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An important step in developing a theory or model of
categorization consists in specifying how stimuli are rep-
resented. Categorization researchers have begun to appre-
ciate the complexity of this task. Partitioning a stimulus
into feature dimensions depends on relevant domain
knowledge (Wisniewski & Medin, 1994) and the compar-
ison context (Medin, Goldstone, & Gentner, 1993). In some
cases, the main problem facing learners may be that of
learning what the features are, rather than learning what
the mapping from features to categories is (Schyns, Gold-
stone, & Thibaut, 1998). Developing the appropriate fea-
ture vocabulary may partially explain what differentiates
experts from novices (Biederman & Shiffrar, 1987). Mat-
ters can be further complicated when stimulus feature di-
mensions are relationally connected to one another (e.g.,
cause/effect, part/whole). 

Many researchers have tried to make headway in under-
standing category learning by constructing laboratory sit-
uations that eliminate many of these representational com-
plexities. In service of this goal, the canonical stimulus set
used by category learning researchers can be easily and
clearly partitioned into a set of seemingly orthogonal and
independent stimulus dimensions (see, e.g., Medin &
Schaffer, 1978; Nosofsky, Gluck, Palmeri, McKinley, &
Glauthier, 1994; Shepard, Hovland, & Jenkins, 1961; Ya-
mauchi, Love, & Markman, 2002). This stimulus set con-
sists of three binary-valued dimensions: size (e.g., small/
large), shape (e.g., triangle/square), and color (e.g., blue/red).

Few other stimulus sets (e.g., random dot patterns) rival
the popularity of the canonical stimulus set. 

In this article, we argue that complexities remain even
in this highly constrained stimulus set. In particular, rela-
tions exist across stimulus dimensions, and these relations
play an important role in determining learning perfor-
mance. Our results suggest that color and size are quanti-
fied over shape, which leads to difficulties in forming con-
junctive rules involving shape and either color or size. Our
findings are in accord with previous research that grants
an important role to shape in object representations. For
example, young children tend to generalize new count
nouns to objects of the same shape as a sample’s (Imai,
Gentner, & Uchida, 1994; Landau, Smith, & Jones, 1988).
Theories of object recognition give a central role to shape
(Edelman, 1999; Ullman, 1996). Our findings qualify the
interpretation of numerous experimental studies utilizing
similar stimulus sets, as well as the models that have been
developed to account for such studies. We propose a rep-
resentational account that makes allowances for the rela-
tions among stimulus dimensions (cf. Norman & Rumel-
hart, 1975), and we offer linguistic tests and empirical
methods for inferring the nature of people’s stimulus rep-
resentations. 

Relational Independence 
The canonical stimulus set is usually assumed to consist

of three independent sets: 

color = {red, blue}
size 5 {small, large} 
shape 5 {triangle, square}. (1)

A stimulus is constructed by selecting one member
from each set. The three selected properties are unified in
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a single object, which can be seen as a container for the three
independent properties. One way to conceptualize this kind
of representation is to assume that each dimension is a
function that takes the object identifier as an argument and
evaluates to the value that the object has on that dimen-
sion. The following example is for an object whose size is
large, whose color is red, and whose shape is triangle. 

object

color(object) 5 red 

size (object) 5 large 

shape(object) 5 triangle. (2) 

The functions on the left side in Equation 2 return the
member of each set in Equation 1 that is present. Although
there is a binding between the entity and each dimension’s
predicate, these bindings have no influence on learning
because they do not vary across predicates or stimuli. In
other words, learning would progress in the same fashion
if the learner simply knew which three properties were
present. Importantly, there are no relations (i.e., predi-
cates) that span stimulus dimensions in Equation 2. For
instance, information about shape does not serve as an ar-
gument for a predicate concerning size. We refer to repre-
sentational schemes that lack cross-dimensional relations
as being relationally independent. 

Relational independence makes it easy to construct cat-
egorization models and to design experiments. The as-
signment of stimulus dimensions and their values is arbi-
trary. Often, such assignments are counterbalanced, and
the results are aggregated in statistical analyses. As a re-
sult, instead of being consumed with issues related to
stimulus representation, researchers can focus on how the
abstract structure of the categories (i.e., the assignment of
stimuli to categories) affects performance. For example,
Shepard et al. (1961) enumerated the six possible parti-
tions (Type I–VI) of the eight stimulus items defined in
Equation 1 into two contrastive categories of equal size.
People learned to classify the eight items over numerous
trials with corrective feedback, and the relative difficulty
of the six problems was considered. 

Of interest in the present work are three of these prob-
lems: Type I, II, and IV. These category structures are
shown in Table 1. Type I is a simple, unidimensional struc-
ture in which all items with a particular value on one di-
mension (the first dimension listed in Table 1) belong in
one category and all items with the other value on that di-
mension are in the other category. Categories following this
rule are easiest for people to acquire. Type II requires at-
tending to two dimensions (the first two dimensions listed
in Table 1), and categories with this structure are typically
harder to learn than categories with the Type I structure.
Finally, Type IV requires attending to all three dimen-
sions, and is more difficult to learn than Types I and II.
An important preliminary test of any new model of clas-
sification learning has often been to ensure that it captures
this pattern of data. 

Shepard et al. (1961) has often been used as a bench-
mark against which models of category learning are com-

pared (see, e.g., Anderson, 1991; Kruschke, 1992; Love,
Medin, & Gureckis, in press; Nosofsky, Gluck, et al., 1994;
Nosofsky, Palmeri, & McKinley, 1994). Shepard et al. has
also served as the conceptual blueprint for countless em-
pirical studies (some of which have been mentioned
above). In this article, we present data that qualify the 
interpretation of these studies and models. We argue that
the field’s characterization of the canonical stimulus set 
is incorrect and that people’s stimulus representations 
are not relational independent. In particular, we argue 
that shape serves as an argument for size and color. This
relational dependency correctly predicts how the assign-
ment of dimensions to the abstract category structures
shown in Table 1 modulates the difficulty order of Shep-
ard et al.’s problems. The predictions will be specified
below. 

Relational Dependence 
We propose that a stimulus such as a large red triangle

is represented as 

triangle

color(triangle) 5 red 

size(triangle) 5 large. (3) 

In contrast with Equation 2, the value of the shape di-
mension serves as the argument for the color and size
predicates. In other words, color and size are quantified
over shape. The stimulus is not a red object, but a red tri-
angle. The bindings between the shape value and the color
and size predicates are not trivial. The shape value
changes across situations and trials. Thus, attention is re-
quired to bind the shape value to its argument (Kahneman,
Treisman, & Gibbs, 1992). Disrupting spatial attention
should lead to a representation that is more like that shown
in Equation 2, which is functionally equivalent to a bun-
dle of independent properties. 

A simple linguistic test can determine whether a stim-
ulus set is relationally dependent. The dimensions in rela-
tionally dependent stimulus sets can enter into adjective/
noun relationships. In particular, when one stimulus di-
mension can describe other stimulus dimensions, but the
reverse cannot be done, then the stimulus set is relation-
ally dependent. For example, if a stimulus can be de-
scribed as a “large triangle” or a “red triangle,” but not as

Table 1
Types I, II, and IV Category Structures

Item I II IV

1 1 1 A A A
1 1 2 A A A
1 2 1 A B A
1 2 2 A B B
2 1 1 B B A
2 1 2 B B B
2 2 1 B A B
2 2 2 B A B

Note—The category assignment (either A or B) varies for the eight stim-
uli (consisting of three binary dimensions) across the three problems.
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a “triangle large” or “triangle red,” then the stimulus set is
relationally dependent. In the present case, size and color
behave as adjectives (i.e., one-place predicates or func-
tions), whereas shape acts as the noun (i.e., entity or ar-
gument). For relationally independent dimensions, de-
scriptions can contain simple conjunctions of properties.
For example, it is quite natural to say “The object is large
and red,” whereas it is less natural to say “The object is tri-
angle and red.” That is, which dimensions are nouns and
adjectives is diagnostic of the dimensions’ roles in the rep-
resentation. In relationally independent stimulus sets, all
dimensions are adjectives. 

Importantly, the relationally independent and relation-
ally dependent stimulus accounts differ in their predic-
tions with regard to classification-learning performance.
The predictions are intimately tied to the task demands of
the classification-learning task. Classification learning
can be characterized as a hypothesis-testing procedure in
which people explicitly test rules that are constructed over
independent Boolean literals (Bruner, Goodnow, & Austin,
1956; Feldman, 2000; Nosofsky, Palmeri, & McKinley,
1994). Relationally independent representations are ide-
ally suited to this type of induction operation. The values
(e.g., red, large, and triangle) are readily accessible as in-
puts to a rule-construction process. In relationally inde-
pendent representations, each dimension is related to each
other dimension only by virtue of being properties of the
same object. Therefore, it should be just as hard to learn a
Type II rule involving shape and color as it is to learn a rule1

involving color and size.
In contrast, relationally dependent representations are

not well suited for acquiring conjunctive rules. The diffi-
culty of acquiring a rule depends on which dimensions are
relevant. With the canonical stimulus set, conjunctive
rules involving color and size should be readily acquired
because these dimensions are relationally independent,
whereas rules combining shape and either size or color
should be more difficult because shape serves as an argu-
ment to these predicates. Rule formation requires treating
the Boolean literals, such as triangle and red, as indepen-
dent. Thus, the cognitive system must either re-represent
the stimulus set or engage a different set of learning
processes that are not compatible with the task demands
of classification learning when dimensions sharing a re-
lation are relevant to a conjunctive classification rule. Ei-
ther way, we predict that rules involving interrelated di-
mensions will be more difficult to acquire. 

It is important to note that we are not arguing that rela-
tionally dependent stimulus sets always lead to poorer per-
formance. For example, acquisition of one-dimensional
rules (e.g., the Type I problem) should not be affected by
relations across stimulus dimensions, because these rules
do not integrate information across dimensions. Similarly,
perceptual decision tasks that involve selectively attend-
ing to one dimension while ignoring the other dimensions
(e.g., tests of perceptual separability—Garner, 1974;
Lockhead, 1966) should not be affected by the relations
considered above. We are not claiming that shape and size
or color are integral. 

Some tasks may even benefit from relationally depen-
dent representations. For example, people prefer analogies
between two representations that contain matching rela-
tional structures that span dimensions (Gentner, 1983,
1989). It is often quite difficult to form analogies in the
absence of interconnecting relations (Keane, Ledgeway,
& Duff, 1994). Though not considered in this paper, many
learning problems may also benefit from relationally de-
pendent representations. For example, in case-based rea-
soning, previously solved examples are stored in memory
and are retrieved and adapted (perhaps through an ana-
logical process) to fit the current situation (Kolodner,
1993). Situations that encourage this type of learning may
not share the task demands of classification learning and,
therefore, may be more like analogy and benefit from inter-
stimulus structure, which can facilitate inference. Given the
presumption that most real-world stimulus sets are rela-
tionally dependent, it would be sensible for many real-
world tasks to be well matched with this type of represen-
tation. 

The remainder of this article is organized as follows:
Experiments 1 and 2 test our account of the canonical
stimulus set within a standard classification-learning task.
In Experiment 3, the classification-learning task is cou-
pled with a secondary task that demands spatial attention
in order to test our prediction that maintaining relations
across stimulus dimensions requires attentional resources.
We predict that under a load, the disadvantage of forming
conjunctive rules over shape and either size or color will
disappear. In Experiment 4, a new stimulus set involving
part relations is considered in order to evaluate the poten-
tial of applying our analyses to other domains. 

EXPERIMENT 1 

The canonical stimulus set was used (see Equation 1).
Small shapes were 1.5 3 1.5 cm (subtending 2.1º of visual
arc), and large shapes were 3.0 3 3.0 cm. In Experiment 1,
we tested the claim that the canonical stimulus set is rela-
tionally dependent. We predicted that acquiring the
Type II category structure when shape is one of the two
relevant stimulus dimensions will be more difficult than
when shape is irrelevant and color and size are the two rel-
evant dimensions (i.e., shape is assigned to the third stim-
ulus dimension in Table 1). If the three stimulus dimen-
sions are relationally independent, no differences between
these two conditions should be observed. The Type IV
problem is also included for comparison. We expect to
replicate previous results and find Type II (overall) to be
easier to learn than Type IV. 

Method
Design and Subjects. The subjects in the experiments were

78 undergraduates at the University of Texas who received course
credit in exchange for their participation. The subjects were ran-
domly assigned to conditions. Three groups of 26 subjects were run
to test the critical hypotheses. One group was given Type IV cate-
gories, and the other two were given Type II categories. One Type II
group—the shape-irrelevant group—was given categories in which
color and size were relevant to categorizing the stimuli, and the other
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group—the shape-relevant group—was given categories in which
shape and one of the other two dimensions (either color or size) were
relevant. 

Stimuli and Procedure. Each subject completed 128 learning
trials. On each trial, a stimulus was presented on a CRT monitor with
a dark background, and the subject indicated whether the item was
in Category A or B by pressing the corresponding key. The subject
was then provided with corrective feedback (both auditory and vi-
sual) for 1,500 msec, followed by a 1,000-msec intertrial interval.
Trial order was randomized for each subject within blocks. The first
two blocks of trials consisted of one presentation of each stimulus.
The subsequent seven blocks consisted of two presentations of each
stimulus. The assignment of dimensions (when not constrained by
the experimental design) and values to the abstract category struc-
tures shown in Table 1 was randomized for each subject. 

Results and Discussion 
Two dependent measures were used to compare sub-

jects’ learning performance across conditions: overall ac-
curacy (the typical performance measure used in learning
experiments) and the proportion of subjects reaching a
learning criterion of correct trials in a row. The latter cri-
terion was used as a dependent variable, because the
Type II and Type IV category structures differed in the de-
gree to which particular suboptimal rules yielded accurate
performance. For example, a one-dimensional rule can
yield 75% accuracy for the Type IV problem, but it yields
only chance performance (i.e., 50% accuracy) for the
Type II problem. In light of this observation, the propor-
tion of subjects reaching the criterion offers a purer mea-
sure of mastery than does overall accuracy. 

Table 2 displays the results from Experiment 1. In con-
sistency with our prediction, the subjects given Type II
categories defined using color and size attained higher ac-
curacy levels than did the subjects given such categories
defined using shape and one of the other dimensions
[t (50) 5 2.27, p , .05]. This prediction also holds when
the proportion of subjects reaching criterion is analyzed
[x 2(1) 5 4.46, p , .05], though not all expected cell
counts are above 5. Accuracy was higher for the shape-
irrelevant Type II problem than for the Type IV problem
[t(50) 5 3.56, p , .001], whereas the Type II shape-relevant
and Type IV problems were not reliably different (t , 1).
This pattern of results was mirrored by the criterion mea-
sure [x2(1) 5 11.34, p , .001, and x2(1) 5 2.00, p .16,
respectively]. 

Following learning, the subjects completed a question-
naire in which they indicated whether they used a rule to
categorize the stimuli. The subjects who responded affir-

matively stated their classification rule for Categories A
and B. Of particular interest is the language used by the
subjects given the Type II categories in which shape was
not relevant. Nine subjects provided a classification rule
that involved quantification (e.g., “a small, blue object or
a large, red object”), whereas 13 subjects did not explic-
itly quantify (e.g., “small and blue or large and red”).
Those who described their categorization rule by quanti-
fying over an entity were significantly less accurate than
those who did not [.84 vs. .91; t(20) 5 2.57, p , .05].

Evaluating Alternative Accounts 
One alternative explanation for the relatively poor per-

formance of the Type II shape-relevant subjects is that
shape might be less salient than the other dimensions, and,
thus, people may first attempt to construct rules on the
more salient dimensions. To rule out this possibility, we
had three groups of 16 subjects complete the Type I prob-
lem with the category-relevant dimension being shape,
color, or size. The subjects in all three groups reached the
learning criterion, and no reliable difference in accuracy
was observed across groups (F, 1). In fact, all three
groups had an overall accuracy level of .96. This study had
the virtue of being procedurally identical to Experiment 1,
but may lack the sensitivity necessary to reveal small dif-
ferences in dimensional salience. 

To rule out this possibility, pairwise similarity ratings 
(8 3 7 5 56 ratings on a scale of 1–9) were collected from
36 subjects. The salience of each dimension was calcu-
lated as the difference in mean similarity of stimulus pairs
that matched on the dimension minus the mean similarity
of pairs that mismatched on the dimension. There was a
significant effect of dimension [F(2,70) 5 11.97, MSe 5
10.34, p 0]. Shape matches increased similarity more
than did color matches [1.94 vs. 0.92; t (35) 5 4.47, p 0]
and size matches [1.94 vs. 1.13; t (35) 5 3.03, p , .01]. 

In order to confirm that the operable dimensions were
shape, color, and size, the mean similarity ratings were
transformed into dissimilarities (i.e., 9 minus the rated
similarity) and the 8 3 8 dissimilarity (i.e., distance) ma-
trix was subjected to multidimensional scaling (MDS).
Metrical MDS reduced the proximity data to three di-
mensions corresponding to shape, color, and size, verify-
ing that people interpreted the stimulus set as having the
expected dimensions. The coordinates of the eight stimuli
are shown in Table 3. The eigenvalues for the dimensions
of shape, size, and color are 42.27, 30.30, and 27.79, re-

Table 2
Mean Accuracy and Proportion of Subjects 

Reaching the Learning Criterion for Each Category Type as a Function of Task

Type II

Shape Irrelevant Shape Irrelevant Type IV

Task Accuracy Proportion Accuracy Proportion Accuracy Proportion

Single task (Experiment 1) .85 24/26 .77 18/26 .74 13/26
Single task, text (Experiment 2) .77 31/40 .71 23/40 .75 20/41
Dual task (Experiment 3) .68 13/29 .67 15/29 .69 4/29
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spectively. The eigenvalue for the fourth dimension was
not distinguishable from zero. 

The MDS analysis of the pairwise similarity ratings
confirmed that the subjects were using the three intended
dimensions. One interesting question is whether any effect
of relational dependence on the similarity ratings can be
seen. Shape plays a central role in the relationally depen-
dent interpretation of the stimulus set (see Equation 3).
One prediction from this observation is that shape matches
will weigh more than size and color matches. The analy-
ses above support this prediction. A more subtle predic-
tion based on the alignment of object representations is
that shape matches will highlight size and color matches
more than size matches will highlight color matches and
vice versa. This prediction was also confirmed. The effect
of size and color matches on similarity conditioned on
shape matches {i.e., [(size or color match 2 size or color
mismatch) | shape match] 2 (size or color match 2 size
or color mismatch) | shape mismatch} is greater (i.e., less
negative) than the effect of size matches conditioned on
color matches and vice versa [20.64 vs. 21.21; t (35) 5
2.02, p .051]. Ceiling effects led to the negative means.
Notice that this ceiling effect works strongly against the
borderline effect found in the preceding analysis, because
shape matches led to higher ratings than did size or color
matches (see the analyses above). 

EXPERIMENT 2 

Experiment 1 yielded a dramatic result: Despite the fact
that shape is more salient than color or size, categories de-
fined by a conjunction of shape and either size or color
are more difficult to learn than categories defined by a
conjunction of size and color. Experiment 2 replicates Ex-
periment 1 in order to rule out the possibility that Experi-
ment 1’s surprising result was a statistical anomaly. Ex-
periment 2 also extends Experiment 1 in that a different
stimulus set is considered. The procedure and design of
Experiment 2 are identical to those of Experiment 1, but
the stimuli in Experiment 2 are verbal descriptions of the
stimuli shown in Experiment 1. For example, in Experi-
ment 1 a large red triangle was displayed as a picture, but
in Experiment 2 the text “large,” “triangle,” “red” was

shown (displayed vertically with one stimulus dimension
per line). Because color and size should be quantified over
shape, we expect the same pattern of results in Experi-
ment 2 as we observed in Experiment 1, despite the fact
that the stimulus presentation encourages participants to
treat the three values for each stimulus independently. 

Method
Design and Subjects. The design of Experiment 2 was identical

to that of Experiment 1. One hundred twenty-one undergraduates at
the University of Texas participated in Experiment 2 in exchange
for course credit. 

Procedure. The procedure was identical to that of Experiment 1.
The sole difference between the experiments was the stimulus set. In
Experiment 2, stimuli consisted of verbal descriptions of the geo-
metric stimuli shown in Experiment 1. Each stimulus dimension was
displayed on consecutive lines (e.g., “blue” above “large” above “tri-
angle”). The vertical order in which the dimensions were displayed
was randomized for each subject and was held constant across trials. 

Results and Discussion 
Table 2 displays the results from Experiment 2. The re-

sults mimic those of Experiment 1. In accordance with our
prediction, the subjects given Type II categories defined
using color and size attained higher accuracy levels than
did those given such categories defined using shape and
one of the other dimensions [t (78) 5 2.20, p , .05]. This
prediction also held (as a trend) when the proportion of
subjects reaching criterion was analyzed [x2(1) 5 3.65, p

.06]. Accuracy for the shape-irrelevant Type II problem
was not significantly better than that for the Type IV prob-
lem (t , 1). However, a significant advantage for the
Type II shape-irrelevant problem over the Type IV prob-
lem was observed when the proportion of subjects reach-
ing criterion was considered [x2(1) 5 3.65, p , .01]. The
Type II shape-relevant displayed lower (though not reli-
ably so) accuracy than did the Type IV problem [t (79) 5
21.53, p .13]. Similarly, a nonreliable disadvantage
was observed in the criterion data [x 2 , 1]. 

As in Experiment 1, at the end of the experiment the
subjects completed a questionnaire in which they indi-
cated whether they used a rule to categorize the stimuli.
The subjects who responded affirmatively stated their
classification rule for Categories A and B. In Experi-
ment 1, the subjects in the shape-irrelevant condition who
used quantifying language to describe the rule (e.g.,
“small or blue object”) were less accurate than those who
did not. Interestingly, no subjects in Experiment 2’s
Type II shape-irrelevant condition used quantifying lan-
guage. This result is in accord with the idea that the text
stimuli encourage the subjects to view the stimulus di-
mensions as independent. Despite this manipulation, the
difficulty of forming rules involving shape and another di-
mension was still observed. 

EXPERIMENT 3 

Our explanation of the difference in performance for
the shape-relevant and shape-irrelevant Type II problems
in Experiments 1 and 2 is that the dimensions of color and

Table 3
MDS Recovery of the Three Dimensions 
of Shape, Size, and Color From Pairwise 

Similarity Ratings of the Eight Stimulus Items

Dimension

Item 1 2 3

111 22.69 21.44 2.03
112 22.63 21.78 21.70
121 21.92 2.32 1.59
122 21.86 1.97 22.07
211 2.06 21.95 2.22
212 1.97 22.48 21.71
221 2.49 1.96 1.57
222 2.58 1.40 21.91

Note—Dimension 1, shape; Dimension 2, size; Dimension 3, color.
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size were quantified over shape. Object file theories of vi-
sual object representation suggest that attention (and in
particular spatial attention) is required to bind together the
attributes of objects (Kahneman et al., 1992). Thus, if spa-
tial attention were disrupted during category acquisition,
people might have difficulty binding the color and size di-
mensions with the shape dimension. Thus, this manipula-
tion would eliminate the observed difference between 
performance on Type II shape-relevant and -irrelevant
problems. In effect, disrupting spatial attention should
lead to relational independence. 

Method
Design and Subjects. To test this possibility, three additional

groups of 29 subjects (undergraduates at the University of Texas)
were run. As in Experiments 1 and 2, one group learned Type IV
categories, one learned Type II categories in which the rule was de-
f ined over color and size, and one learned Type II categories in
which the rule was defined over shape and one of the other dimen-
sions. Subjects in all three groups learned the categories in a dual-
task setting in which they had to repeatedly tap the four arrow keys
on the keyboard in a fixed order on each trial (the order was varied
across trials). This manipulation was expected to reduce the avail-
able spatial working memory, which we anticipated would increase
the likelihood that shape would be treated as independent of the
other dimensions. 

Procedure. The subjects completed a secondary task during the
learning task. The subjects were shown a sequence of four keys at the
beginning of a trial (e.g., up, left, down, right) and had to repeat this
sequence by pressing the arrow keys. After completing the sequence
correctly three times at a sufficient pace (less than 2,500 msec for
each sequence), the geometric stimulus was shown. The subjects
continued repeating the sequence correctly at the requisite speed
until they were ready to respond A or B, at which point they replaced
the last member of the sequence with either A or B. After the sub-
jects responded, the stimulus was no longer shown on the screen and
the subjects received corrective feedback. Trials in which the subject
did not follow this procedure were aborted.2 All the subjects re-
ceived training in this procedure (without category stimuli) prior to
data collection. Each key sequence was randomly generated for each
trial. 

Results and Discussion 
The results are shown in Table 2. The main prediction was

confirmed. Performance on the Type II shape-irrelevant
and shape-relevant problems did not differ significantly.
In fact, pairwise comparisons of the accuracy levels for all
three conditions did not differ significantly (t , 1), al-
though accuracy levels above chance ( p 0) were dis-
played in all three conditions. The criterion data also re-
vealed little difference between the two Type II conditions
[x2(1) 5 0.27, p . .10]. This result was probably not due
to both groups’ being at floor level of performance as a re-
sult of the dual task, because the subjects in both the
shape-relevant and the shape-irrelevant groups were more
likely to reach the learning criterion than were the subjects
in the Type IV group [x2(1) 5 6.74 and 9.47, respectively,
p , .01]. 

Experiments 1 and 2 suggest that quantifying over shape
(which should require attention to establish the binding)
led to poorer performance for the Type II shape-relevant
subjects than for the Type II shape-irrelevant subjects. In
Experiment 3, a manipulation that reduced the likelihood

that size and color would be quantified over shape elimi-
nated the difference in difficulty of learning of Type II
categories in which shape was relevant to the classification
rule. In contrast with Experiments 1 and 2, the shape-
relevant subjects actually outperformed the shape-irrelevant
subjects in terms of reaching criterion. Taken together, the
experiments provide strong support for the hypothesis that
shape is not independent of size and color in the represen-
tations developed during category learning. Experiment 3
also offers a new methodology for evaluating acquired
representations. 

As in Experiment 2, the subjects completed postexper-
iment questionnaires. Because we assume that the sub-
jects could not form bindings involving shape during the
course of learning, we predicted that differences in lan-
guage would simply reflect word choice and not be in-
dicative of underlying differences in the representations
acquired during learning. As we predicted, there was al-
most no difference in performance for the 6 subjects who
described the proper rule using quantifying language in
the shape-irrelevant Type II condition and the 14 subjects
who used nonquantifying language in this condition 
(.76 vs. .75; t , 1). 

EXPERIMENT 4 

Before discussing the implications of these findings for
the exploration of category learning, we examine one fur-
ther issue. The experiments described thus far suggest that
predicting the difficulty of a classification learning task
requires an analysis of stimulus representation. When a
category structure involves a rule that considers a pair of
properties that are logically independent (i.e., they are
members of different sets), the rule is easier to learn when
relational dependencies do not have to be broken in order
to separate the two properties. 

In the first three experiments, the relational dependency
involved properties that were quantified over shape. In
Experiment 4, we considered the case of parts. In partic-
ular, the stimuli were constructed from the following sets: 

drive = {CD ROM, DVD}
processor = {budget, performance}
computer type 5 {desktop, laptop}. (4)

This stimulus set also fails our linguistic test for rela-
tional independence (e.g., it is awkward to say “The object
is laptop and budget processor”). The test for relational
dependence, though not as awkward, does not sound as
natural as it did for the shape stimuli (e.g., “This is a DVD
laptop” vs. “This is a red square”). If we represent this
stimulus set in a manner analogous to our relationally de-
pendent scheme for shape, we get: 

laptop

drive (laptop) 5 DVD

processor (laptop) 5 budget. (5)

This scheme would predict that learning Type II rules
involving drive and processor should be easier than learn-
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ing Type II rules involving computer type and one of the
other two dimensions. However, the awkwardness of the
adjective–noun sentence above suggests we should try a
different approach. In computers, drives and processors are
not properties, but parts. In order to capture this intuition,
we simply added a part relation to the representation:

laptop

part of (laptop, drive (laptop) 5 DVD) 
part of (laptop, processor (laptop) 5 budget). (6)

The linguistic test for this particular form of relational
dependence naturally states that one dimension “has” an-
other dimension, but not vice versa. For example, it is nat-
ural to say “The laptop has a DVD” or “The laptop with a
DVD,” but it is not natural to say “The DVD has a laptop”
or “The DVD with a laptop.” Beyond our intuitions, Mark-
man and Makin (1998) found that this is the preferred
phrasing for referring to parts and entities. The test ex-
cludes relationally dependent items involving properties.
For example, it is unnatural to state “The triangle with a
red.”

In the computer stimulus set, computer type plays a role
analogous to shape in the canonical stimulus set, in that
both dimensions are entities and appear as arguments in all
predicates. In the canonical stimulus set, Type II rules were
more difficult to learn when shape was relevant, because
the subjects had to adopt a learning strategy inconsistent
with the task demands of classification learning or had to
re-represent the stimulus set (e.g., unbind the shape value).
In contrast, conjunctive rules could easily be formed over
size and color, because the values of these dimensions
were readily accessible and not bound to any predicate. 

In the computer stimulus set, all dimensions are bound
to predicates. As with the canonical stimulus set, we pre-
dicted that the relative difficulty level of a Type II rule
should be related to the number of predicates that must be
unbound in order to “free” the rule-relevant literals. In
contrast to the canonical stimulus set, rules involving the
base dimension (i.e., computer type) and one of the other
dimensions (either drive or processor) should be easier to
learn than those involving both of the other dimensions.
To form a rule involving computer type and either drive or
processor, one part_of predicate must be decomposed,
whereas both part_of predicates must be unbound to learn
a rule involving the two parts (see Equation 6). 

Thus, the introduction of the part_of relation leads to a
set of predictions that contrast sharply with those of Ex-
periments 1 and 2. Learning conjunctive rules involving
the base dimension should now be easier than learning
rules that involve the other two dimensions. A cross-

experiment prediction (which should be evaluated with
caution) is that performance levels for Type II (overall)
should be lower in Experiment 4 than in Experiments 1
and 2, because more relations must be unbound. 

Method
Design, Stimuli, Subjects, and Procedure. The design of Ex-

periment 4 followed from the previous experiments. The stimuli in
Experiment 4 differed from those in the previous experiments. The
stimuli were varied along three binary dimensions: computer type
(laptop or desktop), drive type (DVD or CD ROM), and processor
type (budget or performance). The computer type dimension served
a role analogous to that of the shape dimension in the previous ex-
periments. In the Type II computer-type-relevant condition, com-
puter type and one of the other two dimensions (either drive type or
processor type) were relevant to categorizing the stimuli, whereas in
the Type II computer-type-irrelevant condition the relevant dimen-
sions were drive and processor type. As in the previous experiment,
a third group of subjects were trained on the Type IV structure. The
subjects assigned stimuli to Company A or Company B instead of to
Category A or Category B. Ninety-four undergraduates at the Uni-
versity of Texas participated in Experiment 4 in exchange for course
credit. The procedure was identical to that of Experiment 2. Exper-
iment 4 followed the methods from Experiment 2 for displaying and
randomizing the text-based stimuli. 

Results and Discussion 
Table 4 displays the results from Experiment 4. In ac-

cordance with our prediction, the subjects given Type II
categories defined using computer type and one of the
other dimensions attained higher accuracy levels than the
subjects given such categories defined using drive and
processor type [t(60) 5 2.25, p , .05]. Although not sig-
nificant, this prediction also held when the proportion of
subjects reaching criterion was analyzed [x2(1) 5 2.14, 
p .14]. The Type IV problem also showed an advantage
over the computer-irrelevant Type II problem [t(63) 5
3.54, p , .01 and x2(1) 5 2.64, p .10]. No differences
between the computer-type-relevant Type II and Type IV
problems approached significance. 

One prediction was that the Type II problems involving
the computer stimulus set would be more difficult overall
than the Type II problems involving the shape stimulus
set. An informal comparison of Experiment 2’s data that
involved the shape stimulus set in verbal form supported
this prediction, although care should be taken in making
cross experiment comparisons, especially given the num-
ber of differences between the two stimulus sets. 

Unlike in the previous experiments, neither Type II
problem led to performance superior to that of the Type IV
problem. One explanation is that the increased difficulty
level of Experiment 4 (indicated by the overall perfor-
mance levels) favored category structures such as that of

Table 4
Mean Accuracy and Proportion of Subjects Reaching

the Learning Criterion for Each Category Type in Experiment 4

Type II (Computer Type Irrelevant) Type II (Computer Type Relevant) Type IV

Accuracy Proportion Accuracy Proportion Accuracy Proportion

.61 11/33 .71 15/29 .72 10/32
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the Type IV problem, in which suboptimal rules can lead
to above-chance performance. 

Questionnaire analysis. As in the previous experi-
ments, following learning, the subjects completed a ques-
tionnaire in which they indicated whether they had used a
rule to categorize the stimuli. The subjects who responded
affirmatively stated their classification rule for Compa-
nies A and B. Of particular interest is the language used
by the subjects given the Type II categories in which com-
puter type was relevant. Six subjects provided a classifi-
cation rule that involved treating the noncomputer-type di-
mension as a part (e.g., “a laptop with a DVD or a desktop
with a CD ROM”), whereas six subjects did not express
any relationship (e.g., “a laptop and DVD or desktop and
CD ROM”). Those who described their categorization
rule with part language tended to perform better than
those who did not [.87 vs. .72; t(10) 5 1.76, p .11]. No-
tice that this predicted finding runs counter to the find-
ings of Experiment 1. In Experiment 1, the subjects who
used independent language performed better than those
who used the quantifying language. The difference be-
tween part and property language appears critical. 

Similarity ratings. In Experiment 1, an analysis of
pairwise similarity ratings indicated that shape was more
salient than color or size, despite the fact that the shape-
relevant Type II problem was more difficult than the shape-
irrelevant Type II problem. Following Experiment 1, pair-
wise similarity judgments (8 3 7 5 56 ratings on a scale
of 1–9) were collected from 31 subjects. The salience of
each dimension was calculated as the difference in mean
similarity of stimulus pairs that matched on the dimension
minus the mean similarity of pairs that mismatched on the
dimension. There was a significant effect of dimension
[F(2,60) 5 7.71, MSe 5 4.75, p , .01]. As was predicted,
computer-type matches increased similarity more than did
drive-type matches [2.16 vs. 1.40; t(30) 5 3.49, p , .01]
and processor-type matches [2.16 vs. 1.62; t (30) 5 2.38,
p , .05]. Considering the combined results from Experi-
ments 1 and 4, saliency proves to be a poor predictor of the
difficulty of acquiring Type II rules. This is not to say that
saliency did not affect the results (cue saliency surely
played a role in determining performance), but, rather,
that its effect was insufficient to determine the pattern of
results. 

In order to confirm that the operable dimensions were
computer type, drive type and processor type, the mean
similarity ratings were transformed into dissimilarities
(i.e., 9 minus the rated similarity), and the 8 3 8 dissimilar-
ity (i.e., distance) matrix was subjected to MDS. Metrical
MDS reduced the proximity data to three dimensions cor-
responding to computer, drive, and processor type, veri-
fying that people interpreted the stimulus set as having the
expected dimensions. The coordinates of the eight stimuli
are shown in Table 5. The eigenvalues for the dimensions
of computer type, processor type, and drive type are 43.98,
36.66, and 34.32, respectively. The eigenvalue for the
fourth dimension was not distinguishable from zero. 

Like shape in its stimulus set, computer type plays a
central role according to the relationally dependent inter-

pretation of the stimulus set (see Equation 6). One pre-
diction that can be derived from this observation is that
computer-type matches will weigh more than processor-
and drive-type matches. The analyses above supported
this prediction (as they did for shape in the analyses of Ex-
periment 1). An analysis of the pairwise similarity data of
Experiment 1 also revealed a relational dependency effect
in which shape matches highlighted size and color matches
more than size matches highlighted color matches and
vice versa. Although the classification-learning predic-
tions for Experiments 1 and 4 differed, the predictions for
the highlighting effect were the same. As we predicted,
computer-type matches highlighted processor- and drive-
type matches more than processor-type matches high-
lighted drive-type matches and vice versa. The effect of
processor- and drive-type matches conditioned on computer-
type matches {i.e., [(processor or drive match 2 proces-
sor or drive mismatch) | computer type match] 2 (processor
or drive match 2 processor or drive mismatch) | computer
type mismatch} is greater (i.e., less negative) than the ef-
fect of processor-type matches conditioned on drive-type
matches and vice versa [20.80 vs. 21.24; t(30) 5 2.13,
p , .05]. Ceiling effects led to the negative means. Notice
that this ceiling effect works strongly against the effect
found in the preceding analysis because computer-type
matches led to higher ratings than did processor- or drive-
type matches (see analyses above). 

GENERAL DISCUSSION 

There are three main issues in these experiments that
we want to highlight. First, even with very simple stimuli
such as those that have been used in previous studies of
classification, there are relational dependencies among di-
mensions that significantly influence ease of learning.
These dependencies are evident in the language that par-
ticipants use to describe the items. In Experiments 1 and
2, with the stimulus set involving shapes, two of the di-
mensions were described by adjectives and one by a noun.
We suggested that this phrasing reflected that the adjec-
tives predicated the entity described by the noun. In ac-
cordance with this analysis, rules involving pairs of pred-
icates were easier to learn than rules involving a predicate

Table 5
MDS Recovery of the Three Dimensions of Computer Type,

Processor, and Drive From Pairwise Similarity Ratings 
of the Eight Stimulus Items

Dimension

Item 1 2 3

111 22.54 22.09 1.98
112 22.39 21.92 22.23
121 22.26 2.16 2.02
122 22.17 2.34 22.00
211 2.16 22.41 2.00
212 2.25 22.11 22.23
221 2.35 1.87 2.26
222 2.60 2.16 21.81

Note—Dimension 1, computer type; Dimension 2, processor type; Di-
mension 3, drive type.
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and the entity it described. Further evidence for this bind-
ing came from Experiment3, in which a second task, which
imposed a spatial memory load, appeared to allow the
subjects to treat the shape separately from the predicates. 

Finally, in Experiment 4 we focused on a stimulus set in
which a particular entity had parts. In this case, the language
that people used to describe the parts involved a relation
between the part and the entity. We suggested that if peo-
ple represent a part as a relation between the part and the
entity, then conjunctive rules involving the two arguments
of a part relation should be easier to learn than conjunctive
rules involving arguments from different relations. This
prediction was also supported. As in Experiments 1–3, the
difficulty of forming conjunctive rules was predicted by
the number of relations (i.e., predicates) that needed to be
decomposed (i.e., unbound) in order to free the literals
necessary for rule formation. 

Previous critiques of category-learning research have
focused on the generalizability of the results. In an attempt
to understand category learning, people have selected
stimulus sets that are assumed to have relationally inde-
pendent dimensions. In practice, there are few sets of di-
mensions that people treat as relationally independent. In
fact, interactions are observed even for sensory stimulus
dimensions of different modalities (Marks, 1989). Thus,
models that account for the standard findings in Shepard
et al.’s (1961) study do not generalize to most natural stim-
uli. For example, it is difficult to identify the independent
dimensions that characterize complex stimuli such as
birds, tables, and faces. The present results suggest that
category-learning research also faces issues of internal va-
lidity. In particular, the present work argues that the search
for principles of category learning that are independent of
the particular way that stimuli are represented is ill-
advised. 

In addition to issues of stimulus representation, the line
of research following from Shepard et al. (1961) has fo-
cused on one induction task—namely, classification
learning—despite evidence that comparable induction
tasks (e.g., inference learning and unsupervised learning)
lead to contrasting patterns of acquisition (Love, 2002;
Yamauchi et al., 2002; Yamauchi & Markman, 1998) This
line of research has been productive, but has addressed
only limited aspects of human categorization (Love, 2001;
Schank, Collins, & Hunter, 1986). These issues of eco-
logical validity loom large; rarely do humans learn about
easily dimensionalized stimuli with ever-present correc-
tive feedback. 

Taken together, these results provide an important cau-
tion about developing models of classification that are too
strongly based on the structure of the task typically given
to subjects. The stimuli in the current study were devel-
oped along the lines of those used in previous research.
They have a small number of clearly separable dimensions
with binary values. However, the natural way that the per-
ceptual system provides representations for these items
does not treat them as independent. This observation sug-
gests that there may be few cases in which there are fea-
ture dimensions that are treated as logically independent.

This observation argues strongly that general principles
that govern ease of category learning (e.g., Feldman,
2000) cannot be defined without consideration of the prin-
ciples that govern how representations are formed (Mark-
man, 1999; Shanon, 1988). In fact, the latter set of princi-
ples may play a larger role in determining category learning
performance than does the logical structure of categories
(cf., Love, 2002, 2003). 

Thus, we advocate an approach to the study of catego-
rization that extends current research in two directions.
First, we recommend that researchers pay more careful at-
tention to the ways in which people represent the stimuli
that are being presented. Models that require relationally
independent dimensions should include some test to en-
sure that the dimensions are in fact independent. Further-
more, some acknowledgment of this independence as-
sumption would be useful in constraining the range of
generalization of the studies. 

Second, researchers must also be more careful about the
relation between the task and the representation. In the pres-
ent experiments, the difficulty of classification was an in-
teraction between the particular rule that defined the cat-
egory and the nature of the stimulus representation. Because
category learning is also influenced by the way categories
are used, it is also crucial that we explore the interactions
between types of representations and category uses (Mark-
man & Ross, in press). 
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NOTES

1. We use the term “rule” loosely. Our theoretical claims would not
differ if rule-like behavior arose by pairing a selective attention mecha-
nism with stored clusters or exemplars. 

2. On average, 13.02 trials were aborted for each subject, with no
strong error patterns emerging across conditions. 
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