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Abstract 

Features differ in their mutability. For example, a robin 
could still be a robin even if it lacked a red breast; but it 
would probably not count as one if it lacked bones. One 
hypothesis to explain this differential transformability 
is that having bones is more critical to a biological 
theory than having a red breast is. W e reject this 
hypothesis in favor of a theory of mutability based 
solely on local dependency links and expressed in the 
form of an iterative equation. W e hypothesize that 
features are immutable to the extent other features depend 
on them and offer supporting data. 

1. Introduction and background 

The study of conceptual use and conceptual transformation 
has taken two distinct directions. O n one hand, some 
theorists assert that human conceptualization is theory-
based, in the sense that concepts cohae by virtue of 
explanatory relations that hold between concepts and their 
components (e.g., Carey, 1985; Keil, 1989; Murphy & 
Medin, 1985; W e U m a n , 1990). O n the other hand, some 
theorists take what Rips (1990) has termed the Loose 
view of concepts. These theorists explain poformance on 
categorization, reasoning, and other conceptual tasks using 
statistical, similarity-based, or associative models of 
cognitive processing (e.g., Holyoak & Thagard, 1989; 
Sloman, in press; Tversky, 1977). 
O n the theory-based view, relations between concepts 

and their components come in qualitatively different 
varieties. For instance, the theory-based view assumes 
multiple forms of <3ejpef)d&ncy relations between the 
components of concepts. For the concept robin, the 
dependency between the feature "can fly" and the feature 
"has wings" is causal. However, for the concept guitar, 
the feature "makes music" is not causally related to 
"makes sound", but is rather a specialization of it (cf. 
Collins & Michalski, 1989). In sum, on the theory-based 
view, relations are labeled by their semantic role. 

In contrast, on the Loose view, the relations binding 
concepts may vary in their magnitudes but they are all of 
the same semantic type. O n this view, only one type of 
relation is necessary to bind concepts and the components 

of a concept. For example, both causal and specialization 
relations would be classified simply as dqjendeaicy 
relations. Our aim is to provide support for this 
hypothesis. W e believe that much of human 
conceptualization can be explained without appealing to 
labeled relations. W e focus on tasks that involve 
conceptual transformations of evayday concepts and offa 
evidence that the ease of transforming a feature can be 
measured on a unidimensional scale of mutability, a scale 
that we believe is central to explaining performance on a 
variety of cognitive tasks. W e also test the hypothesis 
that mutability is detamined by a uniform type of 
dependency relation between the features of a concept. 
More specifically, w e hypothesize that a feature is 
immutable to the extent that other (immutable) features of 
the concept depend upon it. 

2. The scale of mutability 

For any category, we have a notion of what members of 
that category should be like. For instance, when one 
thinks about robins, one envisions a creature that eats, 
builds nests, flies, has wings, a red breast, feathers, and so 
on. Nevertheless, one can successfully perform 
conceptual transformations in which one can imagine a 
robin that does not build nests but is still a robin. 
Consider the two statements below, each of which 
describes a robin that is atypical: 

(A) The robin does not have a red breast, but is 
otherwise normal. 

(B) The robin does not ever eat, but is otherwise 
normal. 

Clearly, you are less likely to encounter the robin 
described by Statement (B) than the one described by 
Statement (A) because (B) describes a more difficult 
conceptual transformation. Something that does not have 
a red breast is more easily imagined to be a robin than 
something that does not eat because eating is more central 
in our representation of "robinhood" than is a red breast. 
Features that are central to a representation, like "eats", 
will be referred to as immutable, while those that are more 
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easily transformed, like "has a red breast", will be rrferred 
to as mutable. 

3. Determinants of mutability 

3.1 Variability 

One possible source of mutability judgments is the 
perceived variability of features across category members. 
Features that are almost always present will have low 
variability and thus be immutable in the sense that 
exceptions are rare. Features present in about half the 
members of a category are highly variable and necessarily 
mutable. Variability however does not provide a 
sufficient explanation for mutability because the 
psychological determinants of variability itself and the 
sets it is measured across are not well-defined. Variability 
does not even have meaning for cases in which one has 
only a single experience with the category token. 
Moreover, we know perceptions of variability are not the 
only source of mutability judgments because differences in 
mutability exist even when variability is held constant. 
Variability and mutability can even oppose one another. 
Consider the feature "is curved" for the categories banana 
and boomerang. In banana, the feature has low variability 
(all bananas arc curved), but is mutable (we can easily 
imagine a banana that is not curved). In boomerang, the 
feature "is curved" happens to be variable, but nevertheless 
seems immutable (Medin & Shoben, 1988). This reversal 
can be accounted for in terms of the dqjendency relations 
between the features of each category and the feature "is 
curved". N o other features depend upon "is curved" in 
bananas, while other features do dqiend upon it in 
boomerang. 
In sum, mutability and variability are related inasmuch 

as both types of judgments are sensitive, directy or 
indirectly, to the extent to which a feature actually does 
vary across instances. W e predict therefore that the two 
judgments will be correlated. However, the judgments are 
not the same; mutability is a property of conceptual 
structure and variability is an extensional property of 
frequency distributions. W e therefore expect the two 
judgments to sometimes diverge. 

3.2 Dependency 

Our centrality hypothesis states that those features that 
have many other features depending upon them will be 
immutable, while those features that do not have other 
features depending upon them will be mutable. 
Transforming a representation by varying an immutable 
feature will be difficult because it will be disruptive. 
Other features that depend upon the immutable feature will 
also change and this can have ramifications for the entire 
representation. Performing conceptual transformations 

across mutable features is relatively easy because little 
hinges on these features; they are relatively peripheral. 

W e express this hypothesis using the following 
iterative equation: 

Ciiti = XAijCj, (1) 

where C ^ is the immutability of feature i at time t and A^ 
is the dependency link from feature j to feature i (the 
dependence oi feature j upon feature i). According to the 
equation, the immutability of feature i is detamined at 
each time step by summing across the immutability of 
every other feature multiplied by that feature's degree of 
dependence upon feature i. In other words, if a highly 
immutable feature dq)ends upon feature i, feature i 
becomes more immutable than if a mutable feanjre were 
instead to depend upon it. A feature cannot become 
central to a representation merely because a paiphCTal 
feature depends upon it. The feature would be much more 
central if a feature dqiended upon it that many other 
features, in turn, depended upon. If feature X dqjends 
upon feature Y, and feature Y depends upon feature Z, then 
feature X also dqiends upon feature Z. All other things 
being equal, feature Z would be less immutable if feature 
X did not depend upon feature Y. These non-local effects 
are accommodated by the iterative nature of Equation (1). 
To implement the model, immutability ratings must be 

set to some initial arbitrary value. The model iterates 
until it converges. Mathematically, the model is a 
repetitive matrix multiplication and is known to converge 
to a stable solution in a small number of steps 
(Wilkinson, 1965). The solution is a family of vectors in 
the direction of the eigenvector of the dependency matrix 
with the largest eigenvalue. The model converges when it 
is attracted to a state in which satisfactory immutability 
assignments are made for all features simultaneously. 

Equation (1) describes our attempt to reduce mutability 
to pairwise, unlabeled dependency relations. These 
relations can be conceived of as associative strengths. 
Although w e cannot justify assigning them a probabilistic 
interpretation, the value of A,j may turn out to be a 
nondecreasing function of Pr{ feature j I feature i} -
Pr{feature j). W e do not present a model of the origin of 
the dependencies. W e assume that they have multiple 
sources, including the detection of feature covariations and 
causal explanations of category structure. 

4. Testing the model 

A series of three studies was performed to explore the 
relations between mutability, dependency, and variability. 
W e test two predictions: i. Mutability judgments can be 
fit by Equation (1) using empirically obtained depaxlency 
judgments; ii. Mutability judgments are correlated with 
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judgments of variability. Each study involved 
questionnaires which were filled out by 20 Brown 
University undergraduatCvS w h o were paid for their 
participation. 

4.1 Study 1: Assessing the mutability of the 
features of a category 

In this study, mutability ratings were collected for the 
features of the categories Guitar, Apple, Chair, and Robin. 
The features used for these categories were taken firom 
Rosch, Mervis, Gray, Johnson, and Boyes-Braem (1976). 
Rosch et. al. used a three-step procedure to collect 
features. First, subjects were given 90 seconds to list 
features for a category. Second, responses were tallied and 
feamres listed by less than one third of the subjects were 
discarded. Next, seven judges deleted features that they 
believed were not true of all category members and aided 
previously listed features that they believed were true of 
all category members. At the end of this process, the 
categories Chair, Guitar, and Apple each had 9 features, 
while the category Robin had 14 features. In Study 1, 
subjects gave mutability judgments for these features. 

Before making their mutability judgments, subjects 
were told what the features of each category were, and were 
asked not to deviate drastically fi-om this conception of the 
category. They were then asked to answer questions like, 
" H o w easily can you imagine a real apple that is not 
round?" Subjects responded with a number from 0 to 1 
that reflected the ease of the transformation. At the end of 
each section, subjects were asked to list all items for 
which they had drastically changed their perception of the 
category (e.g. the subject considered a toy robin instead of 
a real one). These items (about 9 percent) were discarded. 

4.2 Study 2: Measuring dependency relations 

Subjects were shown, simultaneously, all the features of a 
particular category from the previous study. Each feature 
was inscribed in a circle and subjects were asked to draw 
arrows from each feature to each other feature they judged 
the feature dependent upon, creating a gr^h like those 
shown in Figure 1. Three different colored markers were 
used to indicate the strength of the dependency. The 
weakest links were assigned the value 1, medium links 2, 
and the strongest links 3. Instructions were clarified using 
a graph of the category "12", with mathematical features 
like "can be divided by 6". 

4.3 Study 3: Assessing the variability of the 
features of a category 

The features and categories from the previous studies were 
used. Subjects were asked questions such as "What 
percentage of robins have a red breast?" and they responded 
with a number between 0 and 100. Variability was 

calculated by transforming percentage estimates using the 
binomial variability measure X/1(X)*(1 - X/100) for each 
feature. 

4.4 Results and discussion 

Figure 1 displays the mean dependency link values and 
mutability judgments (on a scale of 0 to 1) given by 
subjects. To maintain the readability of the graphs, only 
the strongest dependencies have been drawn (an average of 
1.25 links per feature), although all dependency 
information was used in our simulations. 

From these graphs, one can see that features with few 
other features depending upon them tend to be mutable 
while features with many features depending upon them 
tend to be immutable, as predicted. Table 1 presents 
Spearman rank correlations between mutability judgments 
and three dependency models across item means. The first 
model simply sums the incoming dependencies to 
compute immutability. This model's pafonmance 
confirms our intuition that a feature's immtability varies 
with the number of other features that depend upon it. 
The second model is Equation (1) itself. Clearly, 
Equation (1) outperforms the incoming connections 
model, demonstrating that a feature's immutability is not 
only a function of a feature's incoming connections, but 
also a function of a feature's place in an overall 
dependency structure. This result confirms the need fw 
the iterative aspect of Equation (1). In the third model, 
the modified model, a nonlinearity was added to Equation 
(1) to optimize the fit to mutability judgments. In this 
model, the result of each iteration was normalized to fall 
in the range 0 to 1, then raised to a power in the range 0 
to 1, chosen to maximize the resulting correlation. This 
model gives slightly better predictions of immutability 
than Equation (1), but its advantage is modest relative to 
its greater complexity. 

Table 1: Rank correlations of three models of 
dependency with mutability judgments for four categories, 

data b o m Studies 1 and 2. 

Category 

<::halr 
GuiUr 
Apple 
R^ln 

Sum of 
dependencies 
-M 
-.45 
-.58 
-.75 

Equation (1) 

-.̂ i 
..il 
-.66 
-.59 

Opiimized 
Equation (1) 

-.̂ i 
-.75 
-.60 
-.74 

All of the correlations for the basic model (Equation (1)) 
and optimized model in Table 1 are statistically greats 
than 0 using a significance level of 0.05 except for three: 
those for the basic model of Guitar and both models of 
Apple. However, all the correlations are significant at the 
0.10 level. W e have also tried other variations on 
Equation (1), none of which consistently perform as well 
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Chair: Robin: 

Comlorlibl 
S5 

Wood 

Arms 

Apple: 

Small I ttttthttrs 

Radbout 

Moves Two leg 

Mit womtfl 
58 

Lays egg 
86 Chirps 

Hds n*«l 

Guitar: 

Flound 

Sweet 

ou eat it 

Grows 
on trees 

Figure 1: Category graphs. The arrows point from a 
feature to one that it depends ujwn. Mean mutability 
judgments are also shown for each category-feature. 

as that model. Therefore, because of its combination of 
simplicity and empirical adequacy, w e conclude that 
Equation (I) is the appropriate model of mutability and 
that w e succeeded in predicting mutability judgments 
using unlabeled dependency relations. 
Our method of measuring mutability spawned an 

unexpected factor limiting the performance of our model . 
Extremely immutable features, like "is living" for robin, 
arc so immutable that they tend to cause subjects to 
consider a different category. Subjects are unable to 
imagine a real robin that lays eggs, eats worms, and flies 
but is not living and therefore instead imagine a toy or 
decomposing robin. In the context of the new category, 
the feature is no longer judged immutable although its 

Wood 

dependency relations predict that it should be. Mutability 
judgments for such features had bimodal distributions, 
suggesting that some subjects experienced difficulty 
performing the transformation and that others did not 
perform the task w e asked of them. Despite our efforts to 
eliminate such judgments from analysis (see section 4.1), 
w e were not always able to because subjects w o e not 
always aware of their error. Three features led to this 
problem: one each from the categories Robin, Guitar, and 
Apple. The rank correlations between mutability 
judgments and Equation (1) improve if w e eliminate these 
features from analysis to -.74, -.69, and -.66 for the 
categories Robin, Guitar, and Apple, respectively. 

Table 2 presents Spearman rank correlations between 
mutability and variability judgments across item means. 
As expected, features judged variable also tended to be 
judged mutable (p < .05 in all four cases). Relatively 
high correlations should be expected for variability 
because, in those cases in which variability does vary 
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across features, it is closely related to mutability at a 
conceptual level. Indeed, their correlations may be high 
because judgments of mutability served as a surrogate for 
judgments of variability. They are also closely related at a 
task level. Variability judgments are made at the same 
ontological level as mutability judgments in that both 
consist of judgments about isolated category-features. In 
contrast, dqiendency judgments considered pairwise 
relations amongst all the features of a category. 

Table 2: Rank correlations of mutability (Study 1) and 
variability (Snidy 3) judgments for four categories. 

Chair 
"Cui uitar 
Apple 

Correlation 

•3r 

In conclusion, the results demonstrate that unlabeled 
dependency relations are effective in predicting mutability. 
N o aspect of the data suggests that the performance of the 
dependency model could be improved by considering 
labeled relations. The feature gn^hs of Figure 1 d) 
display further structure. For instance, in the Apple 
graph, two subnetworks of features can be discerned, one 
concerning the reproductive aspects of apples and the other 
containing the food related features of apples. HowevCT, 
this structure is discernible without attributions of 
causality or any other label to dqKndency links. 
Furthermore, although this structure is undoubtedly useful 
for certain cognitive tasks (such as, probably, analogical 
reasoning), w e have no reason to believe that it 
contributes to determining the transfOTmabiUty of a 
feature. Admittedly, our conclusion would be more 
compelling if w e had directly contrasted our model's 
results with those obtained with a labeled relations model. 
Unfortunately, the thewy-based view remains too ill-
specified to provide such a model. 

5. The role of mutability in other 
c o n c e p t u a l tasks 

W e believe that mutability can serve as an explanatory 
device in a variety of cognitive tasks. 

5.1 Categorization 

Mutability plays a role in determining the relative 
importance of features in judgments of category 
membership. A token that matches a category 
representation in all but a mutable dimension should be a 
better candidate for category membership than a token that 
differs in an immutable dimension (Medin & Shoben, 
1988). For example, w e expect robins without red breasts 
to be categorized as robins with higher probability than 
robins that do not eat 

W e have unpublished results that support this view. 
W e asked subjects questions like, "Can something be a 
robin if it does not have a red breast?" The percentage of 
"yes" responses were highly correlated with mutability 
judgments in all four categories. 

5.2 Determining surprise and regret in 
evaluating events and concepts 

Kahneman and Miller (1986) have documented the effects 
of mutability in the domain of events. In this domain, 
mutability refers to the "undoability" of a situation. 
Kahneman and Miller found that events with a negative 
outcome elicit more regret if they are seen as mutable. 
For instance, missing an airline flight by five minutes 
was judged more regrettable than missing it by half an 
hour, presumably because one could more easUy transform 
the situation in which the flight was missed by five 
minutes into a situation in which the flight was not 
missed. 

Mutability is also a useful indicator of surprise. Greater 
surprise should be elicited from subjects upon viewing an 
object varying in an immutable dimension than an object 
varying in a mutable dimension. For instance, 
encountering a robin that does not have wings would be 
more surprising than encountering a robin that does not 
chirp. 

5.3 Explanation generation and evaluation 

Mutability may be a factor in the generation of 
explanations. A n appropriate explanation for what makes 
a good computer would not center upon highly immutable 
features like "is a three dimensional object" or "performs 
calculations", but would instead center upon features that 
are more mutable like "has a very fast clock speed" or "has 
a large cache". 
Explanations that focus on immutable features will be 

unsatisfactory. Because oxygen is an immutable feature 
of the atmosphere, an explanation that a building burned 
down because there was oxygen in the atmosphere seems 
inadequate (Kahneman and Miller, 1986). 

5.4. Problem solving 

In reasoning tasks where a forward or backward infCTence 
must be made to determine how to move from one 
problem state to another, mutability may indicate the 
features of the problem space that are manipulable. For 
instance, if an autonomous agent must manipulate objects 
in its environment to achieve some goal state 
configuration of objects, a good strategy might be to first 
focus on solutions involving easily transformable objects 
(objects not affixed to the ground, light objects, objects 
without other objects on top of them, etc.). 
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5.5 Metaphor 

Mutability may play a role in the construction and 
interpretation of met^hors. Sometimes, metaphorical 
statements map characteristics of the source onto the 
target Mutability could help determine what features of 
the target could be successfully m^jped onto. Mutable 
features could be mapped onto, while immutable features 
would resist reinterpretation. Consider this example. 

(C) The surgeon is a butcher. 

Our representation of surgeon contains the features "has 
medical training" and "cuts with great precision and care". 
Our representation of butcher contains neither of these 
features. Alignable features of butcher could be mapped 
onto the representation of surgeon. The feature "has 
medical training" is a fairly immutable feature of surgeon 
and resists conceptual transformation, while the feature 
"cut with great precision and care" is mutable and is 
mapped onto by butcher. The resulting representation of 
surgeon is one in which the surgeon has medical training, 
but is not highly skilled at operating. 

6. Conclusion 

More woik needs to be done in analyzing the determinants 
of mutability, the nature of dependency relations, their 
organization at all category levels, and their role in 
cognitive processes. Our hope is to contribute to the 
understanding of how the intaxlependencies between the 
elements that compose our concepts govern how our 
concepts cohere and transform. At present, that 
understanding remains mutable. 
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