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SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a network
model of human category learning. SUSTAIN is a three layer model where learning between the
first two layers is unsupervised, while learning between the top two layers is supervised. SUSTAIN
clusters inputs in an unsupervised fashion until it groups input patterns inappropriately (as signaled
by the supervised portion of the network). When such an error occurs, SUSTAIN alters its architec-
ture, recruiting a new unit that is tuned to correctly classify the exception. Units recruited to capture
exceptions can evolve into prototypes/attractors/rules in their own right. SUSTAIN’s adaptive archi-
tecture allows it to master simple classification problems quickly, while still retaining the capacity
to learn difficult mappings. SUSTAIN also adjusts its sensitivity to input dimensions during the
course of learning, paying more attention to dimensions relevant to the classification task. Shepard,
Hovland, and Jenkins’s (1961) challenging category learning data is fit successfully by SUSTAIN.
Other applications of SUSTAIN are discussed. SUSTAIN is compared to other classification models.

Introduction

Some categories have a very simple structure, while others
can be complex. Accordingly, learning how to properly clas-
sify items as members of category “A” or “B” can be almost
trivial (e.g., the value of a single input dimension determines
membership) or can be so difficult that no regularity is dis-
covered (e.g., rote memorization of every category member
is required to determine membership).

Classifications are harder to master when the decision
boundary (in a multi-dimensional space of possible inputs)
is highly irregular and when there are multiple boundaries
(e.g., all the members of category “A” do not fall inside one
contiguous region of the input space). Difficult classification
problems (problems with complex decision boundaries) typ-
ically involve categories that have a complex internal struc-
ture, perhaps consisting of multiple prototypes (i.e., category
subtypes) and a number of exceptions. Linguistic analyses
have demonstrated that many categories have a rich internal
structure (Lakoff, 1987). Very simple learning models will
fail to master difficult categorizations with complex bound-
aries (i.e., categories with rich internal structure). For in-
stance, a purely linear model, like the perceptron (Rosenblatt,
1958), will be unable to master a classification when the map-
ping from input features to category labels is nonlinear.

Interestingly, a complex nonlinear model, such as a back-
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propagation model (Rumelhart, Hinton, & Williams, 1986)
with many hidden units, can learn complex decision bound-
aries but will perform poorly on a simple problem (e.g., a
problem where the decision boundary is linear). In such
cases, the more complex model will generalize poorly by
over-fitting the training data. Thus, making a model too pow-
erful or too weak is undesirable. Geman, Bienenstock, and
Doursat (1992) termed this tradeoff between data fitting and
generalization as the bias/variance dilemma. In brief, when
a network is too simple it is overly biased and cannot learn
the correct boundaries. Conversely, when a network is too
powerful, it masters the training set, but the boundaries it
learns are somewhat arbitrary and are highly influenced by
the training sample, leading to poor generalization.

Unfortunately, the complexity of learning models is usu-
ally fixed prior to learning. For instance, in network mod-
els, the number of intermediate level processing units (which
governs model complexity) must usually be chosen in ad-
vance. The problem may not be avoidable by treating the
number of intermediate units as an additional parameter, be-
cause certain architectures may be preferable at certain stages
of the learning process. For example, Elman (1994) provides
computational evidence (which seems in accord with find-
ings from developmental psychology) that beginning with a
simple network and adding complexity as learning progresses
improves overall performance.

Models with an adaptive architecture (like SUSTAIN), do
not need to specify the number of intermediate units prior to
learning. Some models (including SUSTAIN) begin with a
small network and expand the network when necessary. Most
methods expand the network when overall error (the differ-
ence between desired and observed output) is high. For ex-
ample, the cascade-correlation model (Fahlman & Lebiere,
1990) expands the network vertically with additional inter-
mediate layers, creating higher-order feature detectors. Other



models expand horizontally when error is high (Ash, 1989;
Azimi-Sadjadi, Sheedvash, & Trujillo, 1993).

Unlike the aforementioned models, SUSTAIN does not ac-
crue units based on overall error. Instead, SUSTAIN adds
a new intermediate level unit when the unsupervised part
of the network clusters input patterns in a manner deemed
inappropriate by the supervised part of the network. This
happens when two input patterns (that differ) belong to the
same cluster and the differences between the two input pat-
terns proves critical for successfully mastering the classifica-
tion. When such an error occurs, SUSTAIN splits the clus-
ter into two clusters by adding an intermediate unit. Thus,
intermediate level units in SUSTAIN encode the prototypes
(a category can have multiple prototypes) and exceptions of
the categories being learned. The method for adding units
in SUSTAIN is psychologically motivated by the intuition
that people ignore differences when they can (a bias towards
simple solutions), but will note differences when forced to
by environmental feedback. Additionally, intermediate level
units in SUSTAIN are intended to be psychologically real.
We claim that SUSTAIN acquires and modifies its prototypes
and exceptions in a manner analogous to how people infer a
category’s internal structure.

Another aspect of networks that is usually fixed, but should
vary depending upon the nature of the learning problem, is
the activation function of an intermediate level unit. In back-
propagation networks, the steepness of a hidden unit’s sig-
moidal shaped activation function is set as a parameter. In
models where an intermediate level unit’s activation function
is viewed as a receptive field (e.g., Poggio & Girosi, 1990;
Kruschke, 1992), the shape of a unit’s receptive field is set as
a parameter.

An intermediate level unit in SUSTAIN integrates the
responses from multiple receptive fields (each subcateogry
unit has a receptive field for each input dimension). SUS-
TAIN treats the shape of a receptive field as something to be
learned, rather than as a parameter. SUSTAIN assumes that
receptive fields are initially broadly tuned and are adjusted
during the course of learning to maximize the receptive field’s
response to inputs. Intermediate units with peaked (narrow)
receptive fields can be described as highly focused. Recep-
tive fields that develop tighter tunings are capable of stronger
responses to stimuli (see Figure 1). As an outcome of learn-
ing how to perform a classification, SUSTAIN learns which
dimensions of the stimuli are relevant and should be attended
to. Conceiving of attention as enhancing the tuning of cells is
consistent with current work on the neural basis of attention
(Treue & Maunsell, 1996).

An Overview of SUSTAIN

SUSTAIN consists of three layers: input, subcategory, and
category. Input layer units take on real values to encode infor-
mation about the environment (e.g., the encoding of a stimu-
lus item that needs to be classified as belonging to category
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Figure 1. Both units respond maximally when a stimulus appears
in the center of their receptive field (a .5 response for the broadly
tuned unit; a 2.0 response for the tightly tuned unit). Compared to
the broadly tuned unit, the tightly tuned unit’s response is stronger
to stimuli close to the center and is weaker for stimuli farther from
the center (the crossover point occurs at a distance from center of .9
(approximately).

“A” or “B”). Units in the subcategory layer (the intermedi-
ate layer) encode the prototypes and exceptions of the cat-
egory units. Subcategory units compete with one another to
respond to patterns at the input layer with the winner (the sub-
category unit that is most active) being reinforced. Weights
are adjusted according to the Kohonen unsupervised learning
rule for developing self-organizing maps (Kohonen, 1984).
When a subcategory unit “wins” the centers of its receptive
fields (there is a receptive field for each input dimension)
move in the direction of the input pattern, minimizing the dis-
tance between the centers and the input pattern. This method
is similar to a number of clustering techniques used for classi-
fication and pattern recognition, such as maximum-distance,
K-means, and isodata (Tou & Gonzalez, 1974; Duda & Hart,
1972).

One novel aspect of our implementation is that this unsu-
pervised learning procedure is combined with a supervised
procedure. When a subcategory unit responds strongly to an
input pattern (i.e., it is the winner) and has an excitatory con-
nection to the inappropriate category unit (i.e., the subcate-
gory unit predicts “A” and the correct answer is “B”), the net-
work shuts off the subcategory unit and recruits a new subcat-
egory unit that responds maximally to the misclassified input
pattern (i.e., the new unit’s receptive fields are centered upon
the input pattern).1

The process continues with the new unit competing with
the other subcategory units to respond to input patterns with
the position of the winner’s receptive fields being updated, as
well as its connection to the category units by the one layer
delta learning rule (Rumelhart et al., 1986). At a minimum,

1Initially the network only has one subcategory unit that is cen-
tered upon the first input pattern.



there must be as many subcategory units as category units
when category responses are mutually exclusive.

Previous proposals that bear some resemblance to SUS-
TAIN include counterpropagation networks (Hecht-Nielsen,
1988) which are multilayer networks where the Kohonen
learning rule is used for the bottom two layers. Simpson has
explored a supervised version of the Kohonen network where
the model does not determine which cluster is the winner,
but is told (Simpson, 1989). This change greatly speeds up
learning. Interestingly, our approach to clustering is not prop-
erly characterized as being either supervised or unsupervised.
Clustering is unsupervised unless the network makes a seri-
ous clustering error (i.e., an incorrect prediction). A serious
error leads to the creation of a new cluster; otherwise learning
at the subcategory layer is completely unsupervised.

Another interesting aspect of SUSTAIN’s subcategory
units is that in addition to adjusting the centers (i.e., the
position) of their receptive fields, the sensitivities (i.e., the
shape) of their receptive fields also are adjusted in response
to input patterns. Input units (i.e., dimensions of the input
pattern) that provide consistent evidence (i.e., the position
of the subcategory units’ receptive fields for that dimension
does not have to be adjusted often), develop tighter tunings
(see Figure 1). These more reliable input dimensions receive
more attention. SUSTAIN uncovers (and explicitly repre-
sents) which dimensions are relevant for classification.

Mathematical Formulation

Receptive fields have an exponential shape with a receptive
field’s response decreasing exponentially as distance from its
center increases:

α(µ) = λe�λµ (1)

where λ is the tuning of the receptive field, and µ is the
distance of the stimulus from the center of the field. Argu-
ments for activation dropping off exponentially can be found
in (Shepard, 1987).

While receptive fields with different λ have different
shapes, for any λ, the area “underneath” a receptive field is
constant: Z ∞

0
α(µ)dµ =

Z ∞

0
λe�λµdµ = 1: (2)

For a given µ, the λ that maximizes α(µ) can be computed by
differentiating:

∂α
∂λ

= e�λµ (1�λµ): (3)

These properties of exponentials prove useful in formulating
SUSTAIN.

The activation of a subcategory unit is given by:

AHj =
∑n

i=1(λi)
re�λiµi j

∑n
i=1(λi)r (4)

where n is the number of input units, λi is the tuning of each
subcategory unit’s receptive field for the ith input dimension,

µi j is the distance between the center of subcategory unit j’s
receptive field for the ith input unit and the output of the ith
input unit (distance is simply the absolute value of the dif-
ference of these two terms), and r is an attentional parame-
ter (always nonnegative). When r is high, input units with
tighter tunings (units that seem relevant) dominate the activa-
tion function. Equation 4 sums the responses of the receptive
fields for each input dimension and normalizes the sum. The
activation of a subcategory unit is bound between 0 (exclu-
sive) and 1 (inclusive).

Subcategory units compete to respond to input patterns and
in turn inhibit one another. When many subcategory units
are strongly activated, the output of the winning unit is less.
Units inhibit each other according to:

OHj =
(AHj )

β

∑m
i=1(AHi)

β AHj (5)

where β is the lateral inhibition parameter (always nonneg-
ative) and m is the number of subcategory units. When β is
small, competing units strongly inhibit the winner. When β
is high the winner is weakly inhibited. Units other than the
winner have their output set to zero.2

After feedback is provided by the “experimenter”, if the
winner predicts the wrong category, its output is set to zero
and a new unit is recruited:

for all j and k, if (tkOHj wjk < 0), then recruit a new unit
(6)

where tk is the target value for category unit k and w jk is the
weight from subcategory unit j to category unit k. When a
new unit is recruited its receptive fields are centered on the
misclassified input pattern and the subcategory units’ activa-
tions and outputs are recalculated.

If a new subcategory unit is not created, the centers of the
winner’s receptive fields are adjusted:

∆wi j = η(OIi �wi j) (7)

where η is the learning rate, OIi is the output of input unit i.
The centers of the winner’s receptive fields move towards the
input pattern according to the Kohonen learning rule. This
learning rule centers the prototype (i.e., the cluster’s center)
amidst the members of the prototype.

Using our result from Equation 3, receptive field tunings
are updated according to:

∆λi = ηe�λiµi j
�
1�λiµi j

�
: (8)

Only the winning subcategory unit updates the value of λi.
Equation 8 adjusts the shape of the receptive field for each

2The model (as specified) can have multiple winners. For in-
stance, there could always be two winners. More complex schemes
could also be considered for determining the number of winners.
We do not explore any of these possibilities because they are less
conceptually clear and the data does not demand it.



input so that each input can maximize its influence on sub-
category units. Initially, λi is set to be broadly tuned. For
example, if input unit i takes on values between �1 and 1,
the maximum distance between the ith input unit’s output and
the position of a subcategory unit’s receptive field (for the ith
dimension) is 2, so λi is set to :5 because that is the optimal
setting of λi for µ equal to 2 (i.e., Equation 8 equals zero).

Activation is spread from the winning subcategory unit to
the category units:

ACk
=OHj wjk (9)

where ACk
is the activation of the kth category unit and OHj

is the output of the winning subcategory unit.
The output of a category unit is given by:

if (Ck is nominal and jACk
j> 1), then OCk

=
ACk
jACk

j

else OCk
= ACk

(10)

where OCk
is the output of the kth category unit. If the feed-

back given to subjects concerning Ck is nominal (e.g., the
item is in category “A” not “B”), then Ck is nominal. Kr-
uschke (1992) refers to this kind of teaching signal as a “hum-
ble teacher” and explains when its use is appropriate.

When a subcategory unit is recruited, weights from the unit
to the category units are set to zero. The one layer delta learn-
ing rule (Rumelhart et al., 1986) is used to adjust weights
these weights:

∆wjk = η(tk �OCk
)OHj : (11)

Note that only the winner will have its weights adjusted since
it is the only subcategory unit with a nonzero output.

The following equation determines the response probabil-
ities (for nominal classifications):

Pr(k) =
(OCk

+1)d

∑p
i=1(OCi +1)d (12)

where d is a response parameter (always nonnegative) and p
is the number of category units. The category unit with the
largest output is almost always chosen when d is large. In
Equation 12, one is added to each category unit’s output to
avoid performing calculations over negative numbers. The
Luce choice rule is a special case (d = 1) of this decision rule
(Luce, 1963).

Empirically Testing SUSTAIN

Critiques of computational models have historically fo-
cused on what functions are learnable (e.g., Minsky & Papert,
1969). This trend continues with Hornik, Stinchcombe, and
White (1990) proving that backpropagation networks are uni-
versal approximators (given enough hidden units) and Pog-
gio and Girosi (1990) demonstrating similar results for their
model. Unfortunately, researchers have not focused on the

time course of learning. A more informative test of a model’s
performance requires examining which functions (i.e., clas-
sifications) a model can easily learn and which functions are
difficult to master. For a model of human category learning,
it is not sufficient to show that a model can learn some func-
tion (e.g., logical XOR), but one must show that a model can
match the learning curves of human subjects over a variety of
functions, using the same parameter values. As models be-
come more sophisticated, fitting a diverse set of studies with
the same parameter values may prove to be a useful test of
models.

In accord with this stance, SUSTAIN is fit to a variety of
human learning data (here we focus on Shepard et al. (1961))
using the same parameter values: η = :1, β = 1:0, r = 3:5,
and d = 8:0 (Love & Medin, 1998). The parameters were
determined by beginning with η = :1, β = 1:0, r = 1:0, and
d = 1:0 and adjusting them by hand until a good qualitative
fit of the data was achieved. Because each of SUSTAIN’s
parameters has an intuitive meaning, it was easy to fit the
data. For example, when we noticed SUSTAIN was not suf-
ficiently biased towards solutions focusing on a small number
of input dimensions, the value of the attentional parameter r
was increased. When we noticed overall accuracy was too
low, the value of then decision parameter d was increased
until SUSTAIN sufficiently stressed accuracy.

Modeling Shepard et al. (1961)

Shepard et al.’s (1961) classic experiments on human cat-
egory learning provided challenging data to fit. Subjects
learned to classify 8 objects that varied on three binary di-
mensions (shape, size, and color) into two categories (four
items per category). On every trial, subjects assigned the
stimulus to a category and feedback was provided. Subjects
trained for 16 blocks (each object was shown twice per block
in a random order) or until they completed two consecutive
blocks without an error. Six different assignments of objects
to categories were tested with the six problems varying in
difficulty (Type I was the easiest to master, Type VI the hard-
est). The logical structure of the six problems is shown in
Table 1. The Type I problem only requires attention along
one input dimension, while the Type II problem requires at-
tention to two dimensions (Type II is XOR with an irrelevant
dimension). Types III-V require attention along all three di-
mensions but some regularities exist (Types III-V can be clas-
sified as rule plus exception problems). Type VI requires at-
tention to all three dimensions and has no regularities across
any pair of dimensions.

Nosofsky et al. (1994) replicated Shepard et al. (1961) with
more subjects and traced out learning curves. Figure 2 shows
the learning curves for the six problem types. The basic
finding is that Type I is learned faster than Type II which is
learned faster than Types III-V which are learned faster than
VI. This data is particularly challenging for learning models
as most models fail to predict Type II easier than Types III-V.



Table 1
The logical structure of the six classification problems tested
in Shepard et al. (1961) is shown. The physical attributes
(e.g., large, dark, triangle, etc.) were randomly assigned to
an input dimension for each subject.

Input I II III IV V VI
111 A A B B B B
112 A A B B B A
121 A B B B B A
122 A B A A A B
211 B B A B A A
212 B B B A A B
221 B A A A A B
222 B A A A B A
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Figure 2. Each learning block consisted of two presentations of
each stimulus (in a random order). Nosofsky et al.’s (1994) replica-
tion of Shepard et al. (1961) is shown on top. Below, SUSTAIN’s
fit of Nosofsky et al.’s (1994) data is shown (averaged over 10,000
runs on each problem).

The only models known to reasonably fit these data are AL-
COVE (Kruschke, 1992) and RULEX (Nosofsky, Palmeri, &
McKinley, 1994b). RULEX is designed to classify stimuli
that can be represented by binary features, while ALCOVE
is an exemplar based model.

SUSTAIN’s fit of Nosofsky et al.’s data is also shown in
Figure 2. While fitting the data (see Section Empirically
Testing SUSTAIN), the same difficulty ordering of the six
problem types was observed for all combinations of parame-
ter values with the exception that for high values of d all six
problem types were of equal difficulty (in this case SUSTAIN
masters each problem within the first learning block).

How SUSTAIN Solves the Six Problems

SUSTAIN is not a black box and it is possible to under-
stand how SUSTAIN solves a classification problem (perhaps
gaining insight into the problem itself). Table 2 shows the
number of subcategory units SUSTAIN recruited by prob-
lem type. The most common solution for the Type I problem
was to create one unit for each category. Type I has a simple
category structure (the value of first dimension determines
membership). Accordingly, SUSTAIN solves the problem
with only two subcategory units. Type II requires attention
to two dimensions. SUSTAIN solved the Type II problem
by allocating two units to each category. Each subcategory
unit responded to two input patterns, largely ignoring the ir-
relevant dimension. Because category members are highly
dissimilar (e.g., 121 and 212 are in the same category), SUS-
TAIN formed two clusters for each category (ignoring dif-
ferences on the irrelevant dimension). Types III-V can be
roughly characterized as imperfect rule plus exception cate-
gories. SUSTAIN solved these problems by uncovering reg-
ularities and memorizing exceptions (devoting a unit for one
pattern). Type VI has no regularities that can be exploited,
forcing SUSTAIN to “memorize” each pattern (i.e., SUS-
TAIN devoted a subcategory unit to each input pattern).3

The right column of Table 2 shows the mean λ value (aver-
aged over the three input dimensions) at the end of the second
block for each problem.4 The sharpness of the mean tun-
ing was positively correlated with the number of subcategory
units recruited. Only one dimension develops a sharp tuning

3Occasionally, SUSTAIN recruited nine subcategory units (one
more than the number of input patterns). This occurred when a sub-
category unit responding to one input pattern was “stolen” by an-
other input pattern belonging to the same category (i.e., the subcate-
gory unit temporarily responded to two input patterns). Because no
regularities exist in the Type VI problem, each subcategory unit can
only encode one input pattern. The input pattern whose subcategory
unit was “stolen” is forced to recruit a new subcategory unit.

4SUSTAIN’s mean tunings are reported after two learning
blocks because some runs reached criterion at that point. Differ-
ences in tunings between the six conditions are magnified when later
blocks are examined.



Table 2
SUSTAIN’s Final Architecture and mean λ (2nd block).

Problem Type Mean Subcategory Units Mean λ
I 2.2 2.0
II 4.3 2.8
III 5.9 3.0
IV 6.3 3.1
V 6.5 3.2
VI 8.2 3.5

in the Type I problem (the network learns the other two di-
mensions are irrelevant), while all three dimensions develop
a sharp tuning in the Type VI problem (the network learns all
three dimensions are highly relevant).

Discussion

SUSTAIN is an adaptive architecture, tailoring its archi-
tecture to the problem at hand. It is motivated by the basic
psychological notion that people prefer general solutions and
ignore distinctions when possible. SUSTAIN’s potential is
highlighted by its successfully fit of Shepard et al.’s (1961)
six problem types. While this task uses binary input dimen-
sions, SUSTAIN is not restricted to this input format. SUS-
TAIN has been successfully applied to Billman & Knutson’s
(1996) unsupervised learning data and Medin, Gerald, and
Murphy’s (1983) data on item and category learning where
input patterns consist of attributes that are mulitvalued (Love
& Medin, 1998).
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