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Concept learning is the process of acquiring know-
ledge structures that enable an agent to make pre-
dictive inferences.

INTRODUCTION

The human species evolves to meet challenges in
the environment. Unfortunately, evolution is a
slow ‘learning’ process. Evolution can only help
us address aspects of our environment that are
not very variable and that are stable over a long
period of time. Of course, many aspects of our
environment are constantly undergoing change.
Accordingly, many concepts have to be learned
de novo by each individual. For example, a radiolo-
gist is not born knowing how to interpret x-ray
images. It is hard to imagine how that particular
skill could evolve.

Concept learning is integral to the survival of any
agent (e.g. a human, an animal, a robot, etc.) oper-
ating in a complex and changing environment. A
concept is a mental representation that is often
derived from experiences with specific instances.
We often develop concepts of categories (i.e. collec-
tions of objects) in the world. Without acquired
concepts, we would be unable to make sense of
the world around us. Every new object encoun-
tered would appear completely novel and we
would not know how to interact with it. For
example, the first time a child encounters a hot
stove he may get burned. When the child visits a
friend’s house and encounters another stove, it is
unlikely the child will touch it, even though the
new stove may differ in a number of ways from
the original stove (e.g. size, color, design, etc.). If
the child did not generalize from his experiences
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and form a concept of stoves, he would go through
life with burned hands. (See Categorization, Devel-
opment of; Generalization)

One basic question is how do we learn new con-
cepts? Philosophers, psychologists, and computer
scientists have all pondered this question. In the
following sections, three basic views (i.e. models)
of concept learning and concept representation (i.e.
what is stored as a consequence of learning) will be
examined. The first account posits that concepts
consist of rules. A more recent account holds that
concepts are represented as prototypes. A proto-
type can be thought of as the average example of
a concept. A third account of concepts is the exem-
plar view. The exemplar view holds that concepts
are nothing more than a collection of stored exem-
plars (i.e. examples of the concept). We will evalu-
ate the relative merits of each of these accounts
of human concept learning. All three accounts
correctly characterize some aspects of human con-
cept learning. After evaluating these three ac-
counts, we will discuss more modern neural
network models of concept learning. Neural net-
work models embody some of the characteristics of
rule, prototype, and exemplar approaches. (See
Concept Learning and Categorization: Models;
Classifier Systems; Concepts, Philosophical
Issues about; Conceptual Representations in
Psychology)

RULES

The classical view of concepts holds that categor-
ies are defined by logical rules. In Figure 1, any
item that is a square is a member of category A.
This simple rule determines category member-
ship. According to the rule view, our concept of
category A can be represented by this simple rule.
Discovering this rule would involve a rational
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Figure 1. Examples of category A and category B.

Category B

/\

hypothesis-testing procedure. This procedure at-
tempts to discover a rule that is satisfied by all of
the positive examples of a concept, but none of the
negative examples of the concept (i.e. items that are
members of other categories). In trying to come up
with such a rule for category A, one might first try
the rule ‘if dark, then in category A’. After rejecting
this rule (because there are counterexamples), other
rules would be tested (starting with simple rules
and progressing towards more complex rules) until
the correct rule is eventually discovered. For
example, in learning about birds, one might first
try the rule ‘if it flies, then it is a bird.” This rule
works pretty well, but not perfectly (penguins do
not fly and bats do). Another simple rule like ‘if it
has feathers, then it is a bird” would not work either
because a pillow filled with feathers is not a bird.
Eventually, a more complex rule might be dis-
covered like ‘if it has feathers and lays eggs, then
it is a bird’.

Although rules can in principle provide a con-
cise representation of a concept, often more elabor-
ate representations would serve us better. Concept
representation needs to be richer than a simple rule
because we use concepts for much more than
simply classifying objects we encounter. For in-
stance, we often use concepts to support inference
(e.g. a child infers members of the category stove
can be dangerously hot). Using categories to make
inferences is a very important use of concepts.
Knowing something is an example of a concept
tells us a great deal about the item. For example, if
you can classify a politician from the USA as a
Republican, you can readily infer the politician’s
position on a number of issues. The point is that
our representations of concepts need to include
information beyond what is needed to classify
items as examples of the concept. For example,
the rule ‘if square, then in category A’ correctly
classifies all members of category A in Figure 1,
but it does not capture the knowledge that all
category A members are dark. One problem with
rule representations of concepts is that potentially
useful information is discarded.

The biggest problem with the rule approach to
concepts is that most of our everyday categories
do not seem to be describable by a tractable rule.
To demonstrate this point, Wittgenstein noted that
the concept game lacks a defining property. Most
games are fun, but Russian roulette is not fun.
Most games are competitive, but ring around the
roses is not competitive. While most games have
characteristics in common, there is not a rule that
unifies them all. Rather, we can think of the
members of the category game as being organized
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around a family resemblance structure (analogous
to how members of your family resemble one
another).

A related weakness of the rule account of con-
cepts is that examples of a concept differ in their
typicality. If all a concept consisted of was a rule
that determined membership, then all examples
should have equal status. According to the rule
account, all that should matter is whether an item
satisfies the rule. Our concepts do not seem to have
this definitive flavor. For example, some games
are better examples of the category game than
others. Basketball is a very typical example of the
category game. Children play basketball in a play-
ground, it is competitive, there are two teams,
each team consists of multiple players, you score
points, etc.

Basketball is a typical example of the category
of games because it has many characteristics in
common with other games. On the other hand,
Russian roulette is not a very typical game — it
requires a gun and one of the two players dies.
Russian roulette does not have many properties in
common with other games. In terms of family re-
semblance structure, we can think of basketball as
having a central position and Russian roulette
being a distant cousin to the other family members.
These findings extend to categories in which a
simple classification rule exists. For example,
people judge the number three to be a more typical
odd number than the number forty-seven even
though membership in the category ‘odd number’
can be defined by a simple rule.

The fact that category membership follows a gra-
dient as opposed to being all or none affords us
flexibility in how we apply our concepts. Of course,
this flexibility can lead to ambiguity. Consider the
concept mother. It is a concept that we are all famil-
iar with that seems straightforward — a mother is a
woman who becomes pregnant and gives birth to a
child. But what about a woman who adopts a neg-
lected infant and raises it in a nurturing environ-
ment? Is the birth mother who neglected the infant
a mother? What if a woman is implanted with an
embryo from another woman? Court cases over
maternity arise because the concept of motherhood
is ambiguous. The concept exhibits greater flexibil-
ity and productivity than is even indicated above.
For example, is it proper to refer to an architect as
the mother of a building? All the above examples of
the concept mother share a family resemblance
structure (i.e. they are organized around some com-
monalities), but the concept is not rule based. Some
examples of the concept mother are better than
others.

PROTOTYPES

The prototype approach to concept learning and
representation was developed by Rosch and col-
leagues to address some of the shortcomings of
the rule approach. Prototype models represent in-
formation about all the possible properties (i.e.
stimulus dimensions), instead of focusing on only a
few properties like rule models do. The prototype
of a category is a summary of all of its members.
Mathematically, the prototype is the average or
central tendency of all category members. Figure 2
displays the prototypes for two categories, simply
named categories A and B. Notice that all the items
differ in size and luminance (i.e. there are two
stimulus dimensions) and that the prototype is lo-
cated amidst all of its category members. The
prototype for each category has the average value
of both the stimulus dimensions of size and lumi-
nance for the members of its category. (See Proto-
type Representations)

The prototype of a category is used to represent
the category. According to the prototype model, a
novel item is classified as a member of the category
whose prototype it is most similar to. For example,
a large bright item would be classified as a member
of category B because category B’s prototype is
large and bright (see Figure 2). The position of
the prototype is updated when new examples
of the category are encountered. For example, if
one encountered a very small and dark item that
is a member of category A, then category A’s proto-
type would move slightly towards the bottom left
corner in Figure 2. As an outcome of learning, the
position of the prototype shifts towards the newest
category member in order to take it into account. A
prototype can be very useful for determining
category membership in domains where there are
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Figure 2. Two categories and their prototypes.
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many stimulus dimensions that each provide infor-
mation useful for determining category member-
ship, but no dimension is definitive. For example,
members of a family may tend to be tall, have
large noses, a medium complexion, brown eyes,
and good muscle tone, but no family member pos-
sesses all of these traits. Matching on some subset
of these traits would provide evidence for being a
family member. (See Multidimensional Scaling;
Similarity)

Notice the economy of the prototype approach.
Each cloud of examples in Figure 2 can be repre-
sented by just the prototype. The prototype is
intended to capture the critical structure in the
environment without having to encode every detail
or example. It is also fairly simple to determine
which category a novel item belongs to by deter-
mining which category prototype is most similar to
the item.

Unlike the rule approach, the prototype model
can account for typicality effects. According to the
prototype model, the more typical category
members should be those members that are most
similar to the prototype. In Figure 2, similarity can
be viewed in geometric terms — the closer items are
together in the plot, the more similar they are.
Thus, the most typical items for categories A and
B are those that are closest to the appropriate proto-
type. Accordingly, the prototype approach can ex-
plain why robins are more typical birds than
penguins. The bird prototype represents the aver-
age bird: has wings, has feathers, can fly, can sing,
lives in trees, lays eggs, etc. Robins share all of these
properties with the prototype, whereas penguins
differ in a number of ways (e.g. penguins cannot
fly, but do swim). Extending this line of reasoning,
the best example of a category should be the proto-
type, even if the actual prototype has never been
viewed (or does not even exist). Indeed, numerous
learning studies support this conjecture. After
viewing a series of examples of a category, human
participants are more likely to categorize the proto-
type as a category member (even though they never
actually viewed the prototype) than they are to
categorize an item they have seen before as a
category member.

Because the prototype approach does not repre-
sent concepts in terms of a logical rule that is either
satisfied or not, it can explain how category mem-
bership has a graded structure that is not all or
none. Some examples of a category are simply
better examples than other examples. Also, categor-
ies do not need to be defined in terms of logical
rules, but are rather defined in terms of family
resemblance to the prototype. In other words,

members of a category need not share a common
defining thread, but rather can have many charac-
teristic threads in common with one another.

The prototype approach, while preferable to the
rule approach for the reasons just discussed, does
fail to account for important aspects of human con-
cept learning. The main problem with the proto-
type model is that it does not retain enough
information about examples encountered in learn-
ing. For instance, prototypes do not store any infor-
mation about the frequency of each category, yet
people are sensitive to frequency information. If an
item was about equally similar to the prototype of
two different categories and one category was one
hundred times larger than the other, people would
be more likely to assign the item to the more
common category (under most circumstances).

People are also sensitive to the variability along
stimulus dimensions. To use Rips” example, a cir-
cular object with a 10 cm diameter may be more
similar to a US quarter (which is about 2.5 cm in
diameter) than to a pizza (which is much larger).
Nevertheless, the novel object is more likely to be
classified as a pizza than a quarter because quarters
display very little variability in their diameters
whereas pizzas can vary in size.

Finally, prototypes are not sensitive to the correl-
ations and substructure within a category. For
example, a prototype model would not be able to
represent that spoons tend to be large and made of
wood or small and made of steel. These two sub-
groups would simply be averaged together into
one prototype. This averaging makes some cat-
egories unlearnable with a prototype model. One
example of such a category structure is shown in
Figure 3. Each category consists of two subgroups.
Members of category A are either small and dark
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Figure 3. Two categories, each containing two sub-
groups.
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or they are large and light, whereas members of
category B are either large and dark or they are
small and light. The prototypes for the two categor-
ies are both in the centre of the stimulus space
(i.e. medium size and medium luminance). Items
cannot be classified correctly by which prototype
they are most similar to because the prototypes
provide little guidance.

In general, prototype models can only be used to
learn category structures that are linearly separable.
A learning problem involving two categories is lin-
early separable when a line or plane can be drawn
that separates all the members of the two categor-
ies. The category structure shown in Figure 2 is
linearly separable because a diagonal line can be
drawn that separates the category A and B
members (i.e. the category A members fall on one
side of the line and the category B members fall on
the other side of the line). Thus, this category struc-
ture can be learned with a prototype model. The
category structure illustrated in Figure 3 is non-
linear — no single line can be drawn to segregate
the category A and B members. Mathematically, a
category structure is linearly separable when there
exists a weighting of the feature dimensions that
yields an additive rule that correctly indicates one
category when the sum is below a chosen threshold
and the other category when the sum is above the
threshold.

The inability of the prototype model to learn
nonlinear category structures detracts from its
worth as a model of human concept learning be-
cause people are not biased against learning non-
linear category structures. Some nonlinear category
structures are actually easier to acquire than linear
category structures. For example, it seems quite
natural that small birds sing, whereas large birds
do not sing. Many categories have subtypes within
them that we naturally pick out. One way for the
prototype model to address this learnability prob-
lem is to include complex features that represent
the presence of multiple simple features (e.g. large
and blue). Unfortunately, this approach quickly
becomes unwieldy as the number of stimulus di-
mensions increases.

EXEMPLARS

Exemplar models address many of the shortcom-
ings of the prototype model. Exemplar models
store every training example in memory instead
of just the prototype (i.e. the summary) of each
category. By retaining all of the information from
training, exemplar models are sensitive to the fre-
quency, the variability, and the correlations among

items. For the learning problem illustrated in
Figure 2, an exemplar model would store every
training example. New items are classified by
how similar they are to all items in memory (not
just the prototype). For the category structure illus-
trated in Figure 2, the pairwise similarity of a novel
item and every stored item would be calculated.
If the novel item tended to be more similar to
the category A members (i.e. the item was small
and dark) than the category B members, then the
novel item would be classified as a member of
category A.

One aspect of exemplar models that seems coun-
terintuitive is their lack of any abstraction in
category representation. It seems that humans do
learn something more abstract about categories
than a list of examples. Surprisingly, exemplar
models are capable of displaying abstraction. For
instance, exemplar models can correctly predict
that humans more strongly endorse the underlying
prototype (even if it has not been seen) than an
actual item that has been studied (a piece of evi-
dence previously cited in favor of the prototype
model). How could this be possible without the
prototype actually being stored? It would be im-
possible if exemplar models simply functioned by
retrieving the exemplar in memory that was most
similar to the current item and classified the current
item in the same category as the retrieved exemplar
(this is essentially how processing works in a proto-
type model, except that a prototype is stored in
memory instead of a bunch of exemplars).

Instead, exemplar models engage in more so-
phisticated processing and calculate the similarity
between the current item (the item that is to be
classified) and every item in memory. Some exem-
plars in memory will be very similar to the current
item, whereas others will not be very similar. The
current item is classified in the category in which
the sum of its similarities to all the exemplars is
greatest. When a previously unseen prototype is
presented to an exemplar model it can be endorsed
as a category member more strongly than a previ-
ously seen item. The prototype (which is the central
tendency of the category) will tend to be somewhat
similar to every item in the category, whereas any
given non-prototype item will tend to be very simi-
lar to some items (especially itself!) in memory, but
not so similar to other items. Overall, the prototyp-
ical item can display an advantage over an item
that has actually been studied. Abstraction in an
exemplar model is indirect and results from pro-
cessing (i.e. calculating and summing pairwise
similarities), whereas abstraction in a prototype
model is rather direct (i.e. prototypes are stored).
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The exemplar model does seem to make some
questionable assumptions. For example, exemplar
models store every training example which seems
excessive. Also, every exemplar is retrieved from
memory every time an item is classified. In add-
ition to these assumptions, one worries that the
exemplar model does not make strong enough the-
oretical commitments because it retains all infor-
mation about training and contains a great deal of
flexibility in how it processes information. These
issues are currently being resolved by researchers.
On the whole, exemplar models seem to be a more
viable approach to understanding human concept
learning than existing prototype or rule-based ap-
proaches, but there is still room for further work.
(See Computational Models of Cognition: Con-
straining)

NEURAL NETWORK MODELS

Neural network models are intended to learn in a
manner analogous to how the brain learns. A
neural network consists of layers of neuron-like
units that connect to units in other layers. Units
can excite and inhibit one another across these con-
nections. An item is represented at the input layer
(the first layer) and passes activity to more ad-
vanced layers in the network until it reaches the
output layer which determines the category the
item is a member of (e.g. if the unit in the output
layer representing category B is the most activated,
then the item is classified as a member of category
B). Each unit integrates all the activity originating
from the layer below via its connections and passes
this summed activity through a transfer function to
generate its own output which is passed on to the
next layer. Figure 4 illustrates a feedforward neural
network with an input, hidden, and output layer.
(See Connectionism)

Output layer

Hidden layer

Input layer

Figure 4. A typical feedforward neural network.

The connections between units are altered as a
result of learning in order to minimize the predic-
tion error (i.e. the weights are altered in order to
correctly classify items). Sophisticated learning al-
gorithms dictate how the weights should be altered
as a result of learning. Neural networks with only
an input and output layer share many of the limi-
tations of the prototype model — they can only learn
linearly separable functions (i.e. simple category
structures). More complicated neural networks
with a hidden layer (and nonlinear transfer func-
tions) can learn just about any category structure.
However, neural networks of this variety are not
very good models of human concept learning be-
cause they tend to learn problems quickly that
people learn slowly and vice versa.

Neural network models that are conceptually
related to rule, prototype, and exemplar models
have been successful as models of human concept
learning. For example, the ALCOVE model re-
places the hidden layer in Figure 4 with encoded
exemplars. In other words, units in the hidden
layer are added as exemplars are encountered.
This exemplar neural network model, which com-
bines an exemplar representation of concepts with
the powerful learning algorithms of neural net-
works, does a good job of accounting for aspects
of human concept learning. The SUSTAIN model is
a neural network model that combines aspects of
both exemplar and prototype models. SUSTAIN
initially begins like a prototype model, but it can
store exemplars (which themselves can later evolve
into prototypes) when prediction errors occur.
For the problem illustrated in Figure 3, SUSTAIN
would form four prototypes that correspond to the
four clusters of items. The ability to store multiple
prototypes per category allows SUSTAIN to avoid
the problems that plague prototype models. Both
ALCOVE and SUSTAIN also incorporate rule-like
dynamics. These models learn to attend to the
most relevant stimulus dimensions and neglect
the less meaningful dimensions, much like how
rule models tend to focus on a limited number of
stimulus dimensions (e.g. if it is large, then it is in
category A).

CONCLUSIONS AND FUTURE
DIRECTIONS

From this brief review of concept learning models
we saw that the progression from rule models
to prototype models to exemplar models was
marked by a shift towards more concrete represen-
tations (i.e. more information about the training
examples is retained), greater fluidity (i.e. category
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boundaries are not seen as rigid), and more sophis-
ticated processing at decision time (exemplar
models are the quintessential case — all abstraction
is done after the training examples are encoded).
Although all three approaches have their short-
comings, they all reflect some aspects of human
concept learning. The successful neural network
models of concept learning retain characteristics
of all three approaches. Like the rule approach,
these neural network models acknowledge the util-
ity of strategically focusing on a subset of stimulus
dimensions. If a stimulus dimension is irrelevant to
a learning problem, the models will ignore the di-
mension and not be distracted by it. Like prototype
models, some of these neural network models
form abstractions which can assist generalization
and reduce storage requirements. Like exemplar
models, these neural network models are quite
fluid, can encode individual exemplars, and
engage in sophisticated processing at decision time.

One important aspect of concept learning that
these models do not address is the influence of
prior knowledge. Our prior knowledge exhibits
strong influences on what we learn from a series
of examples. For example, even if all the blue cars
on a mechanic’s lot have transmission problems
and none of the red cars do, the mechanic would
never predict that blue cars in general have trans-
mission problems. Certainly, the mechanic would

not paint a car red in the hope of repairing it. The
mechanic’s prior knowledge and theories of how
cars function preclude this association. Instead, the
mechanic is oriented towards more fruitful solu-
tions. One important challenge for concept learning
models is to illuminate how prior knowledge
affects our interpretation of examples. Conversely,
more work is needed in understanding how
examples we encounter affect our theories of the
world.
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