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Abstract

SUSTAIN (Supervised and Unsupervised STratified Adaptive
Incremental Network) is a network model of human category
learning. SUSTAIN is a three layer model where learning be-
tween the first two layers is unsupervised, while learning be-
tween the top two layers is supervised. SUSTAIN clusters in-
puts in an unsupervised fashion until it groups input patterns
inappropriately (as signaled by the supervised portion of the
network). When such an error occurs, SUSTAIN alters its ar-
chitecture, recruiting a new unit that is tuned to correctly clas-
sify the exception. Units recruited 1o capture exceptions can
evolve into prototypes/attractors/rules in their own right. SUS-
TAIN’s adaptive architecture allows it to master simple classi-
fication problems quickly, while still retaining the capacity to
learn difficult mappings. SUSTAIN also adjusts its sensitivity
to input dimensions during the course of learning, paying more
attention to dimensions relevant to the classification task. SUS-
TAIN successfully fits item and category learning data from
Medin, Dewey, and Murphy (1983). SUSTAIN’s performance
on other data sets is discussed. SUSTAIN is compared with
other models of category learning.

Introduction

Some categories have a very simple structure, while others
can be complex. Accordingly, learning how to properly clas-
sify items as members of category “A” or “B” can be almost
trivial (e.g., the value of a single input dimension determines
membership) or can be so difficult that no regularity is dis-
covered (e.g., rote memorization of every category member
is required to determine membership).

Classifications are harder to master when the decision
boundary (in a multi-dimensional space of possible inputs)
is highly irregular and when there are multiple boundaries
(e.g., all the members of category “A” do not fall inside one
contiguous region of the input space). Very simple learning
models will fail to master difficult categorizations with com-
plex boundaries. For instance, a purely linear model, like
the perception (Rosenblatt, 1958) will not be able to master a
classification where the mapping is not linearly separable.

Interestingly, a complex nonlinear model, such as a back-
propagation model (Rumelhart, Hinton, & Williams, 1986)
with many hidden units, can learn complex decision bound-
aries but will perform poorly on a simple problem (e.g., a
problem where the decision boundary is linear). In such
cases, the more complex model will generalize poorly by
over-fitting the training data. Thus, making a model too pow-
erful or too weak is undesirable. Geman, Bienenstock, and
Doursat (1992) termed this tradeoff between data fitting and
generalization as the bias/variance dilemma. In brief, when a
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network is too simple it is overly biased and cannot learn the
correct boundaries. Conversely, when a network is too power-
ful, it masters the training set, but the boundaries it learns are
somewhat arbitrary and are highly influenced by the training
sample, leading to poor generalization.

Unfortunately, many learning models require that the num-
ber of intermediate level units be specified in advance: the
number of hidden units in backpropagation, the number of
codebook vectors in LVQ (Learning Vector Quantization, Ko-
honen (1990)), and the number of radial basis functions in the
fixed architecture version of Poggio and Girosi’s (1990) regu-
larization network and ALCOVE (attention learning covering
map, Kruschke (1990)). The problem may not be avoidable
by treating the number of intermediate units as an additional
parameter. The environment a model is embedded in could
change and alter the nature of the decision boundaries. Also,
certain architectures may be preferable at certain stages of
the learning process. For example, Elman (1994) provides
computational evidence (which seems in accord with find-
ings from developmental psychology) that beginning with a
simple network and adding complexity as learning progresses
improves overall performance.

Models with an adaptive architecture (like SUSTAIN), do
not need to specify the number of intermediate units prior to
learning. Still adaptive architecture models are not without
problems. Some models grow in an unconstrained fashion,
adding an intermediate unit every time an item is presented
(e.g., the adaptive architecture version of Poggio and Girosi’s
(1990) model and ALCOVE). Clearly, these models (as speci-
fied) have prohibitive space requirements (with an increase in
time requirements when run on a serial computer) and may be
psychologically implausible. While these model have adap-
tive architectures, architectural changes do not occur in re-
sponse to how the learning process is unfolding. Also, one
could argue that the solutions these models derive lack ele-
gance and are difficult to interpret.

Other methods do make architectural changes in response
to how learning is progressing. Pruning methods begin with
a large network and remove units as learning progresses
(Karnin, 1990). In practice, this method prove inefficient (it
begins with a large network) and the algorithm often termi-
nates with a medium sized network when a simpler network
would be better suited to the learning problem. Another prob-
lem is that the modeler must decide how large the network
should be in advance.

Instead, other models (including SUSTAIN) begin with a
small network and expand the network when necessary. Most



methods expand the network when overall error (the
difference between desired and observed output) is high.
For example, the cascade-correlation model (Fahlman &
Lebiere, 1990) expands the network vertically with additional
intermediate layers, creating higher-order feature detectors.
Other models expand horizontally when error is high (Ash,
1989; Azimi-Sadjadi, Sheedvash, & Trujillo, 1993).

Unlike the aforementioned models, SUSTAIN does not ac-
crue units based on overall error. Instead, SUSTAIN adds a
new intermediate level unit when the unsupervised part of the
network clusters input patterns in a manner deemed inappro-
priate by the supervised part of the network. This happens
when two input patterns (that differ) belong to the same clus-
ter and the differences between the two input patterns proves
critical for successfully mastering the classification. When
such an error occurs, SUSTAIN splits the cluster into two
clusters by adding an intermediate unit. Adding units in SUS-
TAIN is psychologically motivated by the intuition that peo-
ple ignore differences when they can (a bias towards simple
solutions), but will note differences when forced to by envi-
ronmental feedback.

Another aspect of networks that is usually fixed, but should
vary depending on the nature of the learning problem, is the
activation function of an intermediate level unit. In back-
propagation networks, the steepness of a hidden unit’s sig-
moidal shaped activation function is set as a parameter. In
models where the intermediate level units are viewed as re-
ceptive fields (e.g., Poggio & Girosi, 1990; Kruschke, 1992),
the shape of a unit’s receptive field is set as a parameter.

Intermediate level units in SUSTAIN have multiple recep-
tive fields (one for each input dimension) and treat the shape
of a receptive field as something that should be learned, rather
than as a parameter. SUSTAIN assumes that receptive fields
are initially broadly tuned and are adjusted during the course
of learning to maximize the receptive field’s response to in-
puts. Intermediate units with peaked (narrow) receptive fields
can be described as highly focused. Receptive fields that
develop tighter tunings are capable of stronger responses to
stimuli (see Figure 1). As an outcome of learning how to per-
form a classification, SUSTAIN learns which dimensions of
the stimuli are relevant and should be attended to. Conceiv-
ing of attention as enhancing the tuning of cells is consistent
with current work on the neural basis of attention (Treue &
Maunsell, 1996).

An Overview of SUSTAIN

SUSTAIN consists of three layers: input, subcategory, and
category. Input layer units take on real values to encode infor-
mation about the environment (e.g., the encoding of an item
that needs to be classified as belonging to category “A” or
“B"). Units in the subcategory layer (the intermediate layer)
encode the prototypes and exceptions of the category units.
Subcategory units compelte with one another to respond to
patterns at the input layer with the winner (the subcategory
unit that is most active) being reinforced. Weights are ad-
justed according to the Kohonen unsupervised learning rule
for developing self-organizing maps (Kohonen, 1984). When
a subcategory unit “wins” the centers of its receptive fields
(there is a receptive field for each input dimension) move in
the direction of the input pattern, minimizing the distance
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Figure 1. Both units respond maximally when a stimulus appears
in the center of their receptive field (a .5 response for the broadly
tuned unit; a 2.0 response for the tightly tuned unit). Compared to
the broadly tuned unit, the tightly tuned unit’s response is stronger
to stimuli close to the center and is weaker for stimuli farther from
the center (the crossover point occurs at a distance from center of .9
(approximately).

between the centers and the input pattern. This method is
similar to a number of clustering techniques used for classi-
fication and pattern recognition, such as maximum-distance,
K-means, and isodata (Tou & Gonzalez, 1974; Duda & Hart,
1972).

One novel aspect of our implementation is that this unsu-
pervised learning procedure is combined with a supervised
procedure. When a subcategory unit responds strongly to an
input pattern (it is the winner) and has an excitatory connec-
tion to the inappropriate category unit (i.e., the subcategory
unit predicts “A” and the correct answer is “B"), the network
shuts off the subcategory unit and recruits a new subcategory
unit that responds maximally to the misclassified input pat-
tern (i.e., the new unit’s receptive fields are centered upon
the input pattern).! This process continues with the new unit
competing with the other subcategory units to respond to in-
put patterns with the position of the winner's receptive fields
being updated, as well as its connection to the category units
by the delta learning rule (Rumelhart et al., 1986). At a min-
imum, there must be as many subcategory units as category
units when category responses are mutually exclusive,

Previous proposals that bear some resemblance to SUS-
TAIN include counterpropagation networks (Hecht-Nielsen,
1988) which are multilayer networks where the Kohonen
learning rule is used for the bottom two layers. Simpson
has explored a supervised version of the Kohonen network
where the model does not determine which cluster is the win-
ner, but is told (Simpson, 1989). This change greatly speeds
up learning. Interestingly, our approach to clustering is not
properly characterized as being either supervised or unsuper-
vised. Clustering is unsupervised unless the network makes a
serious clustering error. A serious error leads to the creation
of a new cluster; otherwise learning at the subcategory layer
is completely unsupervised.

Another interesting aspect of SUSTAIN's subcategory
units is that in addition to adjusting the centers (i.e., the posi-

Unitially the network only has one subcategory unit that is cen-
tered upon the first input pattern.



tion) of their receptive fields, the sensitivities (i.e., the shape)
of their receptive fields also are adjusted in response (o input
patterns. Input units (i.e., dimensions of the input pattern) that
provide consistent evidence (i.e., the position of the subcate-
gory units’ receptive fields for that dimension does not have
to be adjusted often), develop tighter tunings (see Figure 1),
These more reliable input dimensions receive more attention.
SUSTAIN uncovers (and explicitly represents) which dimen-
sions are relevant for classification.

An Illustration of SUSTAIN’s Operation

Consider categorizing people into two groups: those who ride
motorcycles and those who don’t. For the motorcyclists cate-
gory, SUSTAIN might form an initial cluster that responds to
input patterns representing young, adventurous men. When
an input pattern representing a 40 year old recently divorced
wealthy man that rides a motorcycle is presented to the nct-
work, it activates a subcategory unit associated with non-
motorcyclists more strongly than it activates the subcategory
unit that represents young male motorcycle riders. To remedy
this situation, SUSTAIN creates a new unit that is centered
upon the 40 year old divorced man. It turns out that this ex-
ception correctly classifies a number of other input patterns
(the cluster can be labeled “mid-life crisis™). At this point,
the motorcyclists category contains two distinct prototypes
(“young male” and “mid-life crisis”). If the network was pre-
sented with a grandmother that likes to bungee jump, the net-
work would probably predict she doesn’t ride a motorcycle,
but if it turns out she does, a new subcategory unit would be
created to capture this exception. Other adventurous older
women that are similar to the grandmother will also activate
this unit, perhaps turning this exception into prototype.
During the learning process, tunings for each input dimen-
sion arc developed. Dimension like “hair color” would be
broadly tuned whereas dimensions like “has two legs” and
“is a free spirit” may develop sharper tunings and be more
influential in selecting the winning subcategory unit.

Mathematical Formulation

Receptive fields have an exponential shape with a receptive
field’s response decreasing exponentially as distance from its
center increases:

ofy) = he™™ (M

where A is the tuning of the receptive field, and y is the
distance of the stimulus from the center of the field. Argu-
ments for activation dropping off exponentially can be found
in (Shepard, 1987).

While receptive fields with different A have different
shapes, for any A, the area “underneath” a receptive field is
constant:

fo a(;;)d;.:f Ae Mdy=1. (2)
0

For a given y, the A that maximizes o/(u) can be computed by

differentiating:
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These properties of exponentials prove useful in formulating
SUSTAIN.

= M (1 =) 3)
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The activation of a subcategory unit is given by:

oy () e

An, == By

(4)

where n is the number of input units, A; is the tuning of each
subcategory unit’s receptive field for the ith input dimension,
4 is the distance between the center of subcategory unit j's
receptive field for the ith input unit and the output of the ith
input unit (distance is simply the absolute value of the dif-
ference of these two terms),” and r is an attentional param-
eter (always nonnegative). When r is high, input units with
tighter tunings (units that seem relevant) dominate the activa-
tion function. Equation 4 sums the responses of the receptive
ficlds for each input dimension and normalizes the sum. The
activation of a subcategory unit is bound between 0 (exclu-
sive) and 1 (inclusive).

Subcategory units compete to respond to input patterns and
in turn inhibit one another. When many subcategory units are
strongly activated, the output of the winning unit s less. Units
inhibit each other according to:

Aw )P
O, = (An;)
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where B is the lateral inhibition parameter (always nonnega-
tive) and m is the number of subcategory units. When f is
small, competing units strongly inhibit the winner. When
is high the winner is weakly inhibited. Units other than the
winner have their output set to zero.?

After feedback is provided by the “experimenter”, if the
winner predicts the wrong category, its output is set to zero
and a new subcategory unit is recruited:

for all j and &, if (£,On,wjix < 0), then recruit a new unit
(6)
where 1, is the target value for category unit k and wj, is the
weight from subcategory unit j to category unit k. When a
new unit is recruited its receptive fields are centered on the
misclassified input pattern and the subcategory units’ activa-
tions and outputs are recalculated.
If a new subcategory unit is not created, the centers of the
winner’s receptive fields are adjusted:
Awi; =1(0), —w;j) (7
where 1 is the learning rate, Oy, is the output of input unit {.
The centers of the winner's receptive fields move towards the
input pattern according to the Kohonen learning rule. This

2Distance must be calculated in a different manner when two or
more input dimensions are integral (e.g., lightness and saturation in
color perception). In such cases, the Euclidean distance between
the expected pattern and the observed pattern is calculated. Integral
input dimensions also share a common A. The reader can consult
Shepard (1964) and Nosofsky (1987) for more information on the
metric properties of integral dimensions.

3The model (as specified) can have multiple winners. For in-
stance, there could always be two winners. More complex schemes
could also be considered for determining the number of winners.
We do not explore any of these possibilities because they are less
conceptually clear and the data does not demand it.



learning rule centers the prototype (i.c., the cluster’s center)
amidst the members of the prototype.

Using our result from Equation 3, receptive field tunings
are updated according to:

AL, =ne” ““’f(l —Aijj) - (8)

Only the winning subcategory unit updates the value of A;.
Equation 8 adjusts the shape of the receptive field for each
input so that each input can maximize its influence on sub-
category units. Initially, A; is set to be broadly tuned. For
example, if input unit i takes on values between —1 and 1, the
maximum distance between the ith input unit's output and the
position of a subcategory unit's receptive field (for the ith di-
mension) is 2, so A; is set to .5 because that is the optimal set-
ting of A; for y equal to 2 (i.e., Equation 8 equals zero). Under
this scheme, A cannot become negative during training.

Activation is spread from the winning subcategory unit to
the category units:

Ac, = On,wi 9
where A, is the activation of the kth category unit and Oy, is
the output of the winning subcategory unit.

The output of a category unit is given by:

A
if (Ci is nominal and |A¢,| > 1), then O¢, = b
k
else Oc, = Ac,

(10)

where Oc, is the output of the kth category unit. If the feed-
back given to subjects concerning Cy, is nominal (e.g., the item
is in category “A” not “B”), then C; is nominal. Kruschke
(1992) refers to this kind of teaching signal as a “humble
teacher” and explains when its use is appropriate.

When a subcategory unit is recruited, weights from the unit
to the category units are set to zero. The one layer delta learn-
ing rule (Rumelhart et al., 1986) is used to adjust weights
these weights:

(11)

where 1, is the target value (i.e., the correct value) for category
unit k. The target value is analogous to the feedback provided
to human subjects. Note that only the winner will have its
weights adjusted since it is the only subcategory unit with a
nonzero output.

The following equation determines the response probabili-
ties (for nominal classifications):

Awjy =N(t — O¢,)OH,

(OC“ +1 )d

7 {0c 1) (12)

Pr(k) =

where d is a response parameter (always nonnegative) and p
is the number of category units. The category unit with the
largest output is almost always chosen when d is large. In
Equation 12, one is added to each category unit’s output to
avoid performing calculations over negative numbers. The
Luce choice rule is a special case (d = 1) of this decision rule
(Luce, 1963).
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Empirically Testing SUSTAIN

SUSTAIN has successfully fit Shepard et al.’s (1961) classic
experiments on the time course of human category learning
(Love & Medin, 1998).* In Shepard et al.’s study, subjects
assigned a stimulus to either category “A" or “B” and feed-
back was provided. Six different assignments of objects to
categories were tested with the six problems varying in diffi-
culty (Type I was the easiest to master, Type VI the hardest).
For example, the Type I problem can be solved by attend-
ing to only one input dimension (e.g., color), while Type VI
requires attending to all three dimensions (color, shape, and
size) and has no regularities across any pair of dimensions.

SUSTAIN successfully fit subjects’ learning curves and its
solution was readily interpretable. SUSTAIN recruited more
subcategory units for the more difficult problems. For exam-
ple, the most common solution for the Type I problem was to
create one unit for each category. Type VI has no regularities
that can be exploited, forcing SUSTAIN to “memorize” each
stimulus (i.e., SUSTAIN devoted a subcategory unit to each
input pattern).

The Type VI problem is in some ways equivalent to identi-
fication learning while the Type I problem seems like a “pure”
categorization problem (there is a simple criteria for member-
ship, the categories are very cohesive). The relative difficulty
of the Type VI problem suggests (incorrectly) that identifi-
cation learning is always more difficult than categorization
learning, or more generally, that classification becomes easier
at increased levels of abstraction. Contrary to this conclusion,
there are striking instances where identification precedes cat-
egorization.

For example, Medin et al. (1983) found that people are
faster to associate a unique names (o photographs of nine fe-
male faces than they are to categorize the photographs into
two categories. The logical structure of the two categories
is shown in Table 1. One possible explanation for the rel-
ative case of identification learning is that the stimuli used
in Medin et. al (1983) were rich and distinct, varying along
many dimensions not listed in Table 1, such as the shape of
the face, the type of nose, etc.. This idiosyncratic information
makes each stimulus item more distinct.

SUSTAIN correctly predicts that the relative rates of iden-
tification and categorization learning interact with the nature
of the stimuli (with the same parameter values used to model
Shepard et al. (1961): n=.1,p=1.0,r=3.5,and d = 8.0).
Specifically, when the stimuli are highly distinct, identifica-
tion learning is faster than categorization. The properties of
SUSTAIN that give rise to this behavior will be discussed af-
ter simulation results are presented for Medin et al. (1983).

Modeling Medin et al. (1983)

Subjects were assigned to one of a number of learning con-
ditions. Here, we focus on the First Name and Last Name
condition. In the First Name condition subjects learned a
separate label for each photograph, while in the Last Name
condition only two labels were used. In both conditions, sub-
jects trained until they correctly classified all nine items for
two consecutive blocks or until they completed the sixteenth

“The data actually fit was from Nosofsky et al.'s (1994)
replication.



Table 1
The logical structure of the two categories is shown. The four
dimensions were hair color, smile type, hair length, and shirt
color.).

Category A Category B

1112 1122
1212 2112
1211 2221
1121 2222
2111
Table 2
Human performance and SUSTAIN's (in parentheses).
Problem Type  Criterion  Overall
First Name 1.00 (1.00) .84 (.73)
Last Name .91 (.38) .87 (.76)

learning block (a learning block consisted of presenting each
item in Table | once in a random order). Feedback was pro-
vided.

The results from Medin et al. (1983) are shown in Table 2.
Notice that every subject in the First Name condition reached
criterion, while only 91% of subjects reached criterion in the
Last Name condition. Also, accuracy overall was roughly
equal, even though chance guessing favored the Last Name
condition (i.e., pure guessing would result in 1/2 correct com-
pared to 1/9 correct). When the First Name condition is
rescored to account for guessing by scoring any label within
the same category (“A” or “B”) as correct, overall accuracy
rises to 91%.

To fit SUSTAIN to the data, certain assumptions had to
be made about the nature of the input representation. Be-
cause subjects were sensitive to the idiosyncratic information
in each photograph, twenty additional input dimensions were
added. Each of the twenty idiosyncratic dimensions consisted
of nine input units with eight set to negative one and one set to
positive one (e.g., for the dimension representing the type of
nose, the fourth input unit of the nose dimension positive and
the rest negative indicated that the face had the fourth type
of nose, which is distinct from the other eight nose types).
Put differently, each input dimension consisted of an attribute
that could take on one of nine possible values. Each stimulus
item had a unique value on each idiosyncratic input dimen-
sion. The input representation of the four dimensions listed
in Table 1 also had nine input units per dimension, but only
the first two units of these dimensions were ever positive.

To capture that the nine input units forming an input di-

Table 3
Human performance and SUSTAIN's performance (in paren-
theses) withd = 15.

Problem Type  Criterion  Overall
First Name  1.00 (1.00) .84 (.84)
Last Name 91(.89) .87 (.86)
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Table 4
SUSTAIN's final architecture and mean A (2nd block).
Problem Type Mean Subcategory Units  Mean A
First Name 9.0 23
Last Name 6.8 1.5

mension are one functional unit, the A values associated with
each input unit forming an input dimension werc averaged
after each update. Also, u (the distance from input) for each
subcategory unit’s receptive field was the sum across all input
units belonging to the same dimension divided by 2 (only one
of the nine units takes on a positive value, thus the maximum
4 is 2, generalizing the binary feature case). To summarize,
input units forming a dimension have a common g and A.

SUSTAIN was run on each condition 10,000 times. SUS-
TAIN captured the major patterns in the data (see Table 2).
SUSTAIN'’s quantitative fit of the data can be increased by
setting the decision parameter d to 15 (see Table 3). The
decision parameter determines the extent to which SUSTAIN
stresses accuracy and can be viewed as outside the model.’
Like people, SUSTAIN found it more natural to identify each
stimulus than it did to associate several stimuli to a common
label.

Table 4 shows the number of subcategory units recruited
by SUSTAIN by condition. Notice that SUSTAIN recruited
more units in the First Name condition than in the Last Name
condition. SUSTAIN’s tunings® are sharpest in the First
Name condition, indicating that more input dimensions are
relevant for classification in this condition (as would be ex-
pected). Interestingly, when SUSTAIN's input representation
does not include idiosyncratic information, the Last Name
condition (criterion: .50, overall: .77) is easier to master than
the First Name condition (criterion: .00, overall: .20).

Why SUSTAIN favors identification over
categorization in Medin et al. (1983)

Various factors conspire to cause SUSTAIN’s performance
to interact with the nature of the stimuli, Performance tends
to improve when fewer subcategory units are recruited be-
cause units that respond to multiple stimulus items develop
stronger associations with the category units. At odds with
this preference for fewer units is a preference for highly spe-
cialized subcategory units. A subcategory unit specialized for
a particular stimulus will respond very strongly to that stim-
ulus. Another factor in favor of fewer subcategory units is
that units inhibit each other. Making stimuli more distinc-
tive alters the balance of these forces (leading to the observed
interaction). The benefit of having fewer subcategory units
diminishes with distinctive stimuli because distinctive inputs
tend not to cluster as well together and subcategory units tend
to inhibit each other less.

SAll further discussion will focus on results from simulations
withd = 8.

6SUSTAIN's mean tunings are reported after two learning blocks
because some runs reached criterion at that point. Differences in
tunings between the six conditions are magnified when later blocks
are examined.



Discussion

SUSTAIN's ability to model both Shepard et al.’s (1961) and
Medin et al.’s (1983) data highlight SUSTAIN’s promise as
a model of human category learning.” These results suggest
that SUSTAIN may prove successful in explaining why cer-
tain categories are more natural or basic than others (Rosch
et al.,, 1976). For example, if asked how one gets to work
in the morning, one says, “l drive my car,” as opposed to
“I drive my Buick,” or “I drive my vehicle.” SUSTAIN of-
fers an explanation for why a level of categorization is pre-
ferred. In the above example, the intermediary category car
balances the need to create subcategory units that have a high
degree of within cluster similarity and low degree of between
cluster similarity while minimizing the total number of clus-
ters (i.e., subcategory units). Also, SUSTAIN’s shift towards
lower level categories in the presence of more distinctive in-
puts may be in accord with shifts in preferred category level
with expertise (Tanaka & Taylor, 1991).
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