representations or analogs. Before
discussing how CAB arrives at this output, we will discuss CAB’s input. Then, CAB’s operation
will be qualitatively discussed, followed by CAB’s formal description.

3.1. Knowledge representation in CAB

As in previous accounts of comparison (e.g.,Tversky, 1977), we assume that other processes
have compiled CAB’s input. While the construction of analogs is outside CAB’s scope, we have
developed an approach to representation that conforms to what is currently known, is as simple
as possible, makes minimal assumptions, and follows the logic of frame systems(Minsky,
1981). Analogs are represented as directed graphs that can be translated from and to predicate
calculus.Fig. 1 depicts an analog in which Jim (a man) loves Betty (a woman). In predicate
calculus we can represent this situation asloves(Jim, Betty), gender(Jim, male), gender(Betty,
female). Translating between predicate calculus and the graph structure that CAB operates
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Fig. 1. The analog “Jim loves Betty” can be represented in predicate calculus asloves(Jim, Betty), gender(Jim,
male), gender(Betty, female) or by the directed graph shown in the figure.

over is accomplished by first taking the predicates (in this caseloves, gender, andgender) and
replacing each with one node that denotes the predicate’s name. Then, additional nodes are
created for each argument of a predicate, and links point from these argument nodes towards the
associated predicate node. In the case oflovesandgender, each predicate has two arguments
(seeFig. 1). Finally, each entity and value is instantiated as a node in the graph, and links
point from these nodes to the arguments they bind to. In the present case, the nodesJim, Betty,
male, andfemaleare created. Even thoughJimappears in two predicates, only oneJimnode is
created because it is the same Jim that is a lover and a male. In contrast, there are twogender
nodes because onegendernode describes Jim’s gender while the othergendernode describes
Betty’s gender. Although it does not occur in this example, predicates can bind to arguments in
other predicates. For example, in the analog “John knows that Jim loves Betty,” the predicate
lovesbinds to the argumentknownin theknowspredicate.

Our approach to representation captures the distinction between alignable and non-alignable
differences. An alignable difference arises from mismatched values on a common dimension,
whereas a non-alignable difference arises from a dimension that is present for only one analog.
For example, male versus female is an alignable difference arising from the shared predicate
of gender (e.g.,gender(Jim, male) and gender(Betty, female)). A non-alignable difference
between two analogs occurs when one analog lacks a predicate that the other analog has (e.g.,
a glass of water does not have a gender). Another virtue of this representational approach
is that it allows for knowledge to be represented unambiguously. For example, the graph in
Fig. 1distinguishes between the analogs “Jim loves Betty” and “Betty loves Jim.” To represent
“Betty loves Jim,”Jimwould point to thelovednode andBettywould point to thelovernode.
The ability to explicitly encode relations allows for unambiguous representations, which are
necessary for analogical comparison.

The directionality of the links is critical to representing knowledge as it distinguishes
between arguments and predicates. This directional information will also prove critical in
establishing analogical mappings between two analogs (as will be discussed shortly). The di-
rectionality of the links specifies paths between nodes within an analog. For example, the chain
(or path) from the nodemaleto the nodeJim is (+, +, −, −), where+ and− denote whether a
“hop” in the traversal frommaleto Jim is with or against the direction of the arrow. The length
of this chain is four. The directed graph representation of each analog (e.g.,Fig. 1), along with
all acyclic chains between node pairs within an analog, compose CAB’s input.
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3.2. Processing in CAB

CAB iteratively constructs correspondences between nodes that play compatible roles within
the two analogs (referred to asA andB). The role of a node is determined relative to the other
nodes within its analog through consideration of chaining information (discussed above). This
information, along with the mapping weights from the current iteration, is used to determine
which nodes fromA andB play compatible roles. Like other models of analogy such as SME
(Falkenhainer, Forbus, & Gentner, 1989), CAB strongly prefers mappings that are one-to-one
(i.e., one node in analogA corresponds to one node in analogB).

Early in processing, CAB is sensitive to any commonalities between the two analogs (i.e.,
nodes that have identical names). This semantic influence on mapping is captured by estab-
lishing mapping weights of sizeκ (a model parameter) between identical nodes at the start of
the mapping process. For example, if both analogsA andB have alovesnode, then an initial
mapping weight would link these nodes. If each analog had twolovesnodes, then four initial
mapping weights would inter-link the four nodes. From this starting point, CAB iterates and
learns and unlearns mapping weights.

Mapping weights tend to increase for interconnected node pairs participating in parallel
structures. Such corresponding nodes play similar roles in their analog’s representation. For
example, inFig. 2 the mapping weight betweena2 andb2 votes for increasing the mapping
weight betweena3 andb3 becausea2 bears the same relationship toa3 (i.e., (+)) asb2 does
to b3 (i.e., (+)). In this case, the “child” maps to the “child” because the “parent” maps to the
“parent.” In contrast, the mapping betweena4 andb5 does not vote for increasing the weight
betweena3 andb3 because the relationship ofa4 toa3 (i.e.,(−)) is different than the relationship
of b5 to b3 (i.e., (−, −)). CAB also considers all other relationships (continuing the family
analogy) including brother/sister, grandchild/grandparent, nephew/aunt, second cousins, etc.
Evidence for increasing a mapping weight depends on the distance of such relationships. For
example, the mapping weight betweena1 andb1 also votes for increasing the weight between
a3 andb3, but not as strongly as the more immediate pairing ofa2 andb2.

The ability to appreciate distant relationships allows CAB to display a preference for map-
pings that exhibit systematicity(Gentner, 1983, 1989), i.e., mappings that preserve deep
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Fig. 2. Nodesa1 througha4 belong to analogA, and nodesb1 throughb5 belong to analogB. There are mapping
weights of sizes .2, .2, and .3 between nodesa1 andb1, a2 andb2, anda4 andb5, respectively. The correspondences
betweena1 andb1 anda2 andb2 vote for increasing the mapping weight betweena3 andb3, but the correspondence
betweena4 andb5 does not.
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systems of relations. However, as discussed above, relationships that are more immediate
(i.e., that involve short chains) are more heavily weighted. The extent to which distant rela-
tionships are considered is governed by a model parameter. One way to view this parameter
is as specifying working memory capacity because it governs how much information is con-
sidered simultaneously when establishing mapping weights (seeHummel & Holyoak, 1997,
for a similar view of working memory and its effects on mapping). Considering immediate
relationships establishes parallel connectivity (seeGentner, 1983, 1989).

In addition to this weight growth process, weights can also shrink through competition with
other mapping weights. Each iteration, evidence for the growth process is filtered through a
one-to-one constraint. In addition to this evidence constraint, mapping weights compete with
one another in order to establish one-to-one mappings, with the smaller weights bearing the
brunt of the competition. A final mapping is established when mapping weights stabilize to
either 0 or 1. These final mapping weights constitute CAB’s output. Because the mapping
process is incremental, partial results can be inspected at any stage in processing.

3.3. CAB’s formalism

This section describes the equations that follow from the qualitative description of CAB
provided in the previous sections. The input to CAB is the directed graph representation
of each analog along with all acyclic chains between node pairs within each analog, which
specify the relative roles of each node. The nodes forming the two analogs are denoted as
A = {a1, a2, . . . , aM} and B = {b1, b2, . . . , bN}. C(ai, ak) denotes the set of all acyclic
chains of bindings fromai to ak andC(bj, bl) denotes the set of all acyclic chains of bindings
from bj to bl. Initially, all mapping weights from nodes inA to nodes inB are set to 0, except
for nodes that are identical, which are set to an initial value determined by the parameterκ.

Analogy involves placing into correspondence elements that play similar roles. Because the
role of a node is determined relative to other nodes within its analog, CAB first computes the
compatibility or pertinence of each node pair in analogA to each node pair in analogB. The
pertinence of nodesai andak in analogA to nodesbj andbl in analogB is given by

f(ai, bj; ak, bl) =
∑

cm∈C(ai,ak)

∑
cn∈C(bj,bl)

s(cm, cn) e−γ(L(cm)−1), (1)

where the functions : C(ai, ak)×C(bj, bl) → {0, 1} is defined such that for allcm ∈ C(ai, ak)

andcn ∈ C(bj, bl), s(cm, cn) is 1 if the directions of the bindings incm match the directions of
the bindings incn, and 0 otherwise. In other words, node pairs are pertinent to each other when
they have identical chains (e.g.,(+, −, +) and(+, −, +)). When node pairs define several
chains, each pair of identical chains contributes to the pertinence of the node pairs.L(cm)

is the length of the chaincm andγ is a parameter related to working memory capacity. As
γ increases, only node pairs with relatively short connecting chains are considered pertinent
to each other. The exponential function dictates that proximal relations weigh more heavily
than distant relations. This exponential term bears a strong resemblance to work in stimulus
generalization(Shepard, 1987).

The following three equations iterate until mapping weights stabilize to either the minimal
value of 0 or the maximal value of 1. Raw evidence for correspondence betweenai andbj is
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collected according to

R(ai, bj) =
∑
ak∈A

∑
bl∈B

f(ai, bj; ak, bl)m(ak, bl), (2)

wherem(ak, bl) is the mapping weight from nodeak to nodebl. That is, raw evidence is
collected using all pertinent node pairs weighted by the current mapping weights.

The following equation applies a strong version of the one-to-one constraint to the raw
evidence:

E(ai, bj) =



R(ai, bj), if R(ai, bj) = max({R(ai, bl) : bl ∈ B}
∪{R(ak, bj) : ak ∈ A})

0, otherwise. (3)

In other words, the raw evidence for mappingm(ai, bj) is filtered (set to 0) unless it is dominant
from bothai’s andbj ’s perspectives.

Finally, correspondences between the analogs evolve according to

�m(ai, bj) = αE(ai, bj) − β max({m(ai, bl) : bl ∈ B, bl �= bj}
∪ {m(ak, bj) : ak ∈ A, ak �= ai}), (4)

whereα is the growth rate andβ is a parameter governing the severity of weight competition
arising from the one-to-one constraint. All mapping weights are simultaneously updated and
then truncated to be between 0 and 1. CAB repeatedly cycles throughEqs. (2)–(4)until all
mapping weights stabilize to either 0 or 1.

The computational complexity of CAB depends on the structure of the analogs as well
as their size. If each node binds to every other node within an analog, then the number
of chains increases factorially with the number of nodes; however, such analogs are not
psychologically tenable. In practice, analogs are sparsely connected and the actual num-
ber of chains is usually quadratic in the number of nodes in the analog. Interestingly, the
chains do not need to be encoded during the comparison process since they involve only
node pairs within an analog, rather than across analogs. Thus one could view the encoding
process as part of knowledge acquisition occurring on a longer timescale than comparison
processes.

Calculatingf for all pairs of node pairs isO(M2N2), assuming the number of chains
between a node pair isO(1).1 Each iteration, calculatingR for all mapping weights isO(M2N2),
although this can be substantially reduced by taking advantage of the sparsity off . Filtering the
raw evidence and updating the mapping weights (seeEqs. (3) and (4)) is O(MNmax(M, N)).

4. Simulations

The simulations described here showcase CAB’s behavior and promise as a process model
of human comparison. The simulations also verify that CAB can account forMarkman and
Gentner’s (2000)benchmark phenomena of human analogy.2 The following parameter values
were chosen for all simulations:α = .001,β = .001,γ = .1, andκ = .1.
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Table 1
Matching by feature similarity

AnalogA AnalogB

gender(Jim, male) gender(Bill, male)
gender(Betty, female) gender(Cindy, female)

The analogs for the first simulation are shown inTable 1. In this simulation, CAB places
the two males and two females into correspondence, along with their associated gender infor-
mation. This simulation demonstrates that CAB can process simple comparisons that do not
involve relations between entities.

The first simulation demonstrated that CAB is sensitive to features shared by entities. The
second simulation demonstrates that CAB is sensitive to relational roles and that this relational
information can override feature similarities. In this simulation, the relationlovesgoverns the
mapping between the analogs “Jim loves Betty” and “Cindy loves Bill.”Table 2shows the
predicate calculus representation of both analogs, whileFig. 1 shows the equivalent directed
graph representation for analogA. In contrast to the first simulation, the correspondences
reverse andJim maps toCindy andBettymaps toBill . The respective gender related nodes
also map consistently (e.g., Jim’sgendernode maps to Cindy’sgendernode). This simulation
highlightsMarkman and Gentner’s (2000)benchmarks of relational similarity and structural
consistency.

Interestingly, when theγ parameter is raised, a more circuitous solution trajectory is ob-
served. Theγ parameter can be viewed as a proxy for working memory as it governs how
many pieces of information are simultaneously considered (i.e., the degree to which distant
relations are considered). Whenγ is raised, the influence of distant relations is reduced and
CAB iterates through an inconsistent state in which the entity correspondences respect the
relational structure, but the gender related nodes map according to superficial similarity (e.g.,
analogA’s femalenode maps to analogB’s femalenode, as do the respectivegendernodes).
After some time, CAB arrives at a consistent, relationally driven solution. The above result
suggests that limiting working memory resources should increase the likelihood of inconsistent
solutions and lead to longer response times.

The previous simulation involved bringing into correspondence entities that were somewhat
dissimilar to one another. In cross-mappings, objects that are similar play different roles in
matching relational structure(Gentner & Toupin, 1986; Markman & Gentner, 1993a). For
example,Markman and Gentner (1993a)asked subjects to form correspondences between two

Table 2
A simple relationally driven comparison

AnalogA AnalogB

gender(Jim, male) gender(Bill, male)
gender(Betty, female) gender(Cindy, female)
loves(Jim, Betty) loves(Cindy, Bill)
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pictures, one which depicted a car towing a boat and another which depicted a truck towing
a car. People generally prefer the relationally consistent interpretation (e.g., the car in the
first analog matching the truck in the second analog), but can also appreciate the alternative
mapping that places the two cars into correspondence(Markman & Gentner, 1993b). Markman
and Gentner (2000)suggest this ability to entertain multiple interpretations is a benchmark of
analogy.

CAB generates either the relation driven or the object similarity driven mapping bet-
ween these analogs depending on differences in knowledge representation. When the fea-
tures of the objects are stressed, CAB generates the object similarity driven mapping, but
when the object encodings are not rich, CAB maps objects based on relational roles.
The bifurcation point for the chosen parameter values is three or more common feature
dimensions for each type of object (car, boat, and truck) with each object displaying a
unique value on each dimension (e.g.,color(car, red), color(truck, green), andcolor(boat,
blue)). This interpretation of cross-mapping is consistent withStilwell and Markman’s
(2001)recent work on packing and unpacking of mental representations—when objects are
construed as symbols (i.e., features are not stressed), relation driven mappings abound.
CAB also respects the distinction between alignable and non-alignable differences. In the
above simulation, three or more alignable differences between objects resulted in object
correspondences based on object similarity, while a follow-up simulation revealed that just
one non-alignable difference per object (e.g.,bilge-pump(boat, electric), hoist(truck,
pneumatic), andchild-restraint(car, backseat)) yielded the same object similarity interpre-
tation. This result is consistent with the idea that alignable differences are rooted in
commonalities.

One challenge for any model of higher-order cognitive processing is scaling to the pinna-
cles of human performance. The following simulation, borrowed fromFalkenhainer et al.
(1989), is a complex analogy between the solar system and the Rutherford model of the
atom. The analogs (detailed inTable 3) require 42 and 33 nodes to represent the solar sys-
tem and atom, respectively. CAB correctly maps the Sun to the nucleus and the planets to
the electrons. CAB uses higher-order relations to disambiguate the possible correspondences.
For example, CAB appreciates that differences in mass (which attract the planets towards
the Sun) are analogous to differences in charge (which attract the electrons towards the nu-
cleus), whereas differences in temperature between the Sun and the planets is irrelevant to
the analogy. This example displaysMarkman and Gentner’s (2000)benchmark of system-
aticity. Mappings that preserve large systems of interconnected relations are preferred over
mappings that put small, disjointed systems of relations into correspondence. CAB’s ability to
appreciate distant relations (whenγ is not too restrictive) leads to its preference for systematic
mappings.

One long-term goal for CAB is to enable progress in understanding how comparisons are
processed on-line. In the final set of simulations, we evaluate the possibility of using CAB
to make response-time predictions. CAB is applied to three versions ofFalkenhainer et al.’s
(1989)analogy between water flow and heat flow. The water flow analog involves a scene
in which water flows from a large beaker filled with water through a pipe into a smaller vial
because of a pressure difference. The heat flow analog involves a melting ice cube attached to
a silver bar resting in a cup of hot coffee. The heat flows from the coffee through the bar to the
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Table 3
A complex analogy between the solar system and the Rutherford model of the atom

Solar system
mass(Sun, mass-of-Sun)
mass(planet, mass-of-planet)
causes(and(greater(mass-of-Sun, mass-of-planet), attracts(Sun, planet)), revolve(planet, Sun))
causes(gravity(mass-of-Sun, mass-of-planet), attracts(Sun, planet))
temperature(Sun, temperature-of-Sun)
temperature(planet, temperature-of-planet)
greater(temperature-of-Sun, temperature-of-planet)

Rutherford model of the atom
charge(nucleus, charge-of-nucleus)
charge(electron, charge-of-electron)
causes(opposite-sign(charge-of-nucleus, charge-of-electron), attracts(nucleus, electron))
revolve(electron, nucleus)
mass(nucleus, mass-of-nucleus)
mass(electron, mass-of-electron)
greater(mass-of-nucleus, mass-of-electron)

ice cube because of the temperature difference.Table 4shows the exact representation of the
analogs for the baseline version.

Two other versions of these analogs were created. In one version, distracting informa-
tion is added (i.e.,form(water, liquid) and form(coffee, liquid)) that incorrectly suggests
that water should map tocoffee. One sensible prediction is that this analogy should take
longer to interpret. Indeed, CAB requires more computation to correctly solve this analogy.
The third version of the analogs involves removing the causal relations from the baseline
analogs. Causal information can be helpful in integrating information about new domains
(Murphy & Allopenna, 1994), and in this case the causal relations yield more systematic
mappings. In the absence of causal relations, CAB again requires more computation than in
the baseline case to correctly form correspondences between the two domains. In the case
of adding distracting information, more information slows convergence, while in the case of
adding causal information that highlights the common structures, more information speeds
convergence.

Table 4
Water/heat flow baseline analogs

Water flow
pressure(beaker, pressure-of-beaker)
pressure(vial, pressure-of-vial)
cause(greater(pressure-of-beaker, pressure-of-vial), flow(beaker, vial, water, pipe))

Heat flow
temperature(coffee, temperature-of-coffee)
temperature(ice-cube, temperature-of-ice-cube)
cause(greater(temperature-of-coffee, temperature-of-ice-cube), flow(coffee, ice-cube, heat, bar))
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5. Model comparisons

In this section, we compare CAB to existing models of comparison. Space requirements
prohibit consideration of all extant models. In its current state, CAB is solely a model of
detecting correspondences. Many of the models discussed below are more mature than CAB,
have been applied to other tasks, and have incorporated other task constraints. These differences
will not be discussed, but it should be noted that CAB’s design does not prohibit it from being
extended in these directions.

Like CAB, Hummel and Holyoak’s (1997)LISA model of analogy is connectionist and
stresses the importance of working memory capacity limitations. LISA utilizes the synchronous
firing of nodes to encode node bindings and only forms mapping weights for propositions cur-
rently active in working memory. In terms of Marr’s (1982) levels of analysis, LISA straddles
the algorithmic and implementational levels, whereas CAB is squarely positioned at the algo-
rithmic level. In CAB’s favor, CAB is much more parsimonious and transpicuous than LISA.
LISA has an elaborate control structure, complex dynamics, numerous parameters, types of
nodes, and special conditions. LISA’s description includes 21 equations and 22 free parameters.
In contrast, CAB is specified by four equations, has four parameters, and utilizes a common
node type. Furthermore,Hummel and Holyoak (1997)state that it is unclear whether LISA can
scale to processing analogies involving large representations such asGentner, Ratterman, and
Forbus’s (1993)“Karla the hawk” analogy.3 Though not discussed inSection 4, CAB can suc-
cessfully simulate the “Karla the hawk” analogy using the analog descriptions inFalkenhainer
et al. (1989).

The original version of SME(Falkenhainer et al., 1989)constructs the set of all possible
structurally consistent correspondences and chooses the solution that displays the greatest
degree of systematicity based on an evaluation function. More recent versions of SME(Forbus
& Oblinger, 1990)approximate this goal in a less computationally costly fashion. In terms of
Marr’s levels, SME is somewhat more abstract than CAB and straddles the computational and
algorithmic levels. Unlike CAB, SME does not form tentative mappings at every time step but
instead merges all results in the final phase of computation. SME does not include capacity
constraints and may not be applicable to predicting response time or dual-task data. While
SME and CAB are motivated by similar ideas about the output of human comparison (e.g.,
Gentner, 1983, 1989), we hope that CAB can distinguish itself by accounting for processing
data and motivating future experiments investigating processing.

Like CAB, Holyoak and Thagard’s (1989)ACME uses a parallel constraint satisfaction
method to iteratively construct a mapping between analogs. Although CAB and ACME posit
similar mapping processes, the models differ in how they incorporate structural constraints.
ACME treats structural constraints, such as one-to-one mapping, as soft constraints that may be
violated. While ACME can form many-to-one mappings, humans (and CAB) do not(Markman,
1997). CAB and ACME also differ at the semantic level. ACME uses a supplied similarity table
to determine initial node compatibilities, whereas CAB uses strict identicality. With respect
to structural constraints and semantics, CAB has more in common with SME than ACME.
Unlike CAB, ACME has no mechanism for limiting working memory capacity.

Keane and Brayshaw’s (1988)IAM is intended to address the incremental nature of compari-
son. It holds that people hypothesize matches and attempt to build a consistent set of mappings
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from these initial starting points. CAB also incrementally develops a set of mappings, but
not in the same fashion as IAM. CAB operates over the entire structure instead of selecting
substructures. It would be trivial to modify CAB to operate like IAM by seeding CAB with
initial match hypotheses corresponding to IAM’s starting points. Nonetheless, data suggests
that the mapping process is driven by semantic commonalities early in processing and reflects
structural constraints in time(Goldstone, 1994). IAM may also be too powerful in its ability to
map unnatural analogies that do not involve semantic commonalities and that require psycho-
logically unrealistic working memory capacity (cf.,Hummel & Holyoak, 1997). Keane (1997)
has used IAM to investigate the effects of order and causal structure on analogical mapping.
IAM, like CAB, predicts that causal structure will facilitate performance.

CAB bears a resemblance toGoldstone’s (1994)SIAM model in that both CAB and SIAM
iterate towards a final mapping solution and that initial processing is guided by superficial
similarities. However, SIAM was intended as a performance model of simple perceptual com-
parisons and cannot be extended to handle more complex cases involving relations (e.g., the
solar system/atom analogy). A recent model byGoldstone and Rogosky (2002)named AB-
SURDIST bears a stronger resemblance to CAB. ABSURDIST attempts to map points in one
space to points in another space by considering pairwise distances between points in each space.
The spirit of this procedure is commiserate with CAB’s search for nodes playing compatible
roles across analogs. CAB differs from ABSURDIST in that complex comparisons involve
structured representations which are not metric. ABSURDIST is not equipped to process the
directed graph representations demanded by comparisons that involve parts playing roles in a
larger structure. Nevertheless, the similarities of the algorithms suggest a continuity between
the models that we take as a favorable sign for the general approach.

6. Summary, conclusion, and future directions

Comparison involves determining correspondences. In some cases, such as simple percep-
tual comparisons, determining correspondences can be relatively straightforward. However,
many other comparisons, especially those that involve matching relational structures, can be
non-trivial.

CAB determines correspondences through an iterative computation that incrementally ad-
justs mapping weights by considering each node’s role within an analog and the current map-
ping weights. CAB has a compact formalism consisting of a rule for updating mapping weights.
CAB’s knowledge representation is general and makes few assumptions. Analogs are repre-
sented as directed graphs that capture the binding relationships between representational ele-
ments. All nodes are of the same type. Other models have special types of nodes (e.g., entity,
value, function, relation, binding, semantic, proposition, etc.) that demand special considera-
tion during processing.

CAB can account for the key analogy phenomena identified byMarkman and Gentner
(2000). CAB also shows promise as a process model of comparison. More research in com-
parison is needed to address process as opposed to product (cf.,Love, Rouder, & Wisniewski,
1999). CAB’s performance can be mapped onto response-time measures by examining the
amount of computation required for convergence. CAB also produces sensible intermediate
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mapping results during the course of processing. Furthermore, CAB’sγ parameter, which is
related to working memory, allows for consideration of dual-task manipulations, individual
differences data, and group differences data. CAB’s ability to make sensible processing pre-
dictions, while remaining simple, may make it an ideal tool for advancing empirical research
in comparison.

Notes

1. Although CAB considers all acyclic chains between node pairs, this bound can be guar-
anteed by considering only thek (some constant) shortest chains between node pairs.

2. Modeling inference is beyond the scope of this paper. CAB’s design is appropriate for
such an extension.

3. LISA can mapSpellman and Holyoak’s (1992)large analogy between the Persian Gulf
crisis and World War II if provided the mapping between Saddam Hussein and Hitler as
well as a specific order in which to map subsequent propositions one at a time(Holyoak
& Hummel, 2001).
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