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Abstract 

Concepts organize our experiences and allow for meaningful inferences in novel 

situations. Acquiring new concepts requires extracting regularities across multiple 

learning experiences, a process formalized in mathematical models of learning. These 

models posit a computational framework that has increasingly aligned with the expanding 

repertoire of functions associated with the hippocampus. Here, we propose the Episodes-

to-Concepts (EpCon) theoretical model of hippocampal function in concept learning and 

review evidence for the hippocampal computations that support concept formation 

including memory integration, attentional biasing, and memory-based prediction error. 

We focus on recent studies that have directly assessed the hippocampal role in concept 

learning with an innovative approach that combines computational modeling and 

sophisticated neuroimaging measures. Collectively, this work suggests that the 

hippocampus does much more than encode individual episodes; rather, it adaptively 

transforms initially-encoded episodic memories into organized conceptual knowledge that 

drives novel behavior.  

 

 

Highlights 

• The hippocampus integrates across experiences to support complex behaviors. 

• Activation patterns in the hippocampus are influenced by selective attention. 

• These hippocampal processes align with formal accounts of concept learning. 

• Recent fMRI evidence supports a role for the hippocampus in concept formation. 

 

 
Keywords: hippocampus; concept learning; episodic memory; attention; prediction error; 

computational modeling   
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Concepts define the relationships between similar objects; they represent combinations 

of features shared by objects of the same kind and allow us to recognize new instances 

of a concept when first encountered. Concepts also serve as the basis for inference about 

properties that have not or cannot be directly observed. To acquire a concept, we must 

experience multiple instances across unique episodes and learn both what features are 

common to concept exemplars and what features differentiate between concepts. Both 

of these operations, extracting commonalities across related experiences and distinctly 

representing similar experiences, are akin to episodic memory functions associated with 

the hippocampus [1–3]. In particular, the hippocampus is thought to perform pattern 

separation to differentiate overlapping experiences into distinct memory representations 

[1,2]. Pattern separation is complemented by memory integration, in which the 

hippocampus is thought to encode features of the current experience along with shared 

information from previously encoded experiences resulting in integrated memory 

representations that highlight commonalities across experiences [3,4]. In other words, 

what concept acquisition requires largely overlaps with coding strategies attributed to the 

hippocampus. 

 

The theoretical convergence between concept formation and episodic memory posits a 

role for the hippocampus in acquiring concepts. While initial patient work suggested 

otherwise [5,6], subsequent findings indicate that the hippocampus plays a key role in 

representing concepts. For example, “concept cells” in the hippocampus show high 

selectivity to conceptual rather than perceptual features of events [7] and a recent report 

report showed hippocampal lesions impair concept learning [8]. Here, we review 

neuroimaging research that has begun to reveal the precise hippocampal mechanisms 

that support concept formation and use [9–14]. The success of this research has 

depended on the emergence of sophisticated analytic approaches that combine 

mathematical accounts of psychological learning theories with representational 

approaches to neuroimaging. We propose the Episodes-to-Concepts (EpCon) theoretical 

model of concept formation in the hippocampus, which links evidence from episodic 

memory and category learning. 
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Building concepts in the hippocampus 
It is well established that the hippocampus is critical for rapidly encoding and retrieving 

experiences to and from memory [15,16]. However, within the past decade, theories of 

hippocampal function have broadened beyond memory for single episodes [17,18] to 

suggest that the hippocampus plays the more general role of building flexible 

representations that span multiple experiences [3], are sensitive to goal states [19,20], 

and guide novel decisions [21–23]. We propose that this expanded functional repertoire 

situates the hippocampus as an ideal site for the formation of new conceptual knowledge. 

Central to this proposal is the EpCon theoretical framework that details how the 

hippocampus transforms episodic memories to organized concepts. 

 

EpCon is motivated by the striking parallel between hippocampal-based memory 

processes and a computational model of concept learning named SUSTAIN [24,25]. 

SUSTAIN posits that during new learning, conceptual representations are formed through 

a dynamic interaction of selective attention and memory (corresponding hippocampal 

processes are noted in italics, each of which will be described later):   

 

1) When presented with a stimulus, attention is directed to stimulus feature 

dimensions that are diagnostic for the task goal according to the current state of 

knowledge (attentional biasing).  

2) The attention-weighted feature information then promotes retrieval of similar prior 

learning experiences (pattern completion). These memories are used to predict a 

concept label.  

3) Depending on the prediction outcome (memory-based prediction error), a new 

distinct memory is created that binds together the current stimulus and the correct 

concept (pattern separation), and/or an existing concept representation is updated 

to incorporate the new stimulus (integration). This updated knowledge state then 

influences attentional strategy on subsequent learning experiences. 
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As learning continues, this process iterates. Pattern completion retrieves previously 

integrated representations that highlight the common features diagnostic of the concept, 

which, in turn are updated with new information from the current experience. Irrelevant 

features are dropped from concept representations, and concept exemplars are 

organized according to their similarity on the most relevant features, with the most typical 

exemplars taking a central position in representational space. By learning what features 

are common to concept exemplars and what features differentiate between concepts, this 

adaptive process transforms initially-encoded episodic memories into organized 

conceptual knowledge representations (Figure 1).  

 

 
Figure 1. The Episodes-to-Concepts (EpCon) theoretical model of concept formation in the hippocampus. 

Initially, each new learning experience consisting of stimulus features (e.g., dotted outline, red fill, and 

vertical center) and concept label (e.g., B) is encoded as a distinct memory (dotted blue lines represent 

hippocampal encoding). After encoding these initial experiences, memory integration processes soon 

dominate learning: Pattern completion processes retrieve related memories (solid blue lines depict 

hippocampal retrieval) that are used to predict a concept label. Feedback then leads to integration across 

experiences (e.g., red items with dotted outlines are associated with concept B) and/or distinct 

representation of the current experience through pattern separation. Concept formation continues as 

learning progresses, with more complex integrated representations that span experiences retrieved through 

pattern completion and encoded through memory integration. This adaptive process culminates in 

conceptual coding in which the learned integrated representations capture the structure of the concept. 

Brain illustration by Margaret Schlichting. 
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The component processes of this theoretical framework for concept learning map onto 

the hippocampal functions of pattern separation and completion, memory integration, and 

memory-based prediction error, and the framework is further influenced by the fact that 

hippocampal encoding is biased by attention. The EpCon model is thus a theoretical 

bridge between SUSTAIN’s formalism of concept learning and the functions of the 

hippocampus. It is important to note that concept learning is supported by many brain 

regions (see [26] for a recent review); EpCon serves to highlight how the hippocampus is 

an important player in concept learning’s broader neural substrate. Below, we review the 

evidence for EpCon by highlighting the complementary hippocampal functions that are 

implicated in concept formation. 

 

Memory integration 

Memory integration arises when the current experience shares features with previously-

encoded experiences, which may trigger hippocampal pattern completion resulting in the 

retrieval of related memories. The current experience may then be encoded into the 

reactivated memory trace, resulting in an updated representation that captures both the 

features of the current experience as well as those of the retrieved memory [1,3,27,28]. 

A wave of recent findings has converged on the existence of such integrated 

representations in the hippocampus that support complex inference behaviors [29–34]. 

 

In particular, one recent human fMRI study by Schlichting and colleagues [32] targeted 

the specific nature of integrated representations in the hippocampus. In this study, 

participants learned pairs of novel objects that shared one common object (AB and BC) 

before making inference judgments about the objects indirectly linked by the shared 

object (AC; Figure 2). Critically, participants viewed each object before and after learning, 

allowing investigation of learning-related changes in the neural representations for the A 

and C items with representational similarity analysis (RSA). This analysis revealed that 

neural patterns in anterior hippocampus for indirectly-associated A and C items showed 

greater similarity after learning (Figure 2). By quantifying the learning-related changes at 

the level of individual elements of episodes (i.e., A and C objects), these findings provide 
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compelling evidence for memory integration during encoding. Although these findings are 

limited to memory representations formed for overlapping experiences, it follows that 

integrative encoding mechanisms characterized in this study likely underlie the formation 

of more complex representations including multi-step chains of associations [35]. 

Importantly, this work characterizes how individual learning experiences can be extended 

and shaped to include features from related experiences, a process that is fundamental 

to the formation of new concepts [24]. 

 

 
Figure 2. Associative inference paradigm and RSA results from Schlichting et al. [32]. Participants learned 

direct associations (AB and BC) before being tested on an indirect inference (AC). Participants were cued 

with a C object and selected the indirectly associated A object (circled object). RSA measures showed 

evidence of integrated representations (i.e., increased similarity between A and C objects post- versus pre-

learning) in left anterior hippocampus. Figure adapted from [32]. 

 

Memory-based prediction error 

Errors are critical to learning concepts; whether generated through internal evaluation or 

surprise or provided by external feedback, models of concept learning leverage prediction 

errors and mismatch signaling to guide how prior knowledge is updated with new 

information [24]. The importance of error signals to learning is paralleled in memory 

theories that suggest that the hippocampus, in particular subregion CA1, serves as a 
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comparator that detects when new experiences deviate from memory-based expectations 

[1,36]. Indeed, both rodent [37] and human [31,38–40] work has implicated CA1 in 

signaling novelty, mismatch, or errors. This memory-based prediction error extends to 

expectations derived from conceptual knowledge [41]. For example, anterior 

hippocampus engagement is greater during encoding of conceptually-novel word pairs 

(e.g., “purple banana”) that are later remembered [42]. 

  

Hippocampal prediction error signals are thought to trigger encoding processes that lead 

to pattern separation, in the case of large errors, or forge integrative links between the 

current experience and prior memory, in the case of smaller errors [3,43,44]. Recent 

rodent work has shown increased CA1 activity and plasticity in the presence of novelty 

[37]. Such novelty-related encoding would lead to binding of activity patterns that reflect 

not only perceptually-available content, but also reactivated memory content leading to 

integrated representations. In humans, CA1 mismatch signaling during encoding of 

overlapping experiences has been shown to predict subsequent success in inferring 

relationships between indirectly-related memory elements [31]. 	 Importantly, such CA1 

mismatch signaling increases across repetitions of overlapping, but not non-overlapping 

pairs, consistent with memory-based prediction error [40].   

 

One recent study, in particular, examined memory-based prediction error in the 

hippocampus during concept learning [11]. In this study, participants learned to categorize 

visual objects into categories based on a combination of feature dimensions. Learning 

performance was quantified with SUSTAIN [24] to derive trial-by-trial predictions of 

decision uncertainty, a latent signal that can trigger encoding of new information with 

existing knowledge [36]. This model-based uncertainty measure correlated with anterior 

hippocampus engagement throughout learning. These findings suggest that the 

hippocampus signals more than novelty, rather it indicates the degree that current 

experience deviates from existing conceptual knowledge.  
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Attentional biasing 

Models of concept learning posit that selective attention is a key mechanism that shapes 

representations during learning by biasing encoding to concept-relevant features and 

ignoring irrelevant dimensions [24]. A similar view of attention is found in theoretical 

accounts of memory, whereby top-down attention biases hippocampal encoding and 

retrieval according to current goal states [45,46]. That is, attention is not a hippocampal 

computation per se, but rather acts to impact hippocampal function. Neural evidence of 

attention’s influence on hippocampal engagement has been mixed [47,48]; rather, 

attention may act on representations in activity patterns across the hippocampus. In the 

rodent hippocampus, the same environment is remapped to different spatial codes 

depending on what features matter for the animal’s current goal state [49,50]. Specifically, 

when presented with an odor-based cue for a food reward that varied in location trial-to-

trial, hippocampal place cells dynamically reconfigured to represent the location of the 

rewarded odor on every trial [49]. These findings suggest attention rapidly influences the 

information encoded in hippocampal representations. 

 

Two recent human fMRI studies [19,20] have demonstrated that hippocampal 

representations are shaped by different tasks that require distinct attentional strategies. 

In these studies, visual search of room images for a style of wall art evoked distinct 

hippocampal patterns relative to searching the same room for a specific room layout. 

Critically, this remapping due to attentional state was tied to memory behavior: Task-

relevant information was better remembered when the hippocampus was in a task-

specific encoding state [20]. These findings offer compelling evidence that attention 

enhances encoding and retrieval of distinct hippocampal representations. Although this 

work only tested the contribution of attention to memory processes, it is clear that 

attentional strategy can bias hippocampal coding and motivates the notion that similar 

attention-hippocampus interactions are at play during concept learning. 
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Directly relating hippocampal function to concept formation with model-based fMRI 

Several recent studies have directly tested the parallels between formal computational 

models of concept learning and hippocampal representation of concepts using model-

based fMRI. These studies motivate the EpCon model by demonstrating the links 

between the hippocampal mechanisms reviewed above (memory integration, memory-

based prediction error, and attentional biasing) and concept formation. 

 

Davis, Love, and Preston, 2012 

Davis and colleagues [12] tested the hypothesis that the hippocampus dynamically 

recruits and shapes representations during concept learning. They explored this 

hypothesis with rule-plus-exception category learning in which multidimensional visual 

stimuli were mapped onto categories according to a unidimensional rule with the 

exception of two items that violated the rule.  

 

Davis et al. derived quantitative predictions for hippocampal engagement throughout 

learning with SUSTAIN. According to SUSTAIN, exception items require the formation of 

distinct representations that distinguish exceptions from rule-following items, whereas 

rule-following items are supported by abstracted representations that capture their 

average features through a process of integration. Davis et al. proposed a hippocampal 

role in representing both exception and rule-following items and predicted that during 

learning, hippocampal activation would track recognition strength, a model measure that 

indicates the extent that a test item activates SUSTAIN’s category representations. In the 

rule-plus-exception task, SUSTAIN’s recognition strength is characterized by two aspects 

(Figure 3A): 1) It increases over learning as stored category representations are updated 

to better represent the structure of the learning task, and 2) exception items are supported 

by distinct representations that show greater recognition strength than rule-following 

items. These trial-by-trial predictions of recognition strength were directly incorporated 

into fMRI analyses as parametric regressors. As predicted, activation throughout learning 

in the hippocampal body and tail significantly tracked the recognition strength predictions 

(Figure 3A). In other words, how SUSTAIN’s flexible category representations are 
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differentially informative to rule-following and exception items throughout learning was 

reflected in hippocampal engagement.  

 

Davis et al. also investigated memory-based prediction error during feedback. 

Specifically, they derived a model measure, error correction, that indicated the difference 

between SUSTAIN’s predicted category and the actual category. Error correction serves 

the important role of dictating how much category representations should be updated after 

each trial. Much like recognition strength, error correction changes over learning and 

differs between rule-following and exception items (Figure 3B). By including trial-by-trial 

predictions of error correction as parametric regressors, Davis et al. found that feedback-

related activity in posterior hippocampus tracked this measure of memory-based 

prediction error signaling (Figure 3B).  

 

 
Figure 3. SUSTAIN-based measures of concept formation during a rule-plus-exception category learning 

task [12] and corresponding statistical maps of the hippocampus. A) Recognition strength varies across 

learning trials and is greater for exception (red) versus rule-following (green) items. Trial-by-trial activation 

in bilateral hippocampus (red regions) correlated with recognition strength. B) Error correction correlated 

with activation in bilateral hippocampus (yellow regions) during learning trial feedback. Figure adapted from 

[12]. 

 

The Davis et al. study offers a direct argument for hippocampal involvement in concept 

formation. A key prediction of SUSTAIN is that during learning, representations are 
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flexibly adapted to capture the nature of new concepts. And, a rule-plus-exception 

paradigm provides a strong test of this representational flexibility, with distinct item-

specific representations supporting exceptions and abstracted prototype-like 

representations capturing rules [13]. The Davis et al. findings suggest that such 

representations are formed in the hippocampus: Rule-following representations emerge 

throughout learning by integrating over overlapping experiences and distinct exception 

item representations result from pattern separation. 

 

Mack, Love, and Preston, 2016 

Conceptual knowledge supports flexible adaptation to different learning goals. Mack et al. 

[14] asked how conceptual representations of visual objects in the hippocampus are 

flexibly encoded to reflect changing goal states. In this study, participants first learned to 

categorize a set of multidimensional objects into one of two categories before learning to 

categorize the same set of objects in a new, orthogonal category structure. The two 

learning problems were defined by a unidimensional rule and a two-dimensional XOR 

rule with each problem relying on distinct stimulus dimensions (Figure 4A). This paradigm, 

therefore, required participants to change attentional strategies between problems to form 

new conceptual representations that best supported the changing learning goals.  

 

Mack et al. leveraged the quantitative predictions of SUSTAIN to perform a model-based 

analysis of fMRI data recorded during the two learning problems. Specifically, participant-

specific model parameter estimates were used to quantify the nature of the object 

representations learned within the context of the changing problems. This was 

accomplished by using the fitted model to predict how similar each pair of objects were 

within each learning problem. It was expected that the same two items could be similar 

or different depending on the learning problem, and even that items in the same category 

could be highly dissimilar depending on the learned attentional biases and conceptual 

representations. The resulting similarity matrices (Figure 4B) demonstrated that the 

model predicted very different underlying conceptual representations across the 

problems even though the same visual objects were present in both problems. 
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Figure 4. Mack et al. [14] learning problem schematics, model predictions, and corresponding neural 

results. A) Participants learned to classify the same set of multidimensional objects (beetles with different 

legs, antennae, and mandibles) according to two different learning problems. B) SUSTAIN-based 

predictions of the similarity between object representations in the two problems. Lighter cells correspond 

to higher similarity. C) Neural representations in left anterior hippocampus corresponded with the 

conceptual reorganization between learning problems as predicted by SUSTAIN. Figure adapted from [14]. 

 

The key question posed by Mack et al. [14] was if SUSTAIN’s prediction of conceptual 

reorganization across the two learning problems was evident in neural representations in 

the hippocampus. To answer this question, they performed model-based RSA to compare 

the neural similarity of hippocampal activation patterns for all pairs of visual objects for 

each learning problem, resulting in problem-specific neural similarity matrices. If 

hippocampal representations reorganize in the face of changing learning goals, these 

neural similarity matrices should correspond with the model-based similarity matrices. 

This is exactly what was found; anterior hippocampus showed a reorganization in neural 
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representations across the learning problems that matched SUSTAIN’s concept 

reorganization (Figure 4C). These findings demonstrate that as goals change and new 

concepts must be learned, hippocampal representations reorganize in concert with 

changing attentional strategy to reflect the relevant information for the current goal.  

 

It is important to note that these highlighted studies [12,14] were possible only by 

leveraging the quantitative predictions of how conceptual representations are formed and 

organized by learning as formalized in a computational model. The predictive power of 

this approach stems from a comprehensive mechanistic account of concept learning that 

combines the computations of selective attention, memory-based prediction error, and 

memory integration. By leveraging computational models, the latent processes and 

representations of psychological learning theory can be linked to the neural substrate of 

concept formation. 

 

A role for anterior hippocampus? 

Notably, the work reviewed here implicates anterior hippocampus in concept formation. 

Not only has this region been shown to form integrated neural codes that capture 

commonalities across individual experiences [14,31,32], it has also been associated with 

uncertainty during concept learning [11]. Relatedly, more complex memory functions that 

rely on integrating and organizing prior experiences such as autobiographical memory 

[51], schematic representation [52], and imagining the future [53,54] have been distinctly 

associated with anterior hippocampus. Anatomically, anterior hippocampus is well suited 

for the operations that mediate concept formation. Place fields in anterior hippocampus 

have broad receptive fields [55], potentially allowing for representations that generalize 

across episodes and behavioral relevance [56]. Anterior hippocampus also has 

anatomical connections to anterior temporal and medial prefrontal cortices [57], areas 

that may be involved in the retrieval of previously-learned conceptual/schematic 

information during new learning [56]. Although future studies are needed to fully 

characterize the functional properties of anterior hippocampus, and how they differ from 
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posterior hippocampus, the current evidence suggests it may play an important role in 

concept formation. 

 

Conclusion 
The research on concept learning and related processes reviewed here is in line with 

other recent work suggesting that the hippocampus plays a much broader role in cognition 

that originally thought [17,18]. The hippocampus seems to be the brain’s integrative code 

builder, binding together elements that share spatial, temporal, or conceptual features to 

form relational codes that capture the commonalities and organization of our experiences. 

The hippocampus, of course, is not the only region implicated in concept formation. An 

important question is how the hippocampus interacts with other brain regions to support 

the acquisition of knowledge from individual episodes both immediately during learning 

[14] and over time through consolidation [58,59]. The goal of the EpCon model discussed 

here, however, is to bridge an influential set of computational and neurobiological theories 

of learning and memory [1–3,24,25,36], most notably SUSTAIN [24] and its neural 

framework [14,25]. In doing so, EpCon provides a means to isolate the computations the 

hippocampus performs not only in the service of concept learning, but cognition more 

generally.  
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