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Abstract

Why are some pairs of objects (or events) perceived to be more
similar to each other than other pairs? A computational level
theory of perceived similarity is presented that extends previ-
ous geometric and set-theoretic formulations. Like previous
approaches, the current account posits that the similarity of
two objects is a function of the common and distinctive fea-
tures of the two objects. Unlike previous approaches, simi-
larity is also a function of higher-order compatibility relations
among features (as it is in models of analogy). Objects (or con-
cepts) are represented as directed feature graphs as opposed
to feature vectors or sets. Like current accounts of human
analogical processing, the approach presented here holds that
representational elements are put into correspondence during
the comparison processes. Correspondences are chosen in or-
der to maximize an objective function. The function contains
four terms that are motivated by theories of human compari-
son. The maximum of the function is monotonically related
to perceived similarity. Thus, similarity is characterized as the
byproduct of comparison and structural alignment. The objec-
tive function serves as a quantitative computational level the-
ory of human comparison.

I ntroduction

Since William James (1890/1950), psychologists have held
that detecting the “sameness” or similarity of objects is at
the backbone of cognition. Clearly, detecting similarities be-
tween novel events and previous experiences is crucial in rea-
soning, analogy, and object recognition. Many theories of
category learning hold that similarity is the basis for cate-
gorization (c.f., [7]). A fundamental question then is what
makes two objects similar?

Almost all accounts of perceived similarity hold that sim-
ilarity increases as the number of feature matches increases
and decreases as the number of feature mismatches increases.
In geometric models of similarity, such as multidimensional
scaling (MDS) models of similarity, concepts or objects are
represented as points in a multidimensional space and sim-
ilarity is inversely related to the distance between points in
the space [20]. Objects that match on many features will be
closer together in the space than objects that mismatch on
a number of features. Unfortunately, the axioms of metric
spaces (e.g., minimality, symmetry, and the triangle inequal-
ity) appear to be violated by human similarity judgments (c.f.,
[22]). More recently, Medin, Goldstone, and Gentner (1993)
have demonstrated that an object can be rated as both more
similar and more dissimilar to the same object in an object
pair, which seems problematic for distance models.

Tversky’s (1977) contrast model is a non-metric set-
theoretic account of perceived similarity that aims to address
some of the shortcoming of the distance models. Tversky’s
model is based on evaluating sets of matching and mismatch-
ing features:

sim(z,y) = NF(X NY) —pF(X -Y) - »FY — X)
Where Y1,72,73 Z 0

where sim(z,y) reads “the similarity of = to y,” X is the
set of features that represents z, Y is the set of features that
represents y, X NY is the set of features common to z and y,
X — Y is the set of features uniquely possessed by z, Y — X
is the set of features uniquely possessed by y, 1, v2, and 3
are free parameters, and F is a function over sets of features
related to the features’ saliency. For simplicity and without
loss of generalization, we assume here that all features are
equally salient:;

F(X) = |X]| )

where | X | denotes the cardinality of the set X. Of course, in
many situations certain features will weigh more heavily on
the evaluation of similarity than other features.

Tversky’s contrast model can account for asymmetries that
occur in similarity judgments. For example, “North Korea”
is rated as being more similar to “China” than vice versa.
The contrast model can explain such asymmetries by setting
v2 > 3. Ostensibly, when comparing  and y, the focus is
on first term a, which I will refer to as the target, and not on
the second term, which I will refer to as the base. Both x and
y will be referred to as analogs. In the example above, most
people know more about China than North Korea. Accord-
ingly, when evaluating how similar China is to North Korea
|X — Y| will be larger than |Y” — X|. Another comparison
related explanation for asymmetries is that subjects prefer the
base to be the object out of an object pair that allows for more
analogical inferences to be projected [1]. Such asymmetries
may be attributable to the similarity predicate in particular.
Another alternative is that asymmetries arise from general
principles related to sentence interpretation such as the fig-
ure/ground relationship between the target and base [21] or
from general syntactic properties [6].

Although the contrast model can address a wide range of
data, it cannot account for judgments of similarity that are re-
lational or analogical in nature. Two analogs can be similar



even when the analogs do not have many features in common.
To use Gentner’s example, one reason people judge the solar
system and an atom as being similar is that our representa-
tions of these two systems share a number of higher-order re-
lational matches (as opposed to simple feature matches). For
example, electrons revolving around a larger nucleus can be
put in correspondence with planets revolving around a larger
sun. Although the elements of the two systems are not in-
herently similar (e.g., a nucleus and the sun differ in size
and composition), the two analogs are judged to be similar
because a mapping between the two systems exists that pre-
serves higher-order commonalities (e.g., the sun maps to the
nucleus and the planets map to the electrons). Of course,
there are simpler cases of different dimensions being put in
correspondence. For example, people equate high-pitched
sounds with bright lights and when asked, “Which is brighter,
a sneeze or a cough?” people readily answer that a sneeze is
brighter [16]. The contrast model assumes that only identical
features can match and does not envisage a matching process
that attempts to preserve higher-order compatibilities.

More current models of comparison and analogy (e.g.,
[2, 13, 11]) do establish relational correspondences when
comparing objects. These models tend to prefer mappings
between analogs when 1) identical features can be mapped
to one another, 2) there are higher-order compatibilities and
structures replicate in both analogs, 3) the mapping between
the two analogs is or almost is one-to-one. Although these
constraints are common to all successful models of human
comparison, it is not always clear how these constraints are
weighted and manifested in models. In other words, different
models may adopt widely different matching algorithms (e.g.,
[2, 11]), but can be quite similar at the computational level of
analysis (in the sense of Marr, 1982). It is important to know
what the commonalities and differences of competing models
are in order to identify the critical issues that deserve empiri-
cal investigation.

The goal of this paper is to specify a computational level
theory of comparison and similarity that is quantitative, eas-
ily understood, and falsifiable. The computational level the-
ory takes the form of a similarity equation consisting of four
terms that combine linearly (weighted by parameters). Unlike
algorithmic level models where principles are often obscured
within the details of the processing mechanisms, principles in
the similarity equation appear as separate terms and it is clear
how different principles are weighted. Best fitting parameters
for a data set are interpretable and clear predictions can be
made about how the best fitting parameters should change as
task demands change.

Such a theory might make the common ground between
models more obvious to the extent that process models con-
form to the same underlying computational level theory. A
successful computational level theory would also make each
algorithmic model’s contribution to the field clearer. For in-
stance, a model that simply conformed to the computational
level theory and made no new predictions would have no
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Bill likes Steve.
Steve respects Bill.

Bill likes Steve.
Bill respects Steve.

Jeff likes Keith.
Keith respects Jeff.
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Lisa likes Anne.
Anne respects Lisa.

Lisa likes Anne.
Lisa respects Anne.

Figure 1. The target analog and its corresponding represen-
tation S® are shown to the left of the dividing line (subjects
were not shown S#, just the text). To the right of the dividing
line, an example base analog is shown for each of the four
conditions (along with its S¥).

“added value.” Many current models do have “added value.”
For example LISA [11] makes predictions about how working
memory limitations and discourse setting affects comparison,
MAC/MAC [3] explicitly models retrieval processes in com-
parison, and 1AM [13] focuses on the incremental nature of
analogical mapping.

Although theories of comparison hold that similarity and
analogical processing are deeply related [5], the linkage be-
tween similarity and comparison is even more direct in the
similarity equation. In the similarity equation, the correspon-
dences (i.e., mappings) between the two analogs are chosen
S0 as to maximize the similarity equation, much like how an
energy function is minimized in a Hopfield network when
performing a computation [10]. The maximal value of the
similarity equation is monotonically related to the perceived
similarity of the two analogs. Thus, similarity both drives
the comparison process and is an outcome of it. In the re-
mainder of the paper, the details of the similarity equation are
presented as well as some data fits.

M athematical Formulation

Analogs = and y are represented as directed graphs. Analog
x has m different representational elements or nodes, while
analog y has n. S® is an m by m matrix that capture the
connectivity of analog . Each entry in S is either O or 1.
S34 set to 1 signifies that node 2 binds to node 4. Notice that
this relationship is not symmetrical — part 4 is a parent of part
2, but part 2 is not necessarily a parent of part 4. Analog y is
represented in an identical fashion by S¥. Figure 1 illustrates
some examples of analogs and the graphs that represent them.

In evaluating the similarity of z to y, correspondences are
established between the representational elements of 2 and y
(i.e., the nodes in S* and S¥) . These correspondences or
mappings are recorded in the m by n matrix A. Each entry
in A is either 0 or 1. A;; equal to 1 indicates that element z;



(of =) maps to element y; (of y). The mappings are selected
so as to maximize the value of the similarity equation. The
idea is that perceived similarity arises out of a comparison
process that establishes mappings between the two analogs.
Such mappings would prove useful in analogical reasoning
and inference.

For real world problems, it is impractical to try all (22)?
combinations in search of the best mapping. The theory pre-
sented here is a computational level theory of comparison
and similarity and does not address this issue. The solutions
to difficult real world problems can be approximated using
combinatoric optimization procedures such as simulated an-
nealing [14]. In essence, every algorithmic model of anal-
ogy solves this combinatoric optimization problem by heuris-
tically combining mapping constraints.

The similarity equation consists of four terms that combine
linearly:

E(z,y) = uO(z,y) + Y (z,y) + w3Q(z,y) + a1 ®(x,y)
where a1, as, as,ay > 0.

The four terms are defined below. The terms are organized
from most semantic in nature to most structurally focused.

The ® term is analogous to Tversky’s (1977) contrast
model and captures raw semantic similarity:

O(z,y) = pf (X NY) - (4)
(1= 1) (BE(X = V) + (1= d)E(Y - X))
where1 > ¢y >0,and1>46; >0

where ; determines the relative importance of common-
alities and differences in determining the similarity of two
analogs. The parameter ¢; determines how asymmetric the
similarity judgment is. Given that the focus of a comparison
is usually on the target, 6, should be greater than .5.

The second term captures semantic similarity arising from
correspondences:

Y(z,y) = ZZAijC(ﬂfi,yj) (5)

i=1 j=1
where C(z;,y;) Is:

C(l’i, y]) = (plF(:L'Z) if T; is identical to Yjs (6)
else (p1 — 1)F(x;).

The © term and Tversky’s contrast model do not distinguish
between commonalities and differences that arise from rela-
tional elements that are in correspondence and those that are
not in correspondence. The Y term specifically addresses
commonalities and differences that are in correspondence
(i.e., elements linked in A). Commonalities arising from
correspondences are processed differently (i.e., have differ-
ent time courses and differentially affect perceived similarity)

than commonalities (or matches) that are not in correspon-
dence [8]. Likewise, differences that can be put into corre-
spondence are psychologically distinct from differences that
cannot be put into correspondence [15].

Humans are also sensitive to higher-level matches (i.e.,
compatibility relations), as in the solar system/atom example.
Analogs are perceived as similar when they have a common
relational structure. The 2 term captures this type of simi-
larity and it is high when elements from one analog map to
elements in the other analog and their parents are also in cor-
respondence.

Qz,y) = ()

Z Z Z Z S5 S Ain AjuF (i) F () F (ye)F (1)
The & term is purely structural and ranges from 0 to 1. The
& term is 1 when the mapping between z and y is a bijection
(@ne-to-one and onto). In general people prefer analogies or

mappings that are one-to-one [4]. Here, we assume that com-
plete mappings are also preferred. The ® term is defined as:

q’(l’,y) = 61

|+ ®
L+ X Fla) (1- S, Ay)

1
1+370 F(yi) (1 -2 ‘4“)2

The data sets considered in the next section are all from con-
trolled experiments and mappings exist that lead to maximal
values of ®. Under these conditions, only these solutions are
considered by subjects (i.e., the parameter a4, weighting &,
is set to a value large enough to prohibit consideration of in-
complete or conflicting mappings).

(1-101)

The Similarity Equation and Human Data

In this section, data from Goldstone (1994) and data from
two new experiments is fit by the similarity equation. The fits
are intended to illustrate how the similarity equation can be
applied to human data and should not be taken as a definitive
test of the equation’s form. The equation’s form will certainly
be refined as it is applied to more data sets.

Goldstone (1994) Experiment 2

The similarity equation was applied to data from Goldstone’s
(1994) Experiment 2. Subjects rated the similarity of two
displays. Each display consisted of a pair of schematic but-
terflies. Each butterfly could be represented by four features
(type of tail, type of body, type of wings, type of head). The
number of matches in place (correspondences as in Equa-
tion 5) and the number of matches that were not in corre-
spondence was manipulated, yielding fifteen conditions. Ta-
ble 1 illustrates the fifteen within subject conditions. Only the
© and the Y terms from the similarity equation are relevant



Table 1: Various feature transformation from Goldstone’s
(1994) Experiment 2. In the Target column, each of the four
positions in each letter string represents a part of the target
stimulus (i.e., the second position in each string could denote
the head). Each letter (A, B, C, D, W, X, Y, or Z) represents
a particular feature value. The base stimulus is always repre-
sented as ABCD. The next two columns list the number of ©
and T matches. The Rated Similarity column denotes human
subjects’ rated similarity of the base and target stimuli.

Target O Matches 7Y Matches Rated Similarity
WXYZ 0 0 1.91
XYDZ 1 0 1.48
YZDD 1 1 3.09
XYCZz 1 1 3.12
BAYZ 2 0 311
YZCD 2 2 4.65
BADZ 3 0 3.60
BACZ 3 1 4.52
BADD 3 1 4.57
ABDZ 3 2 4.96
ABDD 3 3 6.56
ABCZ 3 3 6.78
BADC 4 0 4.82
BACD 4 2 6.38
ABCD 4 4 8.79

for fitting this dataset, along with the a1 and a» parameters,
because 1) asymmetries were not a concern (|.X | is equal to
[Y]), 2) differences and commonalities in Equations 4 and
5 are perfectly correlated allowing all difference terms to be
dropped (i.e., 1 is set to 1), 3) the value of 2 and ® do not
vary across conditions.

For simplicity, a linear relationship was assumed between
the maximal value generated by the similarity equation and
subjects’ similarity ratings. Of course, similarity is probably
a more complex function of E(z, y) for a number of reasons,
including the presence of scale effects [19]. Nevertheless,
with this simplifying assumption, the similarity equation ac-
counted for 97.0 % of the variance in the data. The similarity
equation states that different sources of similarity combine
additively. A modified version of the equation was fit to the
data that contained a term capturing the interaction between
© and Y. This augmented equation did not capture signifi-
cantly more variance (97.3%), supporting the stance that the
terms combine additively. The fit for SIAM, a special pur-
pose interactive connectionist model developed by Goldstone
(1994), was equivalent (it accounted for 97.7 % of the vari-
ance). The similarity equation offers a simpler account of
the data — perceived similarity arises from a linear weight-
ing of the ©® and Y terms. To SIAM’s credit, it can account
for aspects of the time course data, like that subjects tend
to weight matches in correspondence (i.e., T matches) more
later in processing than © matches (this is SIAM’s added
value). Such data is outside the province of a computational

level theory.

Experiment 1

In Goldstone’s (1994) Experiment 2, the € term was not rel-
evant to the data fit. To further test the predictions of the
similarity equation, | collected data from subjects in a task
in which higher-order relations could impact the similarity
equation’s predictions (i.e., the Q term’s value varies across
conditions). In Experiment 1, subjects rated the similarity of
two situations. The number of higher-order relations shared
by the two situations was manipulated (as well as the number
of © and/or T matches). The main prediction the similarity
equation makes in Experiment 1 is that feature and relation
matches will affect rated similarity additively.

Subjects Twenty-one Northwestern University undergrad-
uate students participated in the experiment for course credit.

Design and Overview of the Experiment The
two variables (Feature Match/Mismatch and Relation
Match/Mismatch) were crossed for a 2 X 2 within subjects
factorial design. The design is illustrated in Figure 1.
The value of each term in the similarity equation for each
condition is shown in Table 2. On each trial, subjects rated
the similarity of two situations. Subjects completed 20 trials
in each condition for a total of 80 trials. The order of trials
was randomized for each subject.

Stimuli and Counterbalancing Each stimulus contained
the descriptions of two situations. Each situation description
consisted of two sentences (see Figure 1). One situation de-
scription was displayed on the left side of the screen. The
other situation description was displayed on the right side
of the screen. Above the description on the left side of the
screen was the label “Situation A.” Above the description on
the right side of the screen was the label “Situation B.” Un-
derneath the descriptions was a rating scale (1 indicated low
similarity and 9 indicated high similarity).

Each situation contained two characters that were either
both male or both female. Character names were randomly
chosen (subject to constraints imposed by the trial’s condi-
tion) without replacement from the following list of names:
Anne, Jennifer, Linda, Susan, Wendy, Bill, Jeff, John, Keith,
and Steve. On Feature Match trials, the gender of the charac-
ters in both situations matched (i.e., all characters were male
or female). Whether the common gender was male or fe-
male was randomly determined for each Feature Match trial.
On Feature Mismatch trials, the genders of the characters in
the two situations were different such that the two charac-
ters from one situation were both male and the two characters
from the other situation were both female. On each Feature
Mismatch trial, it was randomly determined whether situation
A contained the male or female characters.

Both characters from a situation appeared in both sen-
tences. [Each sentence contained a predicate that linked
the two characters. The same predicates appear in both
situations. Two predicates were randomly chosen without



Table 2: The values of the four terms for the four conditions
in Experiments 1 and 2. Notice that © and Y are perfectly
correlated.

O T QO ¢
Feature Match/Relational Match 8 8 12 1
Feature Mismatch/Relational Match 7 7 12 1
Feature Match/Relational Mismatch 8 8 10 1
Feature Mismatch/Relational Mismatch 7 7 10 1

replacement for each trial from the following list: is taller
than, respects, and likes. Which predicate appeared in the
first or second sentence within a situation was random. It was
also random whether or not the same character appeared first
in both sentences in situation A (the character order is fixed
for situation B given the character order in situation A and
the trial’s condition). Again, Figure 1 illustrates an example
situation pair for each condition.

Procedure Text was displayed in black on a white back-
ground. Trials began with a message displayed in the upper
left corner of the screen alerting the subject to prepare for the
next trial. After 1000 ms, this message was removed and the
stimulus was displayed (i.e., the two situations along with
the rating scale). Subjects then pressed a key (1 through 9)
to indicate how similar the two situations were (1 indicated
low similarity and 9 indicated high similarity). After subjects
responded, there was a 1500 ms pause and then the next trial
began.

Results Table 2 shows the values of the four terms for each
condition. As in the previous fit, the number of relevant pa-
rameters required can be reduced to 2 (the «; parameter for
the © term and the a3 parameter for the 2 term). The mean
similarity ratings (averaged across subjects) for each condi-
tion are shown in Table 3. The similarity equation fit 99.9%
of the variance in the data. To provide a stronger test, indi-
vidual subjects’ data was fit. Of course, the fit for this data
will not be as good because the data for individual subjects
is not as stable and each subject uses a slightly different rat-
ing scale (i.e., high similarity for one subject may result in
a rating of 8, while another subject may give a rating of 7).
Nevertheless, the equation fit 71.9% of the variance (df=81).
A modified version of the equation was fit to the data that
contained a term capturing the interaction between © and .
This augmented equation did not capture significantly more
variance (72.1%, df=80), supporting the stance that the terms
combine additively.

Experiment 2

A second experiment explored how task demands affect com-
parison. The materials and procedure were identical to the
previous experiment except that after making a similarity
judgment subjects were asked to state how the people in the

Table 3: Similarity ratings for each condition (averaged over
subjects) in Experiment 1.

Relational Match

Relational Mismatch

8.23
7.51

4.50
3.39

Feature Match
Feature Mismatch

target and base analogs corresponded to one another. This
judgment should force subjects to focus more on high-order
relational matches and should lead to a higher weighting of
the Q term relative to the © term in the similarity equation.

Subjects Seventy-one Northwestern University undergrad-
uate students participated in the experiment for course credit.
The subjects were from the same population as the subjects
in Experiment 1. Experiments 1 and 2 were run concurrently
(though no subjects participated in both experiments).

Design and Overview of the Experiment  The design was
very close to that of Experiment 1. The main difference was
that subjects made a correspondence judgment after making
a similarity judgment. Another difference was that subjects
performed sixty trials (fifteen in each condition) as opposed
to the eighty trials performed in Experiment 1.

Stimuli and Counterbalancing The stimuli and counter-
balancing were identical to Experiment 1 with the following
addition — after making a similarity judgment, one character
was randomly chosen from situation A and another charac-
ter was randomly chosen from situation B and subjects were
asked if they corresponded to one another.

Procedure The procedure was identical to Experiment 1
except that subjects made a correspondence judgment imme-
diately after making a similarity judgment. After making the
similarity judgment, a text message appeared below the rat-
ing scale. The message asked if a particular character from
situation A corresponded to a particular character from situ-
ation B. Subjects were instructed to press the ‘Y’ key if they
thought the two characters corresponded and to press the ‘N’
key if they thought the two characters did not correspond.
The Yes/No question was displayed along with both situation
descriptions and the rating scale. After making the correspon-
dence judgment, there was a 1500 ms pause and then the next
trial began.

Results The main predictions held. Table 4 shows the mean
ratings for each condition. Feature matches had a small effect
on rated similarity while relational matches had a large effect
on rated similarity. The ratio a3/ was three times larger
in Experiment 2 than it was in Experiment 1. Subjects also
made the correspondence judgments in the manner predicted
by the similarity equation’s mapping matrix A. In terms of
fit, 99.9% of the variance in the averaged data was accounted
for. For individual subject fits, 66.1% (df=281) of the vari-
ance was accounted for and adding an interaction term did
not improve the fit (66.1%, df=280).



Table 4: Similarity ratings for each condition (averaged over
subjects) in Experiment 2

Relational Match  Relational Mismatch

Feature Match 8.32 4.47
Feature Mismatch 8.02 4.08

While the fits from Experiments 1 and 2 (as well as from
Goldstone’s Experiment 2) suggest different sources of sim-
ilarity combine additively, | predict that after consideration
of more diverse data sets (e.g., [9]) the similarity equation
will be revised to make allowances for interactions between
terms under certain conditions. The equation and data pre-
sented here are simply intended to motivate a new framework
for approaching comparison and similarity.

Discussion

The similarity equation presented here is a computational
level theory of human comparison and perceived similarity
that can account for basic findings in the similarity and anal-
ogy literatures. The equation provides clarity to the discus-
sion of similarity because it distinguishes between a number
of different factors that can affect perceived similarity. An ac-
curate characterization of similarity is critical given its central
role in theories of categorization, decision making, analogy,
problem solving, and object recognition.

Twenty years after Tversky’s (1977) classic paper, many
of the same questions remain. How are the representations
of analogs determined, how do they change as an outcome
of comparison, and how is feature saliency modulated? One
possibility is that instead of static representations being com-
pared, retrieval and comparison are interleaved such that the
current mappings between the analogs direct which other in-
formation is retrieved and represented in the base and target.
Analogical inference may also direct the construction of the
target analog’s representation. In other words, properties or
features can emerge as a result of the comparison process
[18]. Hopefully this work will demarcate what is known and
what is common to competing models so that researchers can
wisely focus their efforts.
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