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Abstract

Human categorization research is dominated by
work in classi�cation learning. The �eld may be
in danger of equating the classi�cation learning
paradigm with the more general phenomenon of
category learning. This paper compares classi�-
cation and inference learning and �nds that dif-
ferent patterns of behavior emerge depending on
which learning mode is engaged. Inference learn-
ing tends to focus subjects on the internal struc-
ture of each category, while classi�cation learning
highlights information that discriminates between
the categories. The data suggest that di�erent
learning modes lead to the formation of di�erent
internal representations. SUSTAIN successfully
models inference and classi�cation learning by de-
veloping di�erent internal representations for dif-
ferent learning modes. Other models do not fair
as well.

Introduction

Categorization is central to our mental lives. We use
categories to order our experiences and to make predic-
tions which in turn govern our behavior. This paper
explores the relationship between classi�cation and in-
ference learning in order to increase the generality and
applicability of models of human category learning. Un-
fortunately, the �eld seems to be moving in the opposite
direction towards special purpose models of learning
that are �rst and foremost models of classi�cation learn-
ing (c.f., Schank, Collins, & Hunter, 1986). Although
category learning researchers have made tremendous
headway in developing models and theories of learning
by focusing on classi�cation learning, the �eld may be in
danger of equating the classi�cation learning paradigm
with the more general phenomenon of category learn-
ing.
In a typical classi�cation learning experiment, the

subject learns to assign simple geometric stimuli con-
sisting of a few binary valued dimensions to one of two
mutually exclusive arti�cial categories. On each trial,
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the subject infers the category membership of a stimu-
lus item and then receives feedback indicating whether
the category assignment was correct. In classi�cation
learning, subjects tend to focus on information that
discriminates between the categories, receive feedback,
search for rules and store exemplars that are exceptions
to the rules, perform hypothesis testing, exhibit sharp
drops in their error rates (all or none learning), and
are consciously aware of the rules they are entertaining
(c.f., Nosofsky, Palmeri, & McKinley, 1994). Clearly
this task is not representative of the majority of real
world learning situations. No single laboratory task
can hope to address all facets of category learning.

Here, instead of focusing on classi�cation learning, we
examine the relationship between two closely related
learning modes: classi�cation and inference learning.
Classi�cation and inference learning are are conceptu-
ally similar, but di�er in that inference learning tends to
focus subjects on the internal structure of each category
as opposed to information that discriminates between
the categories. In inference learning, subjects predict
(i.e., infer) the value of an unknown stimulus dimen-
sion instead of predicting the category label as subjects
do in classi�cation learning (in inference learning, the
category label is given on every trial). The unknown
dimension varies from trial to trial such that on one
trial a subject may infer the size of an item and on the
next trial the subject may infer the shape of an item.
Like classi�cation learning, the subject is given feed-
back after making a response (i.e., both classi�cation
and inference learning are supervised).

Yamauchi and Markman's data (1998), henceforth
referred to as YM, suggest that inference and classi-
�cation learning have di�erent informational demands
that result in di�erent internal representations being
acquired. YM argue that subjects performing classi�-
cation are more likely to focus on stimulus dimensions
that discriminate between categories, to perform hy-
pothesis testing, and to store exemplars than they are
when engaging in inference learning. YM argue that
subjects in an inference learning task focus on the pro-
totype of each category, which should make inference
learning easier than classi�cation learning for problems
that have well de�ned prototypes. YM found that sub-



Table 1: The stimulus structure for Yamauchi and
Markman's (1998) studies. The stimulus dimension
were form, size, color, and position.
Category A Category B

1110 0001
1101 0010
1011 0100
0111 1000

jects master the family resemblance problem illustrated
in Table 1 (a linear problem in which each category has
an underlying prototype that separates the two cate-
gories) faster as an inference learning problem than as
a classi�cation learning problem. Subjects were also
more sensitive to the underlying prototypes in inference
learning. Interestingly, subjects engaging in inference
learning followed by classi�cation learning made fewer
errors than the reverse order.
Recent results with non-linear categories support

YM's conclusion that inference learning focuses sub-
jects on the prototypes of each category, while clas-
si�cation learning focuses subjects on discriminating
stimulus dimensions. Yamauchi, Love, and Markman
(2000) found that a classi�cation learning advantage
arises when non-linear categories are used (the logical
structure is shown in Table 2). In the case of non-linear
categories, the prototype of each category is not suÆ-
cient to separate the categories. Therefore, focusing
on the category prototypes should be detrimental and
inference learning performance should su�er.
Even though the exemplars are the same in both

inference and category learning and the information
content of the trials is the same, di�erent represen-
tations and radically di�erent patterns of performance
emerge. There is no strong a priori reason to favor in-
ference learning or classi�cation learning over the other
and therefore it is important to be able to account for
data from both learning modes within a single category
learning model.
YM report that Generalized Context Model (Nosof-

sky 1986), a type of exemplar model (e.g., Hintzman,
1986; Kruschke, 1992), and the rational model (An-
derson 1991) cannot account for their results. In the
remainder of this paper, we evaluate whether SUS-
TAIN (Supervised and Unsupervised STrati�ed Adap-
tive Incremental Network) can model the results suc-
cessively. SUSTAIN has successfully modeled classic
studies of classi�cation learning, learning at di�erent
levels of abstraction as expertise varies, sorting tasks,
and unsupervised learning using the same set of param-
eters (Love & Medin 1998b; 1998a). If SUSTAIN can
account for YM's �ndings, it would represent an impor-
tant step towards a unifying model of human category
learning that could be applied to a variety of learning
modes (e.g., classi�cation, inference, and unsupervised
category learning). To foreshadow the results, SUS-
TAIN can capture inference learning using the same

Table 2: The stimulus structure for Yamauchi et al.'s
(2000) studies. The stimulus dimension were form, size,
color, and position.
Category A Category B

1111 1101
1100 0110
0011 1000

parameters used to model classi�cation learning and
its solution is consistent with YM's interpretation of
their results. SUSTAIN also predicts the reversal that
Yamauchi et al. (2000) observed with non-linear cate-
gories.

Overview of SUSTAIN

SUSTAIN is a clustering model that adaptively modi�es
its architecture during learning. When items are clus-
tered together inappropriately (i.e., similar items from
incompatible categories are placed in the same cluster),
SUSTAIN adds a new cluster in memory to encode the
misclassi�ed item. For example, if SUSTAIN is applied
to stimulus items and classi�es them as members of the
category mammal or the category bird it will develop
one or more clusters (i.e., prototypes) for the bird cate-
gory and one or more clusters for the mammal category.
When SUSTAIN classi�es a bat for the �rst time, the
bat item will strongly activate a bird cluster because
bats are similar to birds (both bats and birds are small,
have wings, and 
y). After incorrectly classifying the
bat as a bird, SUSTAIN will create a new cluster to
encode the misclassi�ed bat item. The next time SUS-
TAIN classi�es a bat, this new cluster will compete with
the other clusters and will be the most strongly acti-
vated cluster (i.e., it will be more similar to the current
stimulus than any other cluster), leading SUSTAIN to
correctly classify the novel bat as a mammal and not
as a bird. The new cluster would then become a bat
prototype (a subcategory of mammal). Categories in
SUSTAIN consist of one or more clusters (i.e., subcat-
egories).
The method for adding units in SUSTAIN is psycho-

logically motivated by the intuition that people ignore
di�erences when they can (a bias towards simple solu-
tions), but will note di�erences when forced to by envi-
ronmental feedback (Medin, Wattenmaker, & Michal-
ski, 1987; Ahn & Medin, 1992). At a more general
level, SUSTAIN (like the ARTMAP model of Carpen-
ter, Grossberg, and Reynolds, 1991) expands its archi-
tecture when observed inputs do not match top down
expectancies.

SUSTAIN's Architecture

SUSTAIN consists of four layers: input, attention, sub-
category, and category (see Figure 1). Input layer units
take on real values to encode information about the en-
vironment (e.g., the encoding of a stimulus item that
needs to be classi�ed as a member of category \A" or
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The Decision Procedure

Stimulus Encoding

Input Input
Unit 2

Input
Unit 1 Unit 3

Subcategory Unit 1 Subcategory Unit 2 Subcategory Unit 3

The Heart of SUSTAIN

Category Unit 1 and 2’s Output

Response "A"
Category Unit 2
Response "B"

Category Unit 1

Attentional Mechanism

Figure 1: SUSTAIN's architecture is shown. Connec-
tions terminating in open circles are inhibitory connec-
tions while connections terminating in solid circles are
excitatory. Arrows are intended to illustrate informa-
tion 
ow.

\B"). In Figure 1, there are three binary valued stim-
ulus dimensions represented by three input units. The
three dimensions are dimension 1: size (small or large),
dimension 2: shape (triangle or square), and dimension
3: luminance (light or dark). For example, the third in-
put unit represents the luminance of a stimulus: a value
of 0 denotes a light object, while a value of 1 denotes
a dark object. A small triangle that is dark is located
at the point (0, 0, 1) in the three dimensional represen-
tational space and is represented by the input pattern
(0, 0, 1). The attention mechanism (pictured above
the input layer in Figure 1) weights dimensions, mak-
ing dimensions that are critical to classi�cation more
salient (SUSTAIN learns which dimensions to attend
to). The implementation of the attentional mechanism
is inspired by the operation of neuronal receptive �elds.
Each dimension has a receptive �eld. Dimensions that
provide reliable information, and therefore are highly
attended, develop peaked and narrow receptive �elds
(i.e., they develop a sharp tuning). In Figure 1, the
�rst two dimensions (i.e., size and shape) are highly
attended.

Units in the subcategory layer encode the prototypes
and exceptions of the category units (i.e., the categories'
clusters). SUSTAIN does not make a distinction be-
tween encoding exceptions and prototypes. A subcate-
gory unit encoding a prototype is simply a unit that re-
sponds strongly to multiple items (i.e., input patterns)
while a subcategory unit encoding an exception only
responds strongly to one item. In Figure 2, two subcat-
egory units are dedicated to representing category \A".
These two units (subcategory units 1 and 2) have an

excitatory connection to the category unit representing
response \A" (each subcategory unit predicts response
\A" when strongly activated). Only subcategory unit
3 is used to represent category \B". Subcategory units
compete with one another to respond to patterns at the
input layer (notice the inhibitory connections between
subcategory units) with the winner being reinforced.
The winning subcategory unit is the unit that is most
highly activated by the current input pattern (i.e., the
subcategory unit that is the most similar to the cur-
rent stimulus). A subcategory unit is highly activated
when an input pattern falls close to it in representa-
tional space. For example if a subcategory unit is cen-
tered at the point (.9, .8, .1) in three dimensional repre-
sentational space, the majority of the clusters members
would be large, square, and light. Therefore, a large
lightly colored square would highly activate the clus-
ter. When a subcategory unit is highly activated and
\wins", it moves closer to the current input pattern
(according to the Kohonen, 1984, unsupervised learn-
ing rule), minimizing the distance between its position
and the input pattern. In e�ect, the correction makes
the prototype more similar to the current input pat-
tern (the cluster position is a running average of each
member's position).
One novel aspect of SUSTAIN is that this unsuper-

vised learning procedure is combined with a supervised
procedure. When a subcategory unit responds strongly
to an input pattern (i.e., it is the winner) and has an ex-
citatory connection to the inappropriate category unit
(e.g., the subcategory unit predicts \A" and the correct
answer is \B"), the network shuts o� the subcategory
unit and recruits a new subcategory unit that responds
maximally to the misclassi�ed input pattern (i.e., the
new unit is centered upon the input pattern). The pro-
cess continues with the new unit competing with the
other subcategory units to respond to input patterns.
As previously stated, the winner's position is updated,
as well as its connections to the category units by the
one layer delta learning rule (Rumelhart, Hinton, &
Williams, 1986). For example, if subcategory unit 1
is the winner, its connection to category unit 1 would
be incremented, while its connection to category unit 2
would be decremented (i.e., it would become more neg-
ative). At a minimum, there must be as many subcat-
egory units as category units when category responses
are mutually exclusive.
In SUSTAIN, inference learning is assumed to engage

the same processes as classi�cation learning, though
di�erent internal representations (i.e., clusters) can
emerge depending on which learning mode is engaged.
A category unit is constructed for each dimension that
is inferred in training (analogous to how a category unit
is constructed for each category label that is inferred
in classi�cation learning). When an incorrect predic-
tion is made (think back to the bats/birds/mammals
example), a new subcategory unit (i.e., cluster) is re-
cruited in the same fashion as in classi�cation learning.
The unknown stimulus dimension is simply ignored by



SUSTAIN for the purposes of subcategory unit activa-
tion. After feedback is provided, the missing stimulus
information is �lled in for the purposes of learning.

Mathematical Formulation
Receptive �elds (which implement the attentional
mechanism) have an exponential shape with a recep-
tive �eld's response decreasing exponentially as dis-
tance from its center increases:

�(�) = �e
��� (1)

where � is the tuning of the receptive �eld, � is the
distance of the stimulus from the center of the �eld,
and �(�) denotes the response of the receptive �eld to
a stimulus falling � units from the center of the �eld.
The choice of exponentially shaped receptive �elds is
motivated by Shephard's (1987) work on stimulus gen-
eralization.
While receptive �elds with di�erent � have di�erent

shapes, for any �, the area \underneath" a receptive
�eld is constant:Z

1

0

�(�)d� =

Z
1

0

�e
���

d� = 1: (2)

For a given �, the � that maximizes �(�) can be com-
puted by di�erentiating:

@�

@�
= e

��� (1� ��) : (3)

These properties of exponentials prove useful in formu-
lating SUSTAIN.
The activation of a subcategory unit is given by:

AHj
=

Pn

i=1(�i)
r
e
��i�ijPn

i=1(�i)
r

(4)

where n is the number of input units, �i is the tun-
ing of the receptive �eld for the ith input dimension,
�ij is the distance between subcategory unit j's posi-
tion in the ith dimension and the output of the ith
input unit (distance is simply the absolute value of the
di�erence of these two terms), and r is an attentional
parameter (always nonnegative). When r is high, input
units with tighter tunings (units that seem relevant)
dominate the activation function. Dimensions that are
highly attended to have larger �s and will have greater
importance in determining the subcategory units' ac-
tivation values. Increasing r simply accentuates this
e�ect. If r is set to zero, every dimension receives equal
attention. Equation 4 sums the responses of the recep-
tive �elds for each input dimension and normalizes the
sum (again, highly attended dimensions weigh heavily).
The activation of a subcategory unit is bound between
0 (exclusive) and 1 (inclusive).
Subcategory units compete to respond to input pat-

terns and in turn inhibit one another. When many sub-
category units are strongly activated, the output of the
winning unit is less. Units inhibit each other according
to:

OHj
=

(AHj
)�Pm

i=1(AHi
)�
AHj

(5)

where � is the lateral inhibition parameter (always non-
negative) and m is the number of subcategory units.
When � is small, competing units strongly inhibit the
winner. When � is high the winner is weakly inhibited.
Units other than the winner have their output set to
zero. Equation 5 is a straightforward method for im-
plementing lateral inhibition. It is a high level descrip-
tion of an iterative process where units send signals to
each other across inhibitory connections. Psychologi-
cally, Equation 5 signi�es that competing alternatives
will reduce con�dence in a choice (re
ected in a lower
output value). The value of the winner's output has
rami�cations for the activation of category units and
the reinforcement of connections between the winner
and category units (this will be explicated in Equa-
tions 7 and 12).
Activation is spread from the winning subcategory

unit to the category units:

ACk
= OHj

wjk (6)

where ACk
is the activation of the kth category unit and

OHj
is the output of the winning subcategory unit. A

winning subcategory unit (especially one that did not
have many competitors and is similar to the current
input pattern) that has a large positive connection to a
category unit will strongly activate the category unit.
The output of a category unit is given by:

if (Ck is nominal and jACk
j > 1), then OCk

=
ACk

jACk
j

else OCk
= ACk

(7)
where OCk

is the output of the kth category unit. If
the feedback given to subjects concerning Ck is nominal
(e.g., the item is in category \A" not \B"), then Ck is
nominal. Kruschke (1992) refers to this kind of teaching
signal as a \humble teacher" and explains when its use
is appropriate.
The following equation introduced by Ashby & Mad-

dox (1993) determines the response probabilities (for
nominal classi�cations):

Pr(k) =
(OCk

+ 1)dPp

i=1(OCi
+ 1)d

(8)

where d is a response parameter (always nonnegative)
and p is the number of category units. When d is
high, accuracy is stressed and the category unit with
the largest output is almost always chosen. In Equa-
tion 8, one is added to each category unit's output to
avoid performing calculations over negative numbers.
The Luce choice rule is a special case (d = 1) of this
decision rule (Luce, 1959).
After feedback is provided by the \experimenter", if

the winner predicts the wrong category, its output is
set to zero and a new unit is recruited:

for all j and k, if (tkwjk < 0), then recruit a new unit
(9)

where tk is the target value for category unit k and wjk
is the weight from subcategory unit j to category unit



k. For example, if the target value of category unit 1
is �1 (i.e., not present) and the winning subcategory
unit has a positive connection to category unit 1, the
target values times the weight will be negative and a
new subcategory unit will be recruited. When a new
unit is recruited it is centered on the misclassi�ed in-
put pattern and the subcategory units' activations and
outputs are recalculated. The new unit then becomes
the winner because it will be the most highly activated
subcategory unit (it is centered upon the current input
pattern).
The position of the winner is adjusted:

�wij = �(OIi � wij) (10)

where � is the learning rate, OIi is the output of input
unit i. The centers of the winner's receptive �elds move
towards the input pattern according to the Kohonen
learning rule. This learning rule centers the prototype
(i.e., the cluster's center) amidst its members.
Using our result from Equation 3, receptive �eld tun-

ings are updated according to:

��i = �e
��i�ij (1� �i�ij) : (11)

Only the winning subcategory unit updates the value
of �i. Equation 11 adjusts the shape of the receptive
�eld for each input so that each input can maximize
its in
uence on subcategory units. Initially, �i is set to
be broadly tuned. For example, if input unit i takes
on values between 0 and 1, the maximum distance be-
tween the ith input unit's output and the position of
a subcategory unit's on the ith dimension is 1, so �i is
set to 1 because that is the optimal setting of �i for �
equal to 1 (i.e., Equation 11 equals zero). Under this
scheme, � cannot become negative.
When a subcategory unit is recruited, weights from

the unit to the category units are set to zero. The one
layer delta learning rule (Rumelhart et al., 1986) is used
to adjust these weights:

�wjk = �(tk �OCk
)OHj

(12)

where tk is the target value (i.e., the correct value) for
category unit k. The target value is analogous to the
feedback provided to human subjects. Note that only
the winner will have its weights adjusted since it is the
only subcategory unit with a nonzero output.
Table 3 lists all of SUSTAIN's parameters and the

values used for the studies included in this paper and all
cited studies. Unfortunately, it is unusual for a model
of human learning to use the same set of parameters
across a variety of studies. In this line of research, we
focus on drawing conceptual links between diverse data
sets and capturing qualitative patterns of performance.

Modeling Results

As foreshadowed, SUSTAIN successfully �ts YM's data
on a family resemblance problem (see Table 1). In in-
ference learning, human subjects required 7.9 learning

Table 3: SUSTAIN's parameters.
function name/value
learning rate � = :1
cluster competition � = 1:0
attentional focus r = 3:5
decision consistency d = 8:0

blocks on average to reach the learning criterion com-
pared to 12.5 blocks in classi�cation learning.1 SUS-
TAIN displayed the same qualitative pattern, requir-
ing 10.8 learning blocks for inference learning and 16.8
learning blocks for classi�cation learning.
SUSTAIN's modal solution (over 80% of simulations)

in inference learning involved one cluster per category
(i.e., one subcategory unit per category). The one clus-
ter was the underlying prototype of the category. SUS-
TAIN's modal solution is in accord with YM's assertion
that inference learning focuses subjects on the under-
lying prototype of each category. Attention was evenly
spread across all four perceptual dimensions and was
highest for the category label dimension (in inference
learning the category label is presented with every stim-
ulus). Other solutions involved between three and six
clusters with the frequency of the solution decreasing
with the number of clusters involved. These solutions
arose when item ordering was not advantageous (SUS-
TAIN is an incremental clustering model).
In classi�cation learning, SUSTAIN's modal solution

(over 60% of simulations) involved three clusters per
category. In accord, with YM's analysis of human sub-
jects, SUSTAIN created imperfect \rule" clusters (i.e.,
a cluster that captures some regularity along one or two
dimensions that helps discriminate between the two cat-
egories) and attention was focused along the \rule" rel-
evant dimensions. Exceptions to these \rule" clusters
were captured by \exception" clusters (i.e., a cluster
that has one stimulus item as a member). The modal
solution in classi�cation learning is less eÆcient than
the one cluster per category solution (the modal solu-
tion in inference learning) because with six total clus-
ters there tend to be a large number of highly activated
competing clusters (subcategory units inhibit one an-
other in SUSTAIN). Interestingly, approximately 1%
of classi�cation learning simulations displayed the one
cluster per category solution. When this rare solution
occurred in classi�cation learning (due to an advanta-
geous ordering of items), classi�cation learning was as
fast as the average inference learning simulation. This
behavior allows SUSTAIN to successfully predict YM's
�nding that classi�cation learning following inference
learning should be easier than the reverse problem or-
dering. After completing inference learning and dis-
covering the two underlying prototypes, classi�cation

1A learning block involves each stimulus from Table 1
being presented once in a random order. The learning crite-
rion was reached when average accuracy exceeded 90% for
three consecutive learning blocks.



learning is trivial.
SUSTAIN also predicts that a classi�cation learning

advantage results when the category structure is non-
linear (i.e., a category structure in which the underlying
prototypes do not separate the categories), as it is in
Yamauchi et al. (see Table 2). In inference learning, hu-
man subjects required 27.4 learning blocks on average
to reach the learning criterion compared to 10.4 blocks
in classi�cation learning. SUSTAIN requires 25.6 blocks
for inference learning and 15.3 for classi�cation learn-
ing. The modal solution (60% of simulations) in classi�-
cation learning involved three clusters per category (i.e.,
every item was memorized). In inference learning, the
model solution involved nine clusters with the number
of cluster required roughly normally distributed (rang-
ing from four to sixteen clusters). SUSTAIN's focus on
the prototype leads to prediction failures, which leads
to many clusters being recruited. With this non-linear
category structure, classi�cation learning performance
is roughly the same as in YM's studies, while inference
learning performance su�ers due to subjects' (and SUS-
TAIN's) focus on the prototype of each category.

Conclusions

Di�erent learning modes can lead to radically di�erent
internal representations on learning problems that in-
volve the same stimulus set and where learning trials
have the same information content. In the case of clas-
si�cation learning, subjects focus on a limited number
of dimensions and store exceptions to their classi�ca-
tion \rule". In contrast, inference learning promotes
a focus on the underlying category prototypes. SUS-
TAIN successfully addresses this data, but other mod-
els that do not create di�erent internal representations
for di�erent learning modes (such as exemplar mod-
els) cannot account for the results. The idea that dif-
ferent representations can emerge from di�erent tasks
that involve the same exemplars helped SUSTAIN ad-
dress another data set in which face experts (i.e., adult
humans) learned to identify photographs of faces more
easily than they could learn to assign each face to one of
two categories (Medin, Gerald, & Murphy, 1983; Love
& Medin, 1998a). Exemplar models also have diÆculty
�tting this data set. By �tting human learning data
from a variety of learning modes (classi�cation, infer-
ence, and unsupervised category learning), SUSTAIN
shows promise as a unifying model of human category
learning.
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