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How can disparate neural and
behavioral measures be inte-
grated? Turner and colleagues pro-
pose joint modeling as a solution.
Joint modeling mutually constrains
the interpretation of brain and
behavioral measures by exploiting
their covariation structure. Simulta-
neous estimation allows for more
accurate prediction than would be
possible by considering thesemea-
sures in isolation.

Perhaps the key theoretical challenge in
cognitive neuroscience is to bridge levels
of analysis, linking brain and behavior in a
mutually explanatory manner. This inte-
gration would help answer fundamental
questions like how neural activity gives rise
to behavior and what basic processes
underlie unique human abilities. Unfortu-
nately, the chasm between behavior and
neural activity is wide. Moreover, the
[1_TD$DIFF]‘languages [2_TD$DIFF]’ of these two types of data
are different. Behavior is measured in
terms of choice and response time,
whereas neural activity is measured by
spiking activity or blood-oxygen-level
dependent (BOLD) signal in fMRI, for
example.

One possible bridge between behavior
and brain are cognitive models. Cogni-
tive models are simple mathematical for-
malisms that embody psychological
principles and are often evaluated by
their ability to account for behavioral
data. The mechanisms in these models
can both be related to behavior and to
neural measures (see [1] for a recent
review), thus providing a possible
bridge.

One straightforward bridging method is to
fit a cognitive model to a participant's
behavioral data, such as the responses
made during a learning task. Then, internal
measures from the cognitive model, such
as the degree the model updates internal
representations on a learning trial, can be
related to brain activity using standard
statistical techniques (e.g., [2]). Brain
areas that show a rise and fall in activity
along with the model measure are possi-
ble candidates for implementing that men-
tal process.

Related techniques, such as Representa-
tional Similarity Analysis [3], can evaluate
the agreement between a model and a
brain region in a multivariate manner.
Other approaches ground aspects of
cognitive models in specific brain regions
and use measurements from these
regions to adjust parameter values in
the model, which in turn drives the behav-
ioral predictions of the model (e.g., [4]).
Finally, model decoding approaches
decipher patterns of brain activation to
select which model out of a set of com-
peting cognitive models is most consis-
tent with brain activity [5].

All of these approaches are useful in bridg-
ing the chasm between brain and behavior
and have their place. However, none of
these approaches allow for simultaneous
inferences to be made about brain and
behavior. For example, fitting a cognitive
model to behavioral data and then using a
model measure to help analyze brain
activity is a staged analysis in which infor-
mation flows in one direction, namely from
behavior to model parameter values to
brain analysis. In some situations, it would
be advantageous to make simultaneous
inferences about both behavior and brain
measures.

Recent work by Turner and colleagues
addresses this challenge with a powerful
new method, joint modeling, that allows
for simultaneous integration of behavioral
and multiple neural measures [6]. The
hope of joint modeling is that simultaneous

integration will enable multiple imperfect
measures to mutually constrain one
another. For example, electroencephalog-
raphy (EEG) and fMRI have complemen-
tary strengths and weaknesses in terms of
temporal and spatial resolution. Integrat-
ing these two brain measures, along with
behavior, may provide a more accurate
assessment than would be possible by
considering each measure in isolation.

Joint modeling is sophisticated in that it is
formulated within a hierarchical Bayesian
framework, but its basic premise is
straightforward – Simple correlations
across different measures drive predic-
tion. To make an analogy, knowing some-
one's weight can be useful in inferring the
person's height. Likewise, given noisy
measurements of both height and weight,
one could use prior information about
what people's heights and weights tend
to be and how they correlate in order to
adjust estimates of both measures to
improve accuracy. Joint modeling is not
limited to two measures, such that other
measures (e.g., gender) could also be
included in the covariation structure. Joint
modeling's linkage of disparate measures
via covariation structure allows for the
simultaneous interpretation of multiple
measures and for assessment of how dif-
ferent measures relate (e.g., how a cogni-
tive model's parameter correlates with
brain activity in some region).

In Turner and colleagues’ contribution,
joint modeling is applied to an intertem-
poral choice task in which participants
choose between an immediate reward
and a larger delayed reward. Three
[1_TD$DIFF]‘submodels [2_TD$DIFF]’ are considered, one for
behavior, EEG, and fMRI data. The
behavioral data (choice and response
time) is fit by a cognitive model, the Linear
Ballistic Accumulator (LBA; [7]), that links
a parameter value to predicted behavior.
Typically, LBA is fitted to behavior without
consideration of brain measures. The
other two submodels for the EEG and
fMRI data involve standard statistical
analyses.
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These multiple measures are linked
through their covariation structure. As
experimental conditions are altered (e.
g., the payoff for a delayed reward
increases), the parameters in the cogni-
tive model will change along with brain
activity in dorsal medial frontal cortex
(dmFC) as measured by EEG and fMRI.
Using the correlations across these three
measures, one can glean amore accurate
estimate of each measure than by con-
sidering the measures in isolation. For
example, higher dmFC activity on a trial
may imply that the cognitive model
parameter should be adjusted upward,
which will improve the quality of model's
prediction for that trial. Indeed, Turner and
colleagues demonstrate that behavior is
better predicted through joint modeling
than fitting the cognitive model to behav-
ior alone. Furthermore, using the covaria-
tion structure, missing neural measures
can be predicted using the remaining
information (e.g., the EEG signal can be

inferred using observed behavioral and
fMRI information).

In summary, joint modeling offers an excit-
ing method for simultaneously integrating
multiple disparate measures to improve
prediction. Rather than information flow-
ing in one direction (e.g., from cognitive
model to brain analysis or vice versa), joint
modeling involves simultaneous estima-
tion. When this mixing and linkage of data
sources (e.g., fMRI and behavior) is desir-
able, joint modeling provides leverage for
measures that correlate. In other cases,
depending on one's goal, staging analy-
ses using other methods may be prefera-
ble. What is clear is that joint modeling is
an exciting development in the innovative
and burgeoning area of model-based
cognitive neuroscience. The overarching
goal of this area of work is to bridge brain
and behavior by utilizing both theoretical
and data constraints across levels of
analysis.
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