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Supplemental Information Inventory 
 
Figure S1. Figure S1 extends Figure 2b to include data from a control analysis that 
investigated the role of complexity in our approach and a variant of the exemplar model 
that does not include selective attention.   
 
Figure S2. Figure S2 extends Figure 2b by highlighting the brain regions that showed a 
significant difference between exemplar and prototype model-brain consistency when 
applying our method to a region of interest analysis.  
 
Figure S3. Figure S3 extends Figure 3 to show the group-level maps of a searchlight 
analysis comparing the representational similarity of the prototype model to neural 
similarity. 
 
Table S1. Table S1 lists the category structure of the stimuli used in the experiment by 
showing the value of the four dimensions for each stimulus. 
 
Table S2. Table S2 lists all ROIs investigated in the ROI-based analysis briefly 
discussed in the main text and shown in Figure S2.  
 
Supplemental Experimental Procedures 
 
Supplemental References  
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Figure S1, related to Figure 2 

 

 
 
Figure S1. Model-brain consistency. The mutual information between responses of 
brain patterns as revealed by MVPA and representational match was higher for the 
exemplar relative to the prototype model, an over-parameterized saturated model, and a 
model with no attention weights. Data represent mean +/- 95% confidence intervals of 
the within-subject comparison between models. 
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Figure S2, related to Figure 2 

 

 
 
 
Figure S2. ROI analyses. Three anatomically-defined ROIs (highlighted in the brain on 
the left) showed significantly more consistency between brain response and exemplar 
model predictions than prototype model predictions: lateral occipital cortex (yellow), and 
inferior (magenta) and superior parietal lobules (cyan). Data represent mean +/- 95% 
confidence intervals (α=0.0015). 
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Figure S3, related to Figure 3 

 

 
 
Figure S3. Representational similarity analysis of prototype representations. 
Searchlight analyses revealed correspondence between the similarity of neural 
representations and pairwise similarity predictions from the prototype model for the 
objects was restricted to early visual areas (p<0.05, FWE corrected).  
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Table S1, Related to Figure 1 
 

 Dimension 
Stimulus 1 2 3 4 

 Category A 
A1 1 0 0 0 
A2 1 0 1 0 
A3 0 1 0 0 
A4 0 0 1 0 
A5 0 0 0 1 

 Category B 
B1 1 1 0 0 
B2 1 0 0 1 
B3 0 1 1 1 
B4 1 1 1 1 

 Transfer 
T1 0 1 1 0 
T2 1 1 1 0 
T3 0 0 0 0 
T4 1 1 0 1 
T5 0 1 0 1 
T6 0 0 1 1 
T7 1 0 1 1 

 
Table S1. 5/4 category structure. 
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Table S2, related to Figures 2 and S2 
!

 Model brain consistency (MI) 
Region of Interest Exemplar Prototype 

Lateral occipital cortex* 13 (0.779) 4 (0.565) 
Caudate 5 (0.268) 5 (0.238) 
Inferior frontal gyrus 5 (0.276) 4 (0.241) 
Hippocampus 7 (0.310) 1 (0.254) 
Medial temporal cortex 6 (0.273) 3 (0.244) 
Pericalcarine 11 (0.640) 4 (0.455) 
Lingual gyrus 5 (0.483) 5 (0.455) 
Cuneus 8 (0.531) 3 (0.449) 
Fusiform 6 (0.365) 5 (0.317) 
Inferior parietal lobule* 11 (0.406) 3 (0.253) 
Inferior temporal cortex 5 (0.278) 4 (0.265) 
Lateral orbital frontal cortex 3 (0.259) 2 (0.257) 
Medial orbital frontal cortex 4 (0.247) 6 (0.260) 
Frontal pole 6 (0.264) 6 (0.254) 
Rostral medial frontal cortex 5 (0.362) 2 (0.300) 
Superior prefrontal cortex 7 (0.352) 3 (0.284) 
Retrospenial cortex 9 (0.296) 4 (0.230) 
Caudal anterior cingulate cortex 4 (0.260) 7 (0.280) 
Putamen 7 (0.267) 1 (0.241) 
Amygdala 9 (0.262) 6 (0.236) 
Medial temporal cortex 6 (0.267) 4 (0.243) 
Paracentral gyrus 5 (0.291) 1 (0.223) 
Posterior cingulate cortex 5 (0.290) 4 (0.259) 
Precentral gyrus 9 (0.299) 0 (0.220) 
Postcentral gyrus 8 (0.356) 2 (0.270) 
Precuneus 9 (0.438) 4 (0.325) 
Rostral anterior cingulate cortex 7 (0.285) 3 (0.242) 
Superior parietal lobule* 11 (0.537) 2 (0.358) 
Superior temporal gyrus 2 (0.226) 7 (0.259) 
Supramarginal gyrus 5 (0.298) 4 (0.256) 
Temporal pole 3 (0.249) 5 (0.272) 
Transverse temporal gyrus 5 (0.284) 4 (0.255) 
Insular cortex 5 (0.253) 3 (0.240) 
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Table S2. Results of ROI analysis. The number of participants with significantly greater 
than chance brain-model consistency is reported for each model. Mean MI across 
subjects is reported in parentheses. Regions marked with an asterisk (*) showed 
significantly higher MI for exemplar model consistency than prototype model 
consistency. No regions showed significantly higher MI for the prototype model. 
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Supplemental Experimental Procedures 
 

Participants. Twenty-three participants participated in the experiment. Two 
participants were removed prior to analysis for excessive head motion during fMRI 
scanning and one participant was removed for failure to learn the categorization task. 
The remaining twenty participants were included in the primary analysis (ages range of 
19-33 years; mean age of 23.5 years; 14 female). 

 
Stimuli. The stimulus set [S1] was constructed by including sixteen objects 

consisting of simple shape enclosed in a grey horizontally oriented rectangle (Figure 1). 
The simple shape varied based on four salient binary-valued features (color: red or 
green, shape: circle or triangle, size: large or small, and position: right or left). For each 
participant, the four features were randomly assigned to the four dimensions defined by 
the 5/4 category structure. This structure is divided into two categories with the logical 
values of the prototype member of category A corresponding to [0,0,0,0] and the logical 
values of the prototype member of category B corresponding to [1,1,1,1]. Nine objects 
served as the training items with five for category A and four for category B. The 
remaining seven objects served as a transfer set (Table S1). 
 

Procedures. After an initial screening and consent in accordance with the 
University of Texas Institutional Review Board, participants were instructed on the 
category learning task. These instructions explained that the participant would be shown 
simple objects composed of different features and that the task was to learn which 
object belonged to one of two categories through corrective feedback.  

Participants performed the training phase of the experiment in a behavioral 
testing room on laptop computer. On each training trial, one of the nine training stimuli 
was displayed for 3.5s and participants made a response to the stimulus’s category by 
pressing one of two labeled keys on the keyboard. Then, a fixation cross was presented 
for 0.5s, followed by a feedback display that presented the stimulus, the correct 
category, and whether the participant’s response was correct or incorrect for 3.5s. Trials 
ended with a 0.5s fixation cross. The nine training stimuli were presented 20 times in 
randomized order during the initial training outside the scanner. Participants also 
completed additional training trials inside the fMRI scanner during an anatomical scan 
as a refresher of the training items’ category membership. In total, across the entire 
training phase, participants completed 24 repetitions with each training stimulus. 

After training, participants performed the testing phase during functional 
scanning. On each test trial, one of sixteen stimuli (consisting of the nine training stimuli 
and seven novel transfer stimuli) was displayed for 3.5s and participants made a 
category response by pressing one of two buttons on a MRI-compatible button box. A 
fixation cross was then presented for 6.5s. No feedback was provided during the testing 
phase. The sixteen stimuli were presented three times in randomized order during six 
functional runs for eighteen total repetitions per stimulus. 
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Modeling Procedures. The exemplar model [S2] posits that categories are 
represented by storing individual exemplars in memory. The exemplars are represented 
as points in a multidimensional space. The psychological distance between two stimuli 
is modeled as a weighted city-block metric, 

, 

where xim is the value (0 or 1) of item i on dimension m, and wm (0 ≤ wm ≤ 1, Σwm = 1) is 
the attention weight for dimension m. The similarity between two stimuli is an 
exponential decay function of their distance, 

, 
where c is an overall sensitivity parameter. The probability that item i is categorized into 
category A is given by, 
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where γ is a response scaling parameter such that when γ = 1, responses match the 
relative summed similarity and when γ > 1, responses are more deterministic. The full 
version of the exemplar model has five free parameters: sensitivity c, response scaling 
γ, and three freely varying attention weights. 
 
The prototype model [S3, S4] posits that categories are represented by prototype 
representations. The distance between item i and Prototype A is given by the city-block 
metric, 

, 

where xim is the value (0 or 1) of item i on dimension m, xAm is the value of Prototype A 
on dimension m, and wm are the attention weights as in the exemplar model. The 
similarity between item i and Prototype A is given by, 

, 
where c is an overall sensitivity parameter. The probability that item i is categorized into 
category A is given by, 

, 

where γ is a response scaling parameter. However, in this form of the prototype model, 
γ cannot be estimated separately from the sensitivity parameter c, thus γ was set to 1. 
The prototype model has four free parameters: sensitivity c and three freely varying 
attention weights. 
 For each participant, the exemplar and prototype models were fit to the response 
probabilities from the last half of the training phase. Model parameters were optimized 
with standard maximum likelihood techniques [S5]. Exemplar and prototype model fits 
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were compared for each participant with a chi-square test of the G likelihood ratio 
statistic.  

Model measures of representational match were obtained for both models using 
the models’ optimized parameter sets. Representational match is calculated as the 
summed similarity of a test object to all the stored category representations from a 
model. Thus, for the exemplar model, the representational match for item i is given by,  

, 

and for the prototype model, 
. 

For display purposes (see Figure 2a), representational match values were normalized 
such that the maximum value for a model was equal to 1 and minimum value equal to 0. 
Following standard machine learning practices, representational match values were z-
scored prior to MVPA.   
 

fMRI data acquisition. Whole-brain imaging data were acquired on a 3.0T GE 
Signa MRI system (GE Medical Systems). Structural images were acquired using a T2-
weighted flow-compensated spin-echo pulse sequence (TR=3s; TE=68ms, 256x256 
matrix, 1x1mm inplane resolution) with thirty-three 3-mm thick oblique axial slices 
(0.6mm gap), approximately 20° off the AC-PC line. Functional images were acquired 
with an echo planar imaging sequence using the same slice prescription as the 
structural images (TR=2s, TE=30.5ms, flip angle=73°, 64x64 matrix, 3.75x3.75 in-plane 
resolution, bottom-up interleaved acquisition, 0.6mm gap). An additional high-resolution 
T1-weighted 3D SPGR structural volume (256x256x172 matrix, 1x1x1.3mm voxels) was 
acquired for registration and cortex parcellation. 
  

fMRI data preprocessing. Data were preprocessed and analyzed using FSL4.1 
[S6] and custom Matlab routines. Functional images were realigned to the first volume 
in the time series to correct for motion, coregistered to the T2-weighted structural 
volume, high-pass filtered (128s), and detrended to remove linear trends within each 
run. All analyses were performed in the native space of each participant.  
 

Multivoxel pattern analysis. Pattern classification analyses were implemented 
using PyMVPA [S7] and custom Python code. The goal of the MVPA was to assess the 
extent that coherent activation patterns could predict trial-by-trial values of 
representational match from the exemplar and prototype models. MVPA performance 
for each model was assessed in separate analyses. Each trial was labeled with the 
corresponding representational match value for the stimulus presented. To account for 
the hemodynamic lag, volumes from 4, 6, and 8 seconds after stimulus onset were 
averaged for each trial. A MVPA regression method based on linear support vector 
regression (SVR) was trained and evaluated with leave-one-out six-fold cross-validation 
using the six functional runs. Cross validation was used to ensure the SVR solution 
generalized across independently sampled functional runs and was not the result of 
overfitting. On each fold, four runs served as the training data and two runs were used 
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to evaluate the training. Within each cross validation fold before SVR training, feature 
selection was performed on the training dataset. Feature selection consisted of 
conducting a univariate contrast of task greater than baseline across the whole brain 
and retaining the 1000 voxels with the highest F values for MVPA training and testing. 
One of the test runs was used to optimize the SVR parameters C and ε, both of which 
determine the complexity of the SVR estimation. The second test run was used to 
evaluate the resulting trained SVR with optimal parameters. SVR output of 
representational match for each of the sixteen stimuli cross validation folds served as 
the prediction of representational match from coherent patterns of brain activation.  
 

Evaluating model consistency with brain response. Existing model-based 
methods of fMRI analysis [S8] offer important advances that allow one to map out voxel 
activations that track model measures. However, these techniques are ultimately limited 
for comparing model consistency to brain response as they depend on correlations 
between model measures and activation in individual voxels (considered independently 
of one another). For any given voxel, one model may correlate more with activation than 
another model, but to date, the extension of these results to regions or the whole brain 
has been elusive. In practice, model selection at the level of individual voxels depends 
on the relative number of voxels tracking model predictions [S9, S10]. The more voxels 
tracking a model, the more it is favored. But, when testing the predictions of two models, 
the goal is not to characterize the response of each voxel in the brain; rather the goal is 
to determine overall what model provides a more accurate description of the brain 
responses (either globally or within specific regions). Determining fit by the spatial 
extent (number of voxels) could be misleading. For example, a model with many weakly 
correlated voxel activations may be selected, when, in fact, the predictions from a 
competing model are perfectly tracked by activations in relatively fewer voxels.  

Information pattern analyses, such as MVPA [S11] and RSA [S12], take the 
crucial step of reversing the inference of standard GLM analyses. In this type of 
analysis, the question is no longer what conditions predict voxel activation, but what 
patterns of activation contain information consistent with experimental conditions. 
However, to date, the application of pattern analyses has been limited to decoding 
representations of different kinds of stimuli [S13, S14] or different types of experimental 
conditions [S11, S15].  

We assessed the consistency between brain and model by marrying these two 
breakthroughs (model-based fMRI analyses and MVPA) and grounding them in a model 
selection framework. The consistency between brain and model was assessed by a 
comparison of a model’s representational match and the SVR prediction of those 
values. This consistency was evaluated with mutual information. Mutual information (MI) 
measures the mutual dependence between two random variables X and Y: 
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where p(x,y) is the joint probability distribution function of X and Y and p(x) and p(y) are 
the marginal probability distribution functions of X and Y. In the current case, the 
random variables of interest were the model and brain predictions of representational 
match. Marginal and joint probability distribution functions for model and brain 
predictions of representational match were estimated by a smooth bootstrapping 
procedure where a small amount of zero-centered random noise (σ = 1/500) was added 
to 500 samples from the representational match predictions, a procedure akin to kernel 
density estimation. For the brain, these predictions consisted of the SVR results of 
representational match from the cross validation folds. For the models, these predictions 
consisted of representational match predictions derived from model parameters from 
multiple iterations of model fits to randomly selected subsets of training data. The 
resulting probability distribution functions were discretized and mutual information was 
calculated with the equation presented above [S16].  

Our choice of mutual information was two fold. First, mutual information 
measures the amount of information shared between two functions while taking into 
account the variability of those functions. This is critical in that it is likely that latent 
measures across different models will vary in their entropy. For example, as can be 
appreciated in Figure 2, representational match for the exemplar model is more variable 
than for the prototype model. This is an issue since the more variable a model measure, 
the more difficult it is to predict that measure with MVPA. Thus, it is key that a measure 
of consistency between model and brain predictions takes this into account by scaling 
by the variability of the two functions. Second, unlike correlation, MI is not limited to 
linear relationships or assumptions of normality. Although these assumptions may hold 
in some cases, making correlation a valid measure of consistency, nonlinearities with 
brain response and model measures are likely, thus warranting use of mutual 
information. 

A bootstrapping procedure was used to evaluate greater than chance 
consistency between brain and model and for model comparison. This procedure 
consisted of randomly shuffling the stimulus labels of the training data, performing the 
MVPA analysis detailed above, and calculating mutual information. This procedure was 
repeated 1000 times to create a null distribution for each participant. Mutual information 
scores greater than 95% of the null distribution values were considered significantly 
greater than chance. Also, for each participant, the difference between the randomly 
shuffled exemplar and prototype mutual information scores served as a null distribution 
for comparing model consistency. A difference between a participant’s exemplar and 
prototype model mutual information greater than 95% of this null distribution were 
considered significantly different. 

 
Model recovery simulations. To validate our approach, we performed the 

MVPA plus MI analysis on activation patterns from 5000 simulated voxels. Activation 
profiles for these simulated voxels were constructed as follows. Average parameter 
values for both exemplar and prototype models were calculated from the behavioral fits 
explained above. In separate simulations, a percentage (1%, 5%, 10%, 25%) of the 
simulated voxels were assigned activation profiles equal to the stored model exemplars 
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or prototypes following the parameters of the two models. The remaining voxels had 
activation profiles randomly selected from a Gaussian noise distribution with a mean 
and standard deviation equal to the mean and standard deviation of the dimensional 
values from the exemplars and prototypes. Cross-validated MVPA was performed on 
the simulated datasets to extract the embedded representational match from the two 
models. The consistency between the MVPA output and the models’ representational 
match values was assessed with mutual information as described above. Over 1000 
repetitions of each simulation, brain response was always more consistent with the 
generating model than the other model. 

 
Saturated model. We used mutual information as an index of model-brain 

consistency. To validate this choice, we evaluated the consistency between brain 
response and a saturated version of the exemplar model that included separate memory 
strength parameters for each of the stored training items for a total of 14 free 
parameters. The logic of this control analysis was to purposefully use a model that 
overfits the behavioral data to derive representational match values and attempt to 
predict this overfitted model’s latent measure with brain states. A model that overfits 
behavioral data is not capturing an underlying psychological process, but is instead 
fitting noise. Because of this, an overfitted model’s internal state is unlikely to capture 
changes in brain state. We predicted that the overly complex saturated model would 
provide an excellent fit to the behavioral data, but have low MI as its internal state would 
reflect noise in the behavioral data as opposed to a change of state in the brain. Such a 
result would demonstrate that absolute behavioral fit and MI need not correspond. 
Across the participants, the saturated model provided a better fit numerically (2.45 mean 
fit error) to the categorization response probabilities than both the exemplar (4.94 mean 
fit error) and prototype (6.04 mean fit error) models (it should be noted that if model 
complexity is taken into account, the saturated model fits the behavioral data 
significantly worse than the exemplar and prototype models). However, the MVPA plus 
MI results showed significantly worse consistency between the saturated model and the 
exemplar model (Figure S1). With too many free parameters, the saturated model overfit 
the behavioral responses resulting in unstable and overly complex predictions of 
representational match. This unjustified complexity is penalized by the mutual 
information index of model-brain consistency. Thus, by including brain response in 
model selection the more consistent and parsimonious exemplar model is selected. 

 
Representational similarity analysis. Representational similarity analysis 

(RSA) was performed to compare the similarity structure of the stimuli as predicted by 
the exemplar model to the similarity of the neural patterns for the stimuli [S12]. First, the 
average voxelwise activation for each of the stimuli in each run was estimated with a 
GLM that included separate regressors for the stimuli plus confound regressors for the 
motion parameters. The resulting beta images for the stimuli were averaged over the six 
runs to give the average voxelwise activation across the brain for each stimulus. These 
average beta images were submitted to a searchlight analysis (sphere radius of 5 mm) 
to compare the similarity between the neural patterns of the stimuli to the similarity as 
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predicted by different models. Exemplar model dissimilarity matrices (DM) were derived 
for each participant by taking the Pearson correlation distance between all pairs of the 
stimuli with the feature values of the stimuli weighted according to the attention weights 
from the model fits to training behavior. Neural DMs were calculated within each 
searchlight sphere by taking the Pearson correlation distance between all pairs of 
stimulus beta patterns. For each searchlight, the correspondence between the exemplar 
model DM and neural DM was evaluated with Spearman correlation and recorded at the 
searchlight center. The same procedure was used to compare the physical similarity of 
the stimuli, i.e. a model with no attention weighting, to neural pattern similarity. In this 
analysis, physical similarity DMs were calculated by taking the non-weighted Pearson 
correlation distance between all pairs of the stimuli. 

 The statistical significance of the RSA correlation values was evaluated with a 
Monte Carlo method by randomly permuting the labels of the neural DM and calculating 
the correlation between the model and neural DMs. This was repeated 1000 time to 
create a distribution of chance correlations. The observed correlation was compared to 
the chance correlation distribution to create p maps for each participant. These p maps 
were converted to z-scores. For group analysis, voxelwise nonparametric permutation 
testing (5000 permutations) was performed using Randomise in FSL [S6]. The resulting 
statistical maps were family-wise error corrected using P < 0.05, based on the 
threshold-free cluster enhancement statistic image [S17]. 

 
Region of interest analysis. A cortical parcellation of the high-resoltuion T1 

SPGR volume was obtained for each participant using FreeSurfer (Martinos Center for 
Biomedical Imaging, MGH, Charlestown, MA). From these parcellations, masks for 
thirty-three bilateral ROIs (Table S2) were created for ROI-based MVPA analyses. The 
same MVPA plus MI approach described in the whole brain analysis was used for the 
ROI analyses with the exception that only the voxels within an ROI mask were used for 
MVPA. Consistency between brain and model within ROIs was assessed in two ways. 
First, the mean MI scores for both models within each ROI were compared across 
participants with paired t-tests (FDR corrected for multiple comparisons, Figure S2). 
Second, the boostrapping procedure explained in the whole brain analysis was applied 
to all ROI results to assess the consistency between both models and the brain 
response within the ROI. The number of participants showing greater than chance 
consistency between brain and model for each ROI are reported in Table S2. 
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