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The multifaceted nature of
unsupervised category learning

BRADLEY C. LOVE
University of Texas, Austin, Texas

A substantial portion of category-learningresearch has focused on one learning mode—namely, clas-
sification learning (a supervised learning mode). Subsequently, theories of category learning have fo-
cused on how the abstract structure of categories (i.e., the co-occurrence patterns of feature values)
affects acquisition. Recent work in supervised learning has shown that a learner’s interactions with the
stimulus set also plays an important role in acquisition. The present study extends this work to unsuper-
vised learning situations involving simple one-dimensional stimuli. The results suggest that catego-
rization performance is a function of both learning mode (i.e., study conditions) and learning problem
(i.e., category structure). Unsupervised learning, like supervised learning, appears to be multifaceted,
with different learning modes best paired with certain learning problems.

A great deal of category-learning research focuses on
how the structure of categories affects classification
learning (Estes, 1994; Heit, 1992; Kruschke, 1992; Medin
& Schaffer, 1978; Nosofsky, 1988). For example, Shep-
ard, Hovland, and Jenkins (1961) compared the relative
difficulty levels of six different assignments of eight
stimuli to two contrasting categories. The focus of such
studies is on characterizing the goodness of the mapping
from inputs (i.e., the representation of a stimulus) to out-
puts (i.e., the category membership of a stimulus). Re-
searchers vary the mapping of stimuli to categories in order
to evaluate theories of learning.

Similarly, modeling and quantitative efforts focus on
predicting the difficulty level associated with acquiring
different category structures. For example, category utility
(Corter & Gluck, 1992) explicitly measures the goodness
of a category partition (i.e., the assignment of stimuli to
categories), using an information theoretic measure. The
higher the goodness of the mapping, the easier it should
be for humans to acquire the category structure.

Recently, researchers have demonstrated that how a
learner interacts with the stimulus set also plays a major
role in determining how a category is acquired (Barsa-
lou, 1991; Goldstone, 1996; Medin, Lynch, Coley, &
Atran, 1997;Ross, 1997). This line of research examines
variables other than the structure of the stimulus set. A
related research program investigates how different
learning modes interact with different category struc-
tures (Love, Markman, & Yamauchi, 2000; Yamauchi,
Love, & Markman, 2002; Yamauchi & Markman, 1998).
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For example, Yamauchi et al. (2002) compared classifi-
cation and inference learning! and found that inference
learning is better suited to linear category structures,
whereas classification learning is a better match for non-
linear category structures. Such studies do not focus sim-
ply on the role of category structure but, instead, explore
which processes and aspects of the stimuli are stressed
by different learning modes. This work is critical in de-
veloping more general theories of category learning. Fo-
cusing on any single induction task (e.g., classification
learning) provides only one window into understanding
categorization (Love, 2001; Schank, Collins, & Hunter,
1986).

Interactions observed between learning mode and cat-
egory structure have largely involved complex stimuli
(i.e., multidimensional stimuli) and supervised learning
modes (i.e., subjects received corrective feedback on
their category assignments). These factors may have
made it more likely to observe the interactions. First,
complex stimuli have multiple dimensions, which allow
for selective attention, thus increasing the likelihood that
different learning modes will stress different aspects of
the stimulus set. Second, supervised learning is often
characterized as an active learning process, whereas un-
supervised learning is viewed as undirected, stimulus-
driven, incremental accrual of information (Berry &
Dienes, 1993; Cleermans, 1993; Hayes & Broadbent,
1988; Lewicki, 1986).2 On this view, more variation should
be seen across learning modes that are supervised, in
comparison with learning modes that are unsupervised.

In order to evaluate the pervasiveness of learning
mode and category structure interactions, in the present
experiment, two category structures composed of simple
one-dimensional stimuli were examined under four dif-
ferent unsupervised induction tasks. The four unsuper-
vised learning modes (which will be discussed below)
were intended to capture aspects of common real-world
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Figure 1. Two quasi-normal distributions (i.e., clusters) illus-
trating the stimuli seen by the subjects in the study phase of the
two-cluster learning problem. In the one-cluster problem, the
subjects were exposed only to stimuli drawn from the left distri-
bution.

learning situations. Predictions for each learning mode
were derived on the basis of which aspects of the stimu-
lus set were stressed. Observing strong interactions be-
tween learning mode and category structure in the ex-
periment (with simple stimuli and under unsupervised
learning) would demonstrate the pervasiveness of such
interactions. Furthermore, such a pattern of results would
indicate that unsupervised learning is multifaceted (as
supervised learning has been shown to be).

EXPERIMENT

In the experiment, learning problem (i.e., the category
structure) and learning mode (i.e., the unsupervised in-
duction task) were varied factorially. The subjects first
completed a study phase (the nature of which was deter-
mined by the learning mode). After completing the study
phase, the subjects completed the test phase. The test
phase was identical for all the subjects. In the test phase,
the subjects judged whether novel items were members
of the original category. The design allowed for a com-
parison of category learning performance across differ-
ent learning problems and modes.

Each stimulus consisted of a circle centered on a hor-
izontal line. The stimuli differed from one another in the
circle’s position along the line. The two category struc-
tures (one cluster and two clusters) examined are illus-
trated in Figure 1. In the one-cluster problem, the study
phase consisted of stimuli with circles toward the left
end of line. In the two-cluster problem, the study phase
consisted of stimuli with circles toward both the left and
the right ends of the line.3 Although these two learning
problems are simple, important differences are predicted
to occur across the four learning modes. Below, the four
learning modes are described, along with predictions for
the one-cluster and the two-cluster learning problems.

The Learning Modes
The explicit learning mode. Learning is intentional.
Subjects are instructed that they will view a series of
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stimuli that are all members of the same category. Sub-
jects are encouraged to discover the pattern or rule that
characterizes the category members. Although this
learning mode is unsupervised, because corrective feed-
back is not provided to help the learner discover the un-
derlying concept (i.e., the learner is simply exposed to
positive examples of the concept), subjects should still
engage in hypothesis testing and discover the pattern that
characterizes the study items. Given that the stimuli vary
on one dimension and the category structure for both
learning problems is relatively simple (i.e., the appropri-
ate rule is verbalizable; see Ashby, Queller, & Berretty,
1999, for a discussion of similar unsupervised learning
tasks under intentional conditions), learning under in-
tentional conditions should lead to excellent test phase
performance for both learning problems. In all condi-
tions, test phase performance is measured as the corre-
lation between each subject’s category endorsement
judgments and the actual frequency distribution of train-
ing items (see Figure 1). For example, if a subject en-
dorsed items toward the left end of the line in the one-
cluster condition, the subject’s correlation would be large
and positive.

The explicit learning mode is similar to classification
learning in that subjects are likely to perform hypothesis
testing and constructrules. The explicitlearning mode dif-
fers from classification learning in that no feedback is pro-
vided (learning is unsupervised) and only positive exam-
ples of the category are shown (i.e., there is no contrasting
category). Thus, the explicit learning mode is properly
characterized as unsupervised, because the learner must
discover the category structure without guidance (i.e., a
learner must be self-supervising). Many real-world learn-
ing problems may involve positive examples only.

The pleasantness learning mode. Learning is inci-
dental. Subjects are told that the purpose of the experi-
ment is to norm a set of stimuli for a future experiment
and that the experimenter needs the subject to rate the
pleasantness of each item. Performance should be excel-
lent for the two learning problems because, in order to
make a pleasantness rating, subjects must encode the
spatial position of the circle within each stimulus, be-
cause position is the only dimension that varies and is,
therefore, the only basis on which to make a pleasant-
ness rating. The information emphasized in the study
phase is exactly the information required for excellent
test phase performance. In many real-world learning sit-
uations, we are often exposed to information whose util-
ity is apparent only in a subsequent task.

The same/different learning mode. Learning is in-
cidental. Subjects are instructed that they will see two
letters appearing inside a circle and that they should de-
cide as quickly as possible whether the two letters are the
same or different. Subjects are told that the position of
the circle will vary so as to make the task more difficult.
Subjects are also told that the purpose of the experiment
is to determine how similar letters are to one another, so
that a future experiment can have precisely controlled
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stimuli (a cover story similar to that for the pleasantness
learning mode). The letters appear in lowercase white
type and are completely inscribed within the red circle.

As compared with both the explicit and the pleasant-
ness learning modes, test performance should be lower,
because the same/different letter judgments do not em-
phasize the encoding of spatial position. Although sub-
jects may note the position of the circle while making a
same/different judgment, the spatial position of the circle
(which defines the category) is irrelevant to the same/
different judgments. Position is a nuisance variable. This
contrasts with the pleasantness rating task, in which the
only basis for a rating is spatial position. Under the
same/different study conditions, one would expect that
the encoding of spatial position would be degraded, thus
reducing performance levels for both learning problems.

In particular, performance in the two-cluster learning
problem should suffer more than that in the one-cluster
problem. The one-cluster problem does not require that
position information should be as precise as in the two-
cluster problem. Thus, a subject’s performance in the
one-cluster problem should not be as strongly affected
by imprecise spatial position information. Beyond intu-
itions, Monte Carlo simulations confirm this conclusion.
A set of stimuli was created (see Figure 1), and the posi-
tion of the circle in each stimulus was perturbed ran-
domly to the left or the right. The perturbation was a ran-
dom variable drawn from a normal distribution (i.e.,
normally distributed noise). The noise represented the
effect of degraded spatial encoding. As the noise in-
creased (i.e., the standard deviation of the normal distri-
bution generating the noise is increased), the correlation
between the target frequency distribution (see Figure 1)
and the distribution resulting after the perturbation de-
creased. As was predicted, the correlation fell much
faster for the two-cluster problem than for the one-cluster
problem. In fact, at high noise levels, a moderate corre-
lation was observed for the one-cluster problem, whereas
the correlation for the two-cluster problem was not sig-
nificantly different from zero.

Outside the laboratory, there are numerous situations
in which category-relevant information is irrelevant in
the induction task. One example is a father washing his
child’s clothing. The father quickly sorts the clothing
into piles on the basis of color. Later, the daughter asks
the father if he washed her clothing or her older brother’s.
Even though the father was exposed to the size and style
of the clothing, the father may have difficulty answering
this question because of his focus on color.

The relative position learning mode. Learning is in-
cidental. Subjects are told that the experiment investi-
gates how the human perceptual system functions. Sub-
jects are instructed to judge whether the circle in the
current stimulus is to the left or to the right of the circle
in the previous stimulus. Test performance should suffer
because the relative position judgment does not empha-
size a stimulus’s spatial position; rather, it emphasizes
the spatial position of the circle relative to the position
of the circle in the previous stimulus. This focus should

especially hurt performance in the one-cluster problem.
In the one-cluster problem, the distribution of relative
distances of circle positions is uninformative (all dis-
tances are relatively small because all stimuli are drawn
from one quasi-normal distribution). Relative distance
information is not useful for localizing the position of
the cluster, which is critical for test performance. In the
two-cluster problem, the distributions of relative dis-
tances will be bimodal (roughly half the relative position
judgments will be for stimuli drawn from the same
quasi-normal distribution, and half will span the two
quasi-normal distributions). Only a two-cluster category
structure satisfies this distribution of relative distances
(i.e., the intended category structure). Thus, subjects
should not be greatly impaired in the two-cluster problem.

Instead of focusing subjects on the encoding of exem-
plars, the construction of rules, or the creation of cate-
gory abstractions, the relative position learning mode
focuses subjects on pairwise comparisons of stimuli.
This can have negative consequences for abstraction. For
example, a market researcher examining a list of prod-
ucts from some category may not be able to discover the
structure of the category by engaging in pairwise com-
parisons of products when all the products are perturba-
tions of an underlying prototype (i.e., differing slightly
from one another on value, quality of advertising, pack-
aging, etc.). The differences between the products do not
specify the underlying prototype. On the other hand, if
the products are naturally partitioned into two or more
centroids, structure discovery might occur from pairwise
comparisons. In such a case, the market researcher may
notice (without supervision) that one cluster of products
tends to be low cost, sparsely advertised, and address
basic needs, whereas another cluster of products tends to
be high cost, highly advertised, and frivolous.

Method

Subjects. One hundred thirty-three University of Texas under-
graduates participated for course credit.

Design. The two independent variables, learning mode (explicit,
pleasantness, same/different, or relative position) and learning
problem (one cluster or two clusters), were factorially combined in
a between-subjects design. After completing the study phase, the
subjects in all the conditions completed test trials that accessed
what category information was acquired during the study phase.

Apparatus. The experiment was run on Pentium III computers
operating in DOS. Data were collected using an in-house real-time
data collection system. The monitors had 15-in. CRT color displays
and a refresh rate of 16.67 msec.

Stimuli. Each stimulus (displayed on the monitor) depicted ared
circle with its center located on a white horizontal line. The back-
ground was black. The white horizontal line was approximately
10 cm long and subtended 9.5° of visual arc. In pixel values, the
horizontal line was 200 pixels long. The red circle had a radius of
10 pixels. The stimuli differed in circle position along the line. The
circle was never centered on the outer 10 pixels of either end of the
line (i.e., the circle never crossed either end of the line). The circles
could be centered at each of the 180 legal pixel positions. Thus,
there were 180 distinct stimuli.

Study phase procedure. Instructions and procedure varied de-
pending on which learning mode a subject was assigned. In all the
conditions, instructions were displayed on the computer monitor.



In all the conditions, the stimuli were constructed as described
above and were presented in a different random order for each sub-
ject. At the start of a trial, the stimulus was shown, and a tone
sounded after the subject responded. The stimulus remained dis-
played for 834 msec (50 screen refreshes), and then a blank screen
(all black) was shown for 834 msec. The learning modes differed
primarily in the task the subjects were instructed to perform. As-
pects of the instructions discussed in The Learning Modes section
will not be repeated here.

In the explicit learning conditions, the subjects were instructed to
press the space bar whenever they were ready to advance to the next
trial. After pressing the space bar, a positive tone sounded.

In the pleasantness conditions, the subjects rated pleasantness on
a 9-point scale (from 1 to 9, with 9 signifying a very pleasant stim-
ulus) by pressing the corresponding numeric key. After pressing
one of the keys, a positive tone sounded.

In the same/different conditions, the subjects judged whether two
letters were the same or different. The two letters were randomly
generated from the letters of the alphabet, with the constraint that,
on half the trials, the two letters were the same (same trials) and, on
half the trials, the two letters were different (different trials). In the
one-cluster problem, there was either one more same trial or one
more different trial, because the total number of trials was odd. The
ordering of same and different trials was random for each subject.
The subjects pressed the S key when they thought the two letters
were the same and pressed the D key when they thought the two let-
ters were different. After the subjects responded, a positive tone
sounded when they were correct, and a negative tone sounded when
they were incorrect.

In the relative position conditions, the subjects pressed the Q key
(on the left side of the keyboard) when they thought the current
stimulus’s circle was to the left of the previous stimulus’s circle. The
subjects pressed the P key (on the right side of the keyboard) when
they thought the current stimulus’s circle was to the right of the pre-
vious stimulus’s circle. After they responded, a positive tone
sounded when they were correct, and a negative tone sounded when
they were incorrect.

Learning problem stimulus distributions. Depending on the
learning problem (one cluster or two clusters), the stimuli tended to
contain a circle located toward the left end of the line or both ends
of the line. The line was divided into 18 qualitative regions in which
the circle could appear. Figure 1 displays two quasi-normal distri-
butions discretized into the 18 qualitative regions. The normal dis-
tribution was approximated with a discretized distribution that was
sampled without replacement, because an actual random sample
may not be representative of the underlying distribution when the
sample size is small (e.g., n = 39).

The two distributions shown in Figure 1 characterize the study
phase items shown in the two-cluster problem (i.e., the stimuli con-
tained circles appearing on both the left and the right ends of the line).
The stimulus frequencies are given by the bar heights in Figure 1. The
two distributions of circle positions are mirror images of one another.
The centers of the two quasi-normal distributions are 6.0 standard
deviations apart (a standard deviation is 20 pixels). The center of each
distribution is 2.0 standard deviations from the edge of the line (again,
circles were not centered on the 10 pixels closest to each end). Within
each quasi-normal distribution, 39 examples appeared during the
study phase (randomly sampled without replacement). Each stimulus
was constructed by randomly centering the circle on 1 of 10 pixel lo-
cations within the region (the uniform distribution was sampled).

In the one-cluster problem, the stimuli for the study trials were
drawn (without replacement) from only the left distributions in Fig-
ure 1. Thus, there were only 39 study trials for the one-cluster prob-
lem but 78 study trials for the two-cluster problem. In order to eval-
uate interactions between learning mode and learning problem, it
was preferable to confound learning problem and number of study
trials than to confound learning problem and number of study tri-
als per cluster.

CATEGORY LEARNING 193

Test phase instructions and procedure. The instructions and
procedure for the test phase were identical for all the conditions.
The subjects were told that the items viewed in Part 1 (the study
phase) were all members of the same category. The subjects were
told that they would now see a series of items, some of which were
members of the previous category, and some of which were not
members of the category. The subjects were instructed to judge the
membership of the new items the best they could, even if they were
not sure what the category was. The subjects rated the likelihood of
a stimulus’s category membership on a 9-point scale (from 1 to 9,
with 9 signifying likely membership) by pressing the corresponding
numeric key. After a response, a positive tone sounded. The stimu-
lus then was displayed for 843 msec (50 screen refreshes), and a
blank screen (all black) was displayed for 843 msec.

Test phase distributions. In the test phase, the subjects in all the
conditions experienced the same distribution of examples—namely,
auniform distribution spanning all 18 qualitative regions. As in the
study phase, each stimulus was constructed by centering the circle
at 1 of the 10 pixel locations (chosen randomly) within a qualitative
region. One stimulus was randomly sampled (without replacement)
from each of 18 qualitative regions. This procedure was repeated
twice, for a total of 54 test trials.

Results

Mean category endorsement judgments (averaged
over subjects) are shown in Figure 2. The subjects’ test
phase category judgments were analyzed. For each sub-
ject, the correlation between the subject’s mean category
endorsement judgment for each of the 18 qualitative re-
gions and the actual frequency distribution from the
study phase (see Figure 1) was calculated * The mean of
these correlations for each of the eight conditions is
shown in Table 1. The proportion of subjects displaying
statistically significant positive correlations at the .05
alphalevel (two tailed) is displayed in Table 2. The count
data shown in Table 2 are analyzed here. These nonpara-
metric analyses are not subject to concerns (e.g., skew,
restricted range) that could arise in analyzing the corre-
lations shown in Table 1 (although such analyses lead to
the same conclusions).

One key prediction of the experiment is that different
learning modes should stress different aspects of the
stimulus set. This prediction should manifest itself in
differences in performance across learning modes, as
well as in an interaction between learning mode and
learning problem. All predictions were confirmed.

Both main effects were significant. A greater propor-
tion of subjects (43 of 64 vs. 31 of 69) achieved signifi-
cant (and positive) correlations in the one-cluster learn-
ing problem, as compared with the two-cluster learning
problem [¥2(1, N =133) = 6.67, p <.01]. A main effect
was also found for learning mode [¥2(1, N = 133) =
11.86, p < .001]. To evaluate the interaction between
learning problem and learning mode, a log linear model
was fit to the data. In the present context, fitting the log
linear model is analogous to performing a 2 X 2 X 4 y2
test (see Haberman, 1972, for more information). As was
predicted, the interaction between learning problem and
learning mode was significant [¥2(3, N = 133) = 11.35,
p < .01]. The interaction was driven principally by the
same/different and relative position learning modes.
When only these two learning modes are considered, the
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Figure 2. The mean of the subjects’ category endorsement ratings for the 18 regions for each of the eight con-
ditions. Care should be taken in interpreting averaged data. For example, the relative position two-cluster condi-
tion plot results from a mix of two patterns of endorsement judgments. One pattern correlates highly with the
studied distribution. The other pattern involves endorsing stimulus items with circles falling toward the right end
of the line (subjects’ default strategy).

interaction remains significant [y2(1, N=68)=8.73,p < mance levels were high in the same/different and the rel-
.01]. ative position judgment tasks. The subjects’ pleasantness

The subjects’ performance in the study phase is not ratings (for both the one- and the two-cluster problems)
formally analyzed here. It suffices to say that the perfor-  were higher for circle position toward the right end of the



Table 1
The Means of Subjects’ Individual Correlations for Each
Condition (With Standard Errors of the Means)

One Cluster Two Clusters
Learning Mode M SE M SE
Explicit .67 .11 .36 110
Pleasantness 42 17 49 .081
Same/different 45 .14 —.01 .085
Relative position .07 .16 29 .097

line; thus, the study phase responses themselves were not
likely to serve as the basis for test phase category mem-
bership ratings.

Discussion

Even in the domain of unsupervised learning with
one-dimensional stimuli, how a learner approaches the
stimulus set plays a large role in determining what is ac-
quired. The present findings suggest that interactions be-
tween learning mode and learning problem are not the
exception, but the rule. In the present study, performance
was maximal when learning mode and learning problem
were well paired.

Precise encoding of spatial position was emphasized
in both the explicit learning mode (intentional learning)
and the pleasantness learning mode (incidental learning).
Subsequently, the subjects performed at high levels. The
subjects in the same/different learning mode, which did
not stress the precise encoding of spatial position, per-
formed at lower levels, particularly on the two-cluster
problem, which required more precise encoding of spatial
position (as evidenced through intuition and Monte Carlo
simulations; see The Learning Modes section above). The
subjects in the relative position learning mode, which
stressed encoding of relative distances between stimuli,
and not the absolute spatial positions, also performed at
lower levels. Interestingly, this deficit was not as pro-
nounced for the two-cluster problem. In the relative posi-
tion two-cluster condition, relative distance information
can support categorization judgments—the distribution of
relative distances is bimodal, and this distribution uniquely
indicates a two-cluster category structure (see The Learn-
ing Modes section).

In contrast to the present study, the majority of category-
learning studies do not explore interactions between
learning mode and learning problem. Instead, the ma-
jority of studies focus on one mode of acquisition—
namely, classification learning (e.g., Shepard et al.,
1961). Examining a single learning mode allows re-
searchers to focus on the role the abstract structure of the
stimulus set plays in learning. However, the present re-
sults demonstrate that general statements about problem
difficulty cannot be made without regard to learning
mode. The present results suggest that theories of learn-
ing need to address the interaction of learning mode and
learning problem in order to explain human learning
across a range of typical learning environments.
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Interestingly, the present results are not easily addressed
by positing multiple memory or learning systems (e.g.,
Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Cohen
& Eichenbaum, 1993; Squire, 1992). For instance, posit-
ing implicit and explicit memory systems does not ex-
plain the results, because there is no possible way to
label the four learning modes as either implicit or ex-
plicit and make general statements about what is learn-
able implicitly versus explicitly. For example, if the three
incidental conditions are labeled as implicit learning
tasks, there is a case in which difficulties arise in learn-
ing the two-cluster problem (the same/different learning
mode), a case in which the one-cluster problem presents
difficulties relative to the other learning modes (the rel-
ative position learning mode), and a case in which both
problems are mastered (the pleasantness learning mode).
However, the present results do suggest that learning
(and possibly memory) is multifaceted (even in the con-
text of unsupervised learning). Perhaps the answer lies in
a synthesis of multiple memory systems theories and
transfer-appropriate processing theories (e.g., Jacoby,
1983; Roediger, Weldon, & Challis, 1989) in which mem-
ory systems are defined by the processes they subserve.

The present results are also particularly challenging
for current learning models. The machine-learning com-
munity views unsupervised learning as a density esti-
mation problem akin to estimating the joint probability
distribution of all features (i.e., all possible parameters
are estimated), whereas supervised learning is viewed as
more focused, with only the conditional probabilities as-
sociated with the category label requiring estimation
(Dayan & Hinton, 1996). Similar views permeate the
psychology literature and have, in turn, influenced mod-
els of human learning. Unsupervised learning is viewed
as engaging fairly automatic processes that estimate
joint frequency distributions (Hock, Malcus, & Hasher,
1986; Kellogg, 1982) and these views are reflected in
learning and memory models (J. A. Anderson, Silver-
stein, Ritz, & Jones, 1977; McClelland & Rumelhart,
1985). The results presented here suggest that these ap-
proaches do not address all of the key phenomena.

Alternative views of unsupervised learning posit that
human learners actively discover categories embedded
within the stimulus set (J. R. Anderson, 1991; Clapper &
Bower, 1991; Love, Medin, & Gureckis, in press). Cate-
gory discovery models fare no better with respect to the

Table 2
The Proportion of Subjects With Individual Correlations
Above .47 (the Minimum Positive Correlation Necessary
for Significance at the .05 Alpha Level, Two-Tailed)
for Each Condition

Learning Mode One Cluster Two Clusters
Explicit .93 (14/15) .53(9/17)
Pleasantness 73 (11/15) .67 (12/18)
Same/different 71.(12/17) .13 (2/16)
Relative position .35(6/17) .44 (8/18)
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present data. These models induce a new category (or
cluster) when the current stimulus is not sufficiently
similar to any existing category. Like existing models of
supervised learning (e.g., Kruschke, 1992; Nosofsky,
Palmeri, & McKinley, 1994), these unsupervised learn-
ing models are sensitive to the structure of the stimulus
set (i.e., the learning problem) but are not sensitive to the
learning mode. Even SUSTAIN (Love et al., 2000; Love
& Medin, 1998), which can account for data from mul-
tiple learning modes (e.g., unsupervised correlation learn-
ing, unsupervised sorting, classification learning, and
inference learning) because of its sensitivity to both the
structure of the stimulus set and the overall pattern of the
feedback, cannot address the present data. SUSTAIN
fails because the pattern of feedback does not vary in the
present study (there is no category-relevant feedback).

One way to model the present data is to fit the data
from each learning mode with a unique set of parameters
(cf. Nosofsky & Zaki, 1998). For example, parameters re-
lated to encoding sensitivity could be reduced in the same/
different conditions. Such an approach would probably
meet with modest success, but ideally models would
serve a greater explanatory role and their behavior would
be tailored to the current learning situation without in-
tervention from the modeler. Another potential problem
is that parameter differences are unlikely to be informa-
tive in all cases.

What is really needed are models that take issues of
processing and representation to heart. How is the stim-
ulus represented? How does the current task affect the
stimulus’s representation? These basic psychological is-
sues are not addressed by models that consider only the
abstract structure of the stimulus set.
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NOTES

1. Inference learning is a supervised learning mode (like classifica-
tion learning). Unlike classification learning, learners are given the cat-
egory membership of a stimulus and are asked to infer the value of an
unknown dimension (e.g., “This is a bird, do you think it has wings?”).
On different trials, different dimensions are unknown and queried. After
corrective feedback is received, the entire stimulus representation is
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known (as in classification learning). In fact, after feedback, inference
and classification learning are informationally equivalent.

2. See Whittlesea and Dorken (1993) for an opposing view.

3. In addition to these two learning problems, pilot subjects com-
pleted an alternative form of the one-cluster problem, in which the one
cluster was centered toward the right of the line. This learning problem
was not pursued further because it was discovered that subjects are bi-
ased to endorse stimuli that lie toward the right end of the line (even in
the absence of training). The learning problems included in the experi-
ment provide a more conservative measure of category-learning per-
formance.

4. Seven subjects gave the same rating for each of the 18 regions. For
these subjects, the correlation was defined to be zero. Excluding these
subjects does not change the pattern of data.

(Manuscript received May 30, 2001;
revision accepted for publication March 1,2002.)
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