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Categorization subserves many facets of cognition such
as decision making, reasoning, object recognition, and as-
pects of language processing. Despite the intimate con-
nections between categorization and many other aspects of
cognition, the study of category learning has focused on one
supervised learning task—namely, classification learning
(Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994;
Shepard, Hovland, & Jenkins, 1961). In supervised classi-
fication learning, the learner is given a stimulus, classifies
it, and is provided with corrective feedback. Certainly, there
are many other ways to learn about categories. For instance,
some category learning tasks do not involve supervision.
Supervised classification learning stresses one set of com-
ponent processes out of many possible sets. Equating cat-
egory learning with supervised classification learning (or
any one induction task) would result in a limited under-
standing of category learning that does not extend across
a wide range of situations (Love, 2001; Schank, Collins, &
Hunter, 1986). 

Work in supervised learning that has compared differ-
ent learning modes has found strong interactions between
different learning problems and learning modes, even
when the learning modes are informationally equivalent
(Goldstone, 1996; Yamauchi, Love, & Markman, 2002; Ya-
mauchi & Markman, 1998). In other words, different su-
pervised induction tasks stress different aspects of the stim-
ulus set and perhaps invoke different processes. The
aforementioned work points toward the multifaceted na-
ture of supervised learning and, coupled with modeling

work that clarifies the conceptual relations between the
different learning modes (Love, Markman, & Yamauchi,
2000), provides for a more general understanding of cate-
gory learning. 

Instead of focusing on supervised learning, the work pre-
sented here examines two unsupervised learning modes
(incidental and intentional unsupervised learning) and
their relation to supervised classification learning. Depend-
ing on the task and the learner’s goals, a learner can spon-
taneously develop categories (unsupervised learning) or con-
ceptual organization can be strongly constrained by feedback
(supervised learning). Developing a better understanding
of unsupervised learning and its relation to the large body
of work in supervised classification learning is critical given
that a great deal of human learning may be unsupervised. 

Learning Modes and Category Structures:
Predictions 

Supervised classification learning is intentional and en-
courages subjects to search for rules and perform hypoth-
esis testing. Subsequently, learners exhibit sharp drops in
their error rates (all-or-none learning) and are consciously
aware of the rules1 that they are entertaining (see Nosof-
sky, Palmeri, & McKinley, 1994). Accordingly, supervised
classification problems are learned most efficiently when
the category structure can be described by a simple rule.
The results from Shepard et al.’s (1961) six2 problems fol-
low this pattern (see Table 1 for problem descriptions).
The Type I problem (in which a rule can be formed on the
first stimulus dimensions) is learned faster than the Type II
problem (in which a rule can be formed on the first two
stimulus dimensions), which is learned faster than the
Type IV problem (in which the dimensions are intercorre-
lated, but the learner must attend to all stimulus dimen-
sions), which is learned faster than the Type VI problem
(in which no exploitable regularity exists and the stimuli
must be memorized).
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These findings have been very influential in developing
theories and models of supervised classification learning
(Nosofsky, Gluck, et al., 1994). What is curious about these
findings is that the Type II problem, which has a highly
nonlinear category structure, is learned faster than the
Type IV problem, which has a family resemblance struc-
ture (a linear category structure in which all dimensions
are intercorrelated and each dimension provides imperfect
evidence for category membership). Natural categories
are thought to have a family resemblance structure (Rosch,
Mervis, Gray, Johnson, & Boyes-Braem, 1976; Wittgen-
stein, 1953), yet such categories are not readily acquired
through supervised classification learning. 

One possible explanation for this discrepancy is that su-
pervised classification learning is not typical of real-world
learning situations. After all, the world does not always re-
spond to the queries of the learner. In many situations, learn-
ing is not even one’s primary objective when one interacts
with a stimulus; instead, it is a consequence of complet-
ing another task (i.e., learning can be incidental). It is quite
possible that supervised classification learning and unsu-
pervised learning (particularly incidental unsupervised
learning) lead to very different patterns of acquisition.

According to Wattenmaker (1991), it can be predicted
that intentional learning (both supervised and unsuper-
vised) will promote rule formation, whereas incidental
learning will promote similarity-based processing (e.g.,
similarity to stored exemplars). These two basic processes
loosely correspond to Sloman’s (1996) proposal for dual
conceptual systems (rule vs. similarity based). Although the
linear/nonlinear distinction has not proved very meaning-
ful in supervised classification learning (Medin & Schwa-
nenflugel, 1981), this distinction could prove crucial in
unsupervised learning. It is predicted that subjects learn-
ing through incidental unsupervised learning will show a
preference for family resemblance structures (e.g., the
Type IV problem) and will show deficits for nonlinear cat-
egory structures (e.g., the Type II problem). Intentional
unsupervised learning should more closely match super-
vised classification learning performance. Along these

lines, it is expected that learners will engage in more rule
construction in intentional than in incidental unsupervised
learning. Rule application is generally regarded as slower
than similarity-based retrieval process (see Sloman, 1996,
for a review), therefore test performance should be slower
under intentional unsupervised learning (although the com-
plexity of the stimuli and the rules could affect the relative
speeds of these processes). Another consequence of rule
application is increased variability in performance across
subjects. Subjects who construct successful rules will per-
form at high levels, whereas subjects who construct rules
that are orthogonal to the actual category structure will
perform at low levels. Therefore, greater variability should
be observed under intentional learning conditions. 

Overview of Experiments 1 and 2 
One unique feature of the present experiments is that

they allow for direct comparisons of unsupervised and su-
pervised learning performance. In order to directly compare
unsupervised and supervised learning, a comparable de-
pendent measure is needed. Ideally, the dependent measure
would closely correspond to training accuracy, which is a
measure widely used in assessing the difficulty level of
supervised classification learning problems (e.g., Nosof-
sky, Gluck et al.,1994; Shepard et al., 1961). 

In order to develop such a measure, stimuli were created
by embedding the category label (typically, subjects classify
each stimulus as a member of Category A or B) into each
stimulus as a fourth binary-valued perceptual dimension
(see Table 1). On supervised classification study phase trials,
the subjects were shown the value of the first three percep-
tual dimensions and were queried on the fourth (e.g., 1 1 2 ?).
After the subjects responded, feedback was provided and
the complete stimulus description was shown (in the case
of the Type VI problem, 1 1 2 2 was shown). In unsuper-
vised learning, all four perceptual dimensions were shown
on study phase trials (the fourth dimension was not queried).

In intentional unsupervised learning, the subjects were
aware that they were involved in a learning task, and their
efforts were directed toward the learning task (i.e., they
actively searched for patterns that characterized the train-
ing items). In incidental unsupervised learning, the sub-
jects were not aware that they were in a learning task and
they directed their effort toward another task (in this case,
they rated how pleasant they found each stimulus). This
incidental task is evaluative in nature and probably en-
courages subjects to encode all four stimulus dimensions.
Other incidental tasks (evaluative or nonevaluative) could
stress different aspects of the stimulus set and lead to dis-
parate patterns of performance (see Love, in press, for a
comparison of different incidental tasks). For example, if
the incidental task was to indicate whether a stimulus was
small or large, perhaps little information concerning the
other stimulus dimensions and the relations across di-
mensions would be encoded. 

Category learning performance was measured in the
test phase (following the study phase). The test phase was
identical for all conditions. The subjects viewed a pair of

Table 1
The Logical Structures of the Type I, II, IV, and VI Learning

Problems Considered by Shepard, Hovland, and Jenkins (1961)

Item I II IV VI 

1 1 1 1 1 1 1
1 1 2 1 1 1 2 
1 2 1 1 2 1 2 
1 2 2 1 2 2 1 
2 1 1 2 2 1 2 
2 1 2 2 2 2 1 
2 2 1 2 1 2 1 
2 2 2 2 1 2 2 

Note—Each learning problem involves assigning eight stimulus items to
one of two categories. Each item varies on four binary valued stimulus
dimensions (e.g., size: small or large). The displayed value of these di-
mensions is denoted by a 1 or a 2. The relation of the fourth dimension
(i.e., the category) to the other three dimensions defines the category
structure of each learning problem.
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stimuli that varied only on the fourth dimension (i.e., the
category dimension). The subjects were instructed to choose
the item that appeared during the study phase. As in tra-
ditional supervised classification learning studies, the
subjects could base their judgments on their knowledge of
the relationship between the category dimension and the
other dimensions (e.g., rules, correlations, etc.) as well as
on memorized exemplars. 

This testing procedure is novel, but it is comparable to
the procedure used by Billman and Knutson (1996). Sub-
jects in their study chose which of two stimuli was more
familiar (i.e., similar to the study-phase stimuli). One
stimulus preserved a studied correlation, whereas the
other stimulus violated the correlation. In the present case,
the “correlation” being tested was between the first three
stimulus dimensions and the fourth. More broadly, the pres-
ent testing procedure bears some resemblance to old/new
recognition judgments, which are typically construed as
measuring explicit memory (e.g., Knowlton & Squire,
1994), although recognition memory judgments also can
be influenced by nonconscious fluency of processing
(Johnston, Hawley, & Elliot, 1991; Seger, 1994). The pres-
ent procedure differs from typical recognition judgments
in some key ways. A forced choice procedure in which the
two stimuli always differed in one respect (the category
dimension) was used. In essence, on each test, the subject
was asked to determine which category corresponded to
the other three stimulus dimensions. 

In these experiments, it is probably best not to view the
fourth stimulus dimension as a category label per se. Dur-
ing the study phase of the unsupervised learning condi-
tions, the subjects were not aware that the fourth stimulus
dimension would be queried in the test phase. The study
procedure placed no emphasis on the fourth stimulus di-
mension. In the unsupervised learning conditions, the test
phase simply measured the extent to which the subjects
grasped the relation between the first three dimensions
and the fourth stimulus dimension (some relations or cat-
egory structures may be more readily captured than oth-
ers). Importantly, the subjects were free to organize the
stimuli in any manner that they saw fit. For instance, the
subjects could organize the stimuli along one dimension,
as they typically do in sorting tasks (Medin, Wattenmaker,
& Hampson, 1987). Such an organization would lead to
chance performance in the test phase. In contrast to unsu-
pervised learning, the supervised classification learning
study phase is more constrained and requires subjects to
predict the fourth stimulus dimension on the basis of the
first three stimulus dimensions— a learning task that par-
allels the test phase task. Like the unsupervised learning
modes, different relations between these first three di-
mensions and the fourth should affect test performance. 

One important methodological claim is that test-phase
accuracy is analogous to accuracy rate in supervised clas-
sification learning training, thus allowing for comparisons
between unsupervised and supervised learning studies.
Experiment 1 directly tested this claim in a supervised
classification learning experiment. The claim is supported
if study and test-phase accuracy are highly correlated. 

EXPERIMENT 1 

Method
Subjects . Two hundred fifty-two University of Texas under-

graduate students participated for course credit. Each subject was
randomly assigned to one of the four learning problems. 

Apparatus. The experiments were run on Pentium III computers
operating in DOS. The data were collected using an in-house real-
time data collection system. The monitors had 15-in. CRT color dis-
plays and a refresh rate of 16.67 msec. 

Stimuli. The study phase stimuli were geometric figures that var-
ied in border color (yellow or white) and three of the four following
binary-valued dimensions: size (small or large), color (blue or pur-
ple), texture (smooth or dotted), and diagonal cross (present or ab-
sent). Three of these four dimensions were randomly selected for each
subject, with the remaining dimension fixed to one of its two values
(also randomly determined). The three dimensions were mapped
(randomly assigned to each subject) onto the logical structure shown
in Table 1 with the border always serving as the fourth binary dimen-
sion (i.e., the category label). The assignment of dimension values was
also random for each subject (e.g., for some subjects the value 2 on
the size dimensions signified a large figure, for others it signified a
small figure). The five stimulus dimensions were all equally salient
and independent (as verified by multidimensional scaling of pair-
wise similarity ratings gathered from a previous study; see http://love.
psy.utexas.edu/ stimuli for details and to download the stimuli). 

Procedure. In the study phase, the subjects were instructed to
learn to predict the border color from the values of the other three
stimulus dimensions. On each trial, the stimulus was presented with
the border absent. The subjects pressed the “W” key to indicate that
they believed the border was white and the “Y” key to indicate that
they believed the border was yellow. After each response, the correct
border was displayed (i.e., the entire stimulus was shown), and a pos-
itive tone sounded if the subject was correct, whereas a negative tone
sounded if the subject was incorrect. The complete stimulus was dis-
played for 1,500 msec. A blank screen (i.e., a black screen) was then
displayed for 1,000 msec and the next trial began. Unbeknownst to
the subjects, response times were collected. Trials were organized
into blocks (a block is the random presentation of each stimulus in
a random order). The subjects completed 10 study-phase blocks. 

After completing the study phase, the subjects were presented
with a series of three arithmetic problems. Each problem consisted
of two integers (randomly generated between 10 and 49) presented
side by side (e.g., “22 1 34 = ?”). The subjects received both audi-
tory and visual feedback indicating whether they had added the
numbers correctly. The purpose of this filler task was to prevent the
subjects from rehearsing information from the study phase. 

After completing the three arithmetic problems, the subjects
began the test phase. In the test phase, the subjects were presented
with pairs of figures and had to choose which figure had been dis-
played in the study phase (forced choice old/new). One member of
each pair was a stimulus that appeared in the study phase (the old
figure), whereas the other member was a new figure that was iden-
tical to the old figure except that it displayed the opposite value on
the fourth stimulus dimension (i.e., the category label dimension).
On each test phase trial, the two figures were displayed side by side
with the text “Old: left (Q) or right (P)?” displayed above the figures.
The subjects pressed the “Q” key (on the left side of the keyboard)
if they thought the figure on the left side of the screen was the old
figure, whereas they pressed the “P” key (on the right side of the
keyboard) if they thought the figure on the right was the old figure.
After the subjects responded, a positive tone sounded and then a
black screen with the string “Thank You” was displayed for
1,667 msec regardless of the correctness of their responses. A blank
screen was then presented for 824 msec and then the next trial began.
Whether the old item appeared on the left or right side of the screen
was random for each trial. The subjects completed three test phase
blocks (i.e., 24 trials). 

http://love.psy.utexas.edu/stimuli
http://love.psy.utexas.edu/stimuli
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Results and Discussion 
The main results are illustrated in Table 2 under the head-

ing Supervised Classification Learning. The predicted or-
dering (Type I, Type II, Type IV, Type VI) was observed in
both the study and test accuracy data. All pairwise differ-
ences were significant at the .01 level, except for the dif-
ferences between between the Type II and Type IV prob-
lems, which did not approach significance. Nevertheless,
the data do reveal an advantage of Type II over Type IV.3
For example, 21 out of 62 subjects in the Type II problem
completed the test phase with greater than 95% accuracy
compared with 5 out of 63 subjects in the Type IV prob-
lem [x2 (1; N = 125) = 14.06, p , .001].

The primary goal of Experiment 1 was to demonstrate
that study-phase accuracy correlates with test-phase ac-
curacy, thus enabling comparisons between supervised
and unsupervised learning modes. The correlations were
positive and significant. Averaging over subjects, the cor-
relation between the mean study-phase accuracy and
mean test-phase accuracy was .98 [t(2) = 7.21, p , .05].
The correlation over individuals (not groups) was .82
[t(250) = 22.40, p » 0]. 

EXPERIMENT 2 

Method
Subjects. Three hundred eighty-five University of Texas under-

graduate students participated for course credit. Each subject was ran-
domly assigned to one of the eight conditions (one of the four learn-
ing problems under either incidental or intentional learning conditions). 

Stimuli. The same stimulus set was utilized in Experiments 1 and 2.
The one difference was that in Experiment 2, the category label di-
mension (the fourth stimulus dimension) was randomly selected for
each subject (the supervised classification learning procedure uti-
lized in Experiment 1 necessitated that the border color always be
the fourth dimension). 

Procedure. In the study phase of the incidental learning mode,
the subjects were instructed to view a series of figures and rate the

pleasantness of each figure on a 1–9 scale (1 was unpleasant ; 9 was
pleasant). The subjects were told that the purpose of the experi-
ment was to norm the stimuli for a future experiment. The subjects
completed 10 study-phase blocks. On each trial, the f igure was
shown on a black background for 1,000 msec. Then, the text un-
pleasant (1 to 9) pleasant was displayed above the figure. At this
point, the subject could respond by pressing a key from 1 to 9. After
the subject responded, a positive tone sounded and a blank (i.e.,
black) screen was displayed for 1,000 msec, followed by the next
trial. Unbeknownst to the subjects, response times were collected. 

In the study phase of the intentional learning mode, the subjects
were instructed to memorize each figure. The subjects were told that
searching for patterns across the figures might aid in memorizing
the figures. The subjects completed 10 study blocks (the same num-
ber of trials as in the incidental conditions). On each trial, the figure
was shown on a black background for 1,000 msec. Then, the text
“Press the spacebar to continue”  was displayed above the figure. At
this point, the subject could respond by pressing the space bar. After
the subject responded, a positive tone sounded and a blank (i.e.,
black) screen was displayed for 1,000 msec, followed by the next
trial. Unbeknownst to the subjects, response times were collected. 

The procedure for the arithmetic problems and the test phase was
identical to that in Experiment 1. The three learning modes featured
in the experiments differed only in the study phase. 

Results and Discussion 
The data of primary interest were the subjects’ new/old

forced choice judgments in the test phase. Figure 1 displays
the mean accuracy level for the four problem types under
both incidental and intentional learning conditions. The
data are also shown in Table 2. Clearly, category structure
(i.e., problem type) affected accuracy levels. Accuracy
levels were significantly above the chance level of .5 with
p , .01 for all conditions except for the Type VI problem
under intentional learning conditions [t(48) = 1.78, p »
.08]. When the Type VI problem is used as a baseline for
item learning (as opposed to category learning)4, the Type
I and Type IV problems under incidental learning condi-
tions and the Type I, II, and IV problems under intentional

Table 2
The Results From Experiments 1 and 2

Study Accuracy Study Time Test Accuracy Test Time

Problem M SE M SE M SE M SE

Incidental Unsupervised Learning
Type I NA 1,860 78 .85 .024 2,035 112
Type II NA 1,691 72 .56 .018 2,250 153
Type IV NA 1,799 73 .67 .016 2,233 154
Type VI NA 1,899 136 .56 .017 2,112 134

Intentional Unsupervised Learning
Type I NA 1,931 142 .84 .027 2,034 173
Type II NA 2,333 224 .64 .024 2,640 254
Type IV NA 2,355 179 .67 .018 2,641 160
Type VI NA 2,593 292 .54 .020 2,433 175

Supervised Classif ication Learning 
Type I .86 .021 935 .64 .89 .025 1,636 103
Type II .67 .021 1,678 .97 .73 .029 2,902 170
Type IV .65 .013 1,446 .70 .70 .021 2,649 163
Type VI .59 .015 1,693 .93 .61 .024 3,018 183

Note—Times are measured in milliseconds.
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learning conditions are all significantly different ( p ,
.001) than the Type VI problem under either incidental or
intentional study conditions. 

Comparing unsupervised learning to supervised
classification learning. Both incidental and intentional
unsupervised category learning led to patterns of acquisi-
tion that differ from supervised classification learning—
neither unsupervised learning mode led to the Type I,
Type II, Type IV, or Type VI difficulty ordering found in
supervised classification learning. This discrepancy was
greatest for incidental unsupervised learning—accuracy
levels were substantially higher (.67 vs. .56) for the Type IV
problem than for the Type II problem [t (93) = 4.66, p » 0]. 

Comparing incidental and intentional unsuper-
vised learning. Important differences exist between inci-
dental and intentional unsupervised learning. As pre-
dicted, the subjects performed at higher levels (.64 vs. 56)
on the Type II problem (the low dimensional nonlinear
problem) under intentional than under incidental learning
conditions [t (94) = 2.65, p , .01]. This difference may re-
flect that incidental learning is better suited for linear cat-
egory structures, whereas intentional learning is better
suited for acquisition of categories that can be described
by a compact rule (e.g., the Type II problem). 

One predicted difference between incidental and inten-
tional unsupervised learning is that intentional learning
should promote explicit rule construction and rule appli-
cation to a greater extent than would incidental learning.
One manifestation of this prediction is that subjects
should exhibit more all-or-none learning performance in
the test phase under intentional conditions and this should
lead to greater variability in subjects’ performance. This
prediction held. A paired comparison of the four learning

problems revealed that the variance was larger (.025 vs.
.018) in the intentional than in the incidental conditions
[t (3) = 4.66, p , .05]. 

It was predicted that the greater prevalence of rule con-
struction in the intentional conditions would also manifest
itself in increased time per trial in the study phase, even
though the intentional conditions only required space-bar
presses during the study phase, whereas the incidental
conditions required pleasantness ratings. This prediction
held. The mean of each subjects’ median response time
during the study phase was 1,812 msec under incidental
conditions compared with 2,303 msec under intentional
conditions [t (383) = 4.11, p » 0]. The predicted preva-
lence of rule application in the test phase of the intentional
conditions compared with the incidental conditions
should have resulted in increased response times in the
test phase as well. As predicted, the mean response time
for the subjects under incidental conditions was 2,158 msec
compared with 2,436msec for intentional learning [t(383) =
2.31, p , .05]. 

Although not predicted, the subjects were more accu-
rate in the arithmetic task (.92 vs. .87) after completing
the incidental study phase than after completing the in-
tentional study phase. These data were not normally dis-
tributed and were analyzed nonparametrically by classify-
ing the subjects into two groups: those who made one or
more errors and those who made no errors. In the inci-
dental conditions, 149 out of 190 subjects were error free
compared with 128 out of 195 subjects in the intentional
conditions [x2(1; N = 385) = 7.17, p , .01]. This result
might reflect increased fatigue on the part of the subjects
under intentional learning conditions or could indicate
that these subjects attempted to rehearse the stimuli
viewed in the study phase and that this interfered with
arithmetic performance. 

SUMMARY AND CONCLUSIONS 

Recent work in supervised learning highlights the im-
portance of comparing multiple learning modes in order
to develop more general theories of learning (Love et al.,
2000; Yamauchi et al., 2002). Experiments 1 and 2 extend
this work by considering unsupervised learning modes.
Acquisition patterns displayed by the subjects in super-
vised classification learning did not extend to unsuper-
vised learning tasks. In particular, an advantage of linear
category structures over nonlinear category structures was
displayed in the unsupervised learning studies (particu-
larly when the subjects were engaged in incidental unsu-
pervised learning). 

Important differences between incidental and inten-
tional unsupervised learning were found. In only one case
(the Type II problem) was there an advantage for inten-
tional learning. This one advantage is compatible with the
hypothesis that intentional learning encourages explicit
rule formation, whereas incidental learning is better matched
to the acquisition of linear category structures. This find-

Figure 1. Mean test-phase accuracy and the standard error of
the mean are displayed for the four problem types under both in-
cidental and intentional learning conditions in Experiment 2.
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ing may partially explain why we have the natural cate-
gories that we have (assuming that incidental unsuper-
vised learning is common in real-world learning situations). 

Numerous disadvantages were observed for intentional
unsupervised learning; presumably the drive to create and
apply explicit rules led to increased study and test phase
response times when compared with the incidental condi-
tions. Interestingly, the subjects in the intentional conditions
also performed worse in the filler task involving arith-
metic problems, possibly indicating increased fatigue or
the attempted rehearsal of study-phase items. In summary,
there is no advantage to engaging in intentional unsuper-
vised learning over incidental unsupervised learning ex-
cept in cases in which the target concept is low dimensional
and nonlinear (e.g., the Type II problem). All advantages
for the intentional learning mode might disappear with
higher dimensional stimuli because of the increased size
of the hypothesis space. Overall, the results suggest that
unsupervised learning is multifaceted and that it is incor-
rect to characterize unsupervised learning as stimulus dri-
ven, incremental, and passive (Berry & Dienes, 1993; Hayes
& Broadbent, 1988; Hock, Malcus, & Hasher, 1986; Kel-
logg, 1982). 

It might be tempting to map the incidental and inten-
tional learning conditions onto work that posits multiple
memory systems (e.g., Cohen & Eichenbaum, 1993;
Squire, 1992). This may be a productive avenue to ex-
plore, but only if memory systems are defined in terms of
the processes they subserve. Any successful memory sys-
tems account will have to include a role for how a stimu-
lus is processed at encoding. There is ample evidence that
the processes (or stimulus aspects) that are stressed at en-
coding play a major role in determining what is acquired
(Markman & Makin, 1998; Roediger, Weldon, & Challis,
1989; Ross, 1996; Whittlesea & Dorken, 1993). 

Shepard et al.’s (1961) work paved the way for quanti-
tative modeling of supervised classification learning.
Hopefully, the present work will lead to greater attention
to the modeling of unsupervised learning and its relation
to supervised learning modes such as supervised classifi-
cation learning. The present data provide a valuable test
bed for model development. Many existing models of su-
pervised learning, such as GCM (Nosofsky, 1986), AL-
COVE (Kruschke, 1992), the rational model (Anderson,
1991), and SUSTAIN (Love & Medin, 1998), can be ap-
plied to the present data with little or no modification. For
example, the GCM can model the test data by calculating
a measure of familiarity for test items by probing its ex-
emplar memory of study items (see Nosofsky, 1988). On
each test trial, the familiarity scores for the two alterna-
tives can be fed into the GCM’s choice function to deter-
mine the model’s response. Modeling efforts along these
lines are currently underway. 
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NOTES

1. Whether the underlying representations that support rule-like per-
formance are actually rules, as opposed to exemplars, prototypes, or
clusters coupled with a selective attention mechanism, is not of primary
interest here and may in some cases be indeterminable (Barsalou, 1990;
Goldstone & Kruschke, 1994). 

2. Only the Type I, II, IV, and VI problems are considered here. Per-
formance on Types III and V is comparable with the Type IV problem. 

3. The relatively small Type II advantage here (cf. Nosofsky, Gluck,
et al., 1994) is due to the nature of the stimulus set and not to the pres-
ent methodology. The same pattern of results is observed when the stan-
dard methodology (e.g., subjects predict membership in either Category
A or B) is paired with the present stimulus set. However, typical stimu-
lus sets (paired with the present methodology) do lead to a larger Type
II advantage. Nosofsky and Palmeri (1996) provide another example of
how Type II and IV performance can interact with the nature of the stim-
ulus set. One difference between the present stimulus set and others is
that the separation of dimension values (e.g., the distinction between a
small stimulus and a large stimulus) is relatively small. The fact that such
differences in the nature of the stimulus set can affect the difficulty level
of learning problems has implications for theories of category learning.
These implications are being systematically investigated. It should be
stressed that the present stimulus set is normed and that each dimension
is equally salient and independent. These steps should, but are usually
not, taken by all researchers. 

4. This distinction may not be meaningful on some views (e.g., an ex-
emplar theory of category learning). 
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