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Abstract

Rule-based and information-integration category learning were compared under minimal
and full feedback conditions. Rule-based category structures are those for which the optimal
rule is verbalizable. Information-integration category structures are those for which the opti-
mal rule is not verbalizable. With minimal feedback subjects are told whether their response
was correct or incorrect, but are not informed of the correct category assignment. With full
feedback subjects are informed of the correctness of their response and are also informed of
the correct category assignment. An examination of the distinct neural circuits that subserve
rule-based and information-integration category learning leads to the counterintuitive predic-
tion that full feedback should facilitate rule-based learning but should also hinder information-
integration learning. This prediction was supported in the experiment reported below. The
implications of these results for theories of learning are discussed.
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1. Introduction

Categorization is a fundamental cognitive operation that is relevant to all aspects
of daily life, allowing us to meaningfully parse the world and help guide behavior.
Categorization is also a critical component for a broad range of tasks including iden-
tifying threats, choosing solution paths in math problems, and hitting a softball.
Given categorization’s ubiquity, it is not surprising that the study of category learn-
ing has been a focus of research in cognitive science.

Perhaps it is also not surprising that simple explanations for such a central cog-
nitive function have fallen short in some regards. Simple model-based accounts of
how people learn categories from examples, such as prototype- (e.g., Posner & Keele,
1968), exemplar- (Estes, 1994; Nosofsky, 1986; Smith & Medin, 1981), and rule-
based (e.g., Bruner, Goodnow, & Austin, 1956; Feldman, 2003) models, have given
way to proposals that posit multiple category learning systems (e.g., Ashby, Alfonso-
Reese, Turken, & Waldron, 1998; Erickson & Kruschke, 1998; Love, Medin, &
Gureckis, 2004; Nosofsky, Palmeri, & McKinley, 1994). The rise in the popularity
of multiple system theories coincides with a surge of interest and advances in under-
standing the neural basis of category learning (Aron et al., 2004; Ashby et al., 1998;
Ashby & Maddox, 2005; Love & Gureckis, 2007; Reber, Gitelman, Parrish, & Mesu-
lam, 2003; Seger & Cincotta, 2005, 2006).

Two neural circuits that subserve distinct category learning systems have been of
particular interest (e.g., Ashby, Ennis, & Spiering, 2007). One system is a rule system
that learns and reasons in an explicit fashion. The rule system’s hypothesis-testing pro-
cesses are consciously accessible. Introspection allows for accurate verbal report of dis-
covered rules. In contrast, the procedural learning system is not consciously penetrable
and insteadoperates by associating regions of perceptual spacewith actions that lead to
reward. The rule and procedural systems rely on distinct neural substrates. The rule
system is implemented by a circuit involving dorsolateral prefrontal cortex, anterior
cingulate and the head of the caudate nucleus (Ashby & Maddox, 2005; Filoteo
et al., 2005; Love &Gureckis, 2007; Seger & Cincotta, 2005, 2006), whereas the proce-
dural system is implemented by a circuit involving inferotemporal cortex and the pos-
terior caudate nucleus (Ashby et al., 1998;Nomura et al., 2007; Seger&Cincotta, 2005;
Wilson, 1995).

The rule and procedural system are complementary in that the two systems excel
with different types of category structures and under different task conditions. The rule
system engages working memory (WM) and executive attention processes and is not
vulnerable to feedback manipulations that delay feedback following a response to a
stimulus presentation or deliver feedback prior to stimulus presentation, whereas the
procedural system only performs well when feedback closely follows a response to a
stimulus presentation (Ashby, Maddox, & Bohil, 2002; Maddox, Ashby, & Bohil,
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2003; Maddox & Ing, 2005). These differences in feedback processing are readily
explained by the nature of the circuits supporting the rule and procedural systems.
The rule system invokes WM processes that allow for more flexibility in terms of
how feedback is processed. In contrast, the procedural system does not interact with
WMprocesses and instead relies ondopamine-mediated reward learning in the caudate
nucleus (Beninger, 1983;Miller, Sanghera, &German, 1981;Montague, Dayan,& Sej-
nowski, 1996; Wickens, 1993).

One advantage of the procedural system is that it is unaffected by concurrent or
sequential working memory demands, whereas the rule system is bound by working
memory resources (DeCaro, Thomas,&Beilock, 2008;Maddox,Ashby, Ing,&Picker-
ing, 2004;Waldron&Ashby, 2001; Zeithamova&Maddox, 2006, 2007). These limited
resources place an upper-limit on the kind of rules that can be learned. In particular,
people seem to be limited to mastering category structures for which optimal respond-
ing involves verbalizable rules along psychologically privileged stimulus dimensions.
Category structures that are learnable by the rule system, like that shown in Fig. 1A,
are referred to as rule-based structures. The optimal rule (denoted by the solid horizon-
tal and vertical lines) is to ‘‘respond A to short, shallow angle lines, B to short, steep
angle lines, C to long, shallow angle lines, and D to long, steep angle lines”. The struc-
ture in Fig. 1B is unlearnable by the rule system because the optimal rule (denoted by
the solid diagonal lines) is not verbalizable (i.e., length and orientation involve incom-
mensurable units). Such structures are referred to as information-integration category
structures.

Rather than rely on working memory processes to construct verbalizable rules, the
procedural system uses dopamine-mediated reward learning to associate regions of the
stimulus space with a response (Ashby et al., 1998). Although both systems are thought
to be operative on each trial, an initial bias toward the hypothesis-testing system is
assumed. Only when the procedural system begins to generate consistently more accu-
rate responses (or the hypothesis-testing system consistently fewer) is control passed to
this system. If the hypothesis-testing system generates accurate responses, control may
not be passed to the procedural system. One possibility is that the rule system acts as a
gatingmechanism for the procedural system–when the rule system ismeetingwith suc-
cess, it governs responding; otherwise, control is passed to the procedural system.
Given that the rule system is subject to introspection and cognitive control, it is plau-
sible that the rule system guides the interactions between the learning systems.1

This theory makes surprising predictions with respect to the impact of the nature of
feedback. For example, individuals with low working memory span capacity should
actually perform better in information-integration tasks because the rule system is at
a disadvantage and therefore will more readily pass control to the procedural system,
a prediction that was recently supported (DeCaro et al., 2008). When the theory is cast
in terms of popular rule and procedural learning computational formalisms, other sur-

1 A second possibility is that there is a third ‘‘control” mechanism that manages the gating of the
systems. For the present purposes, both mechanisms make the same predictions regarding the effects of
feedback on learning.
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Fig. 1. Category structures used in the rule-based (A) and information-integration conditions (B). Solid
lines denote the optimal decision bounds, and the open squares, filled squares, open triangles, and filled
triangles denote stimuli from categories A–D, respectively. Each category was defined as a bivariate
normal distribution along the two stimulus dimensions with mean vectors lA, lB, lC, and lD (in length-
orientation stimulus space) and common variance–covariance matrix R: lA = [72 100]0, lB = [100 128]0,
lC = [100 72]0, lD = [128 100]0 and R = RF = RD = RC = RD = [100 0; 0 100]. Optimal accuracy was 95%.
Twenty-five random samples were drawn from each of these category distributions for a total of 100
unique stimuli. Each sample was linearly transformed so that the sample mean vector and sample
variance–covariance matrix exactly equaled the population mean vector and variance–covariance matrix.
Each random sample (x, y) was converted to a stimulus by deriving the length in pixels l = x, and the
orientation (in degrees counterclockwise from horizontal) as o = yp/600. These scaling factors were chosen
to roughly equate the salience of each dimension. The resulting 100 stimuli were randomized separately for
each participant in each block.
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prising behavioral predictions can be derived and tested. The focus of the remainder of
this contribution is on deriving and testing these predictions.

1.1. Computational instantiation and behavioral predictions

Here, we provide a qualitative description of a two systemmodel that illustrates our
theory.One naturalway to characterize the rule system is as aBayesianhypothesis-test-
ing system that disambiguates between competing hypotheses during training. For the
four choice category problems like those shown in Fig. 1, the hypothesis space would
conform to all possible verbalizable rules that divide the two dimensional stimulus
space into four regions by the intersection of the two perpendicular decision bounds
that each run parallel to a stimulus dimension. The Bayesian system learns the proba-
bility of each of the potential hypotheses, and generates a predicted categorization
response by weighting each of these probabilities by the prior probability associated
with each hypothesis. These priors could be uniform or biased toward decision bounds
that divide the space into four regions of approximately equal size. The optimal deci-
sion bounds shown in Fig. 1A correspond to one such hypothesis. Fig. 2 provides
another example hypothesis. Setting aside category overlap, this Bayesian system
asymptotes to 100% performance for rule-based category structures (Fig. 1A) com-
pared to 50% for (rotated) information-integration category structures (Fig. 1B).

Key to the present investigation, the Bayesian systemoptimally utilizes all aspects of
feedbackwhen calculating the likelihood of the competing hypotheses.When feedback
is full (i.e., when the participant is told both whether they were correct or incorrect as
well as whether the stimulus belongs to category A, B, C, or D), the Bayesian system
will converge to asymptote more quickly than when minimal feedback is used (i.e.,
the participant is simply told that they are correct or incorrect).When theBayesian rule
system’s response is correct, the model can strengthen consistent hypotheses under
both minimal and full feedback. However, when the Bayesian system is wrong, under
full feedback the system can both strengthen consistent hypotheses and weaken incon-
sistent hypotheses, whereas under minimal feedback only inconsistent hypotheses are
weakened. Thus, the Bayesian system learns faster under full feedback.

One natural way to characterize the procedural learning system is as a biologically-
inspired reinforcement learning system that estimates the value (equivalent to accuracy
in the current experiment) of taking each of the four possible actions (i.e., category
choices) for every stimulus location. Fig. 2 illustrates one such system. This estimation
process is implemented by randomly placing some number of radial basis functions,
akin to the receptive fields found in the tail of the caudate nucleus (Wilson, 1995), at
locations corresponding to points in the two dimensional stimulus space shown in
Fig. 1. The connectionweights from these receptive fields to output nodes that estimate
the value of each classification response are updated using reinforcement learning pro-
cedures (Schultz, Dayan, & Montague, 1997; Sutton & Barto, 1998). The procedural
system learns at the same rate regardless of category or feedback typebecause the learn-
ing system is only concerned with stimulus location and feedback valence (i.e., reward
present or absent). Performance of the procedural system asymptotes at 100% minus
errors arising from exploration processes (Sutton & Barto, 1998).
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The properties of these two systems and their functional association predict a sur-
prising relationship between type of category structure (rule-based or information-
integration) and feedback (minimal or full). In particular, overall performance
should be better with full feedback for rule-based structures and (counterintuitively)
be better with minimal feedback for information-integration structures. With rule-
based categories, the Bayesian system can solve the task. Since full feedback leads
to more rapid rule learning, there should be a performance advantage for the full
feedback condition relative to the minimal feedback condition. This should be espe-
cially apparent early in learning. With information-integration categories, the Bayes-
ian system cannot solve the task, but instead must pass control to the procedural
system. Because full feedback leads to more rapid rule learning, it should lead to a
greater, more sustained reliance on the Bayesian system, thus leading to a perfor-
mance disadvantage for full feedback relative to minimal feedback for informa-
tion-integration learning. This disadvantage for full feedback should be especially

Fig. 2. One possible instantiation of the rule and procedural systems. The rule system is modeled as a
Bayesian model that optimally updates the probability of each hypothesis according to the current
stimulus and the feedback. Full feedback is more effective in discriminating among competing hypotheses
than is minimal feedback. Each hypothesis corresponds to two intersecting and perpendicular decision
bounds with each rectangular region assigned to one of the four possible categories. One such hypothesis is
shown in the left side of the figure. The procedural system uses reinforcement learning and a covering map
of Gaussian receptive fields to estimate the value of each action (i.e., the anticipated accuracy of
responding A, B, C, or D) for each stimulus location. Because this system estimates rewards, rather than
updating hypothesis probabilities, it is only concerned with the correctness of its responses, which is
equivalently signaled by minimal and full feedback. The performance of the rule system governs whether
the rule system or the procedural system determines the overall response. When the rule system is
performing at a high level, the gating mechanism is more likely to allow the rule system to continue
determining the overall response rather than passing control to the procedural system.
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apparent later in learning as the procedural system’s accuracy improves, but control
is not entirely passed along to this system. The following experiment tests these coun-
ter intuitive predictions.

2. Current experiment

2.1. Methods

2.1.1. Participants
One-hundred-sixteen participants completed the study and received course credit

for their participation. All participants had normal or corrected to normal vision,
and no participant completed more than one condition. A learning criterion [defined
as achieving at least 40% correct (25% is chance) during the final (6th) 100-trial
block] was applied to ensure that only participants who showed at least minimal
learning were included in the analyses. Of the 116 participants, 107 met the learning
criterion [Information-Integration-Full-Feedback: N = 32 (3 excluded); Informa-
tion-Integration-Minimal-Feedback: N = 30 (2 excluded); Rule-Based-Full-Feed-
back: N = 27 (2 excluded); Rule-Based-Minimal-Feedback: N = 27 (2 excluded)].

2.1.2. Stimuli and stimulus generation
The stimuli and stimulus generation algorithm are detailed in Fig. 1.

2.1.3. Procedure
Participants were randomly assigned to one of the four experimental conditions:

Information-Integration-Full-Feedback, Information-Integration-Minimal-Feed-
back, Rule-Based-Full-Feedback, and Rule-Based-Minimal-Feedback. Each condi-
tion consisted of 6, 100-trial blocks with a participant controlled rest period
between each block. Participants were told that they were to categorize lines on
the basis of their length and orientation, that there were four equally-likely catego-
ries, and that high levels of accuracy could be achieved. On each trial, a stimulus
appeared and remained on the screen until the participant generated a response by
pressing one of four buttons that were labeled ‘‘A”, ‘‘B”, ‘‘C”, or ‘‘D”. Following
the response, corrective feedback was provided for 1 s. A 1-s ITI followed the feed-
back and the next trial was initiated.

Participants received either Full Feedback or Minimal Feedback on each trial. An
example of the feedback provided in the Full and Minimal Feedback conditions on
correct and error trials is presented below:

! Full Feedback, Correct: ‘‘Correct, that was an X”, where X is the correct category
response

! Full Feedback, Error: ‘‘No, that was an X”, where X is the correct category
response

! Minimal Feedback, Correct: ‘‘Correct”
! Minimal Feedback, Error: ‘‘No”
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Thus, the only difference across the Full and Minimal Feedback conditions was in
the explicit specification of the correct category label. On every trial, in both condi-
tions, participants were told whether their response was correct or incorrect.

2.2. Results

The learning curves for all four conditions across the 6 100-trial blocks are pre-
sented in Fig. 3A. A 2 category structure (information-integration vs. rule-
based) " 2 feedback condition (full vs. minimal) " 6 block ANOVA was conducted
on the data. The main effect of block [F(5,515) = 153.03, p < .001, MSE = .006], and
the feedback " block interaction was significant [F(5,515) = 6.30, p < .001,
MSE = .006]. Importantly, the category structure " feedback condition interaction
was significant [F(1,103) = 9.90, p < .01, MSE = .060], and is displayed in Fig. 3B.
All other effects were non-significant. As predicted, for the rule-based condition, full
feedback (.73) led to better performance than minimal feedback (.67) [t(48) = 2.09,
p < .05], whereas for the information-integration condition, full feedback (.65) led
to worse performance then minimal feedback (.71) [t(55) = 2.37, p < .05].
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Fig. 3. (A) Proportion correct (averaged across participants) for each 100-trial block from the experiment.
(B) Proportion correct averaged across participants and blocks. Standard error bars included.
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Although we expected, and observed, an advantage for full feedback in the rule-
based condition, and minimal feedback in the information-integration condition, we
speculated that the effect would weaken with experience in the rule-based condition,
but would strengthen in the information-integration condition. As a test of this pre-
diction we compared performance in the full and minimal feedback conditions on a
block-by-block basis separately for the rule-based and information-integration con-
ditions. For the rule-based condition, full feedback led to significantly better perfor-
mance (p < .05) in blocks 1 and 2 (i.e., during the first 200 trials), but by the third
block the effect was not significant. For the information-integration condition, there
was no significant performance difference in blocks 1–3, but the effect was significant
in blocks 4 (p < .05), 5 (p < .05), and 6 (p < .01).2

4. Discussion

Virtually every theory of learning holds that more informative feedback should
result in better performance. The results for the information-integration condition
run counter to this widely held belief – subjects performed better when feedback
was minimal. This result is surprising given that minimal feedback is strictly less
informative than full feedback. Full feedback indicates both correctness (as minimal
feedback does) and the target category.

This surprising outcome is anticipated by a two system model in which overt
behavioral decisions are determined by either a rule or procedural learning system
(see Fig. 2). These two systems are motivated by known neurobiology, results from
behavioral experiments, and computational considerations. The rule system is mod-
eled as a Bayesian hypothesis-testing system that optimally utilizes feedback. This
system more readily discriminates among competing hypotheses when full feedback
is employed. In contrast, the procedural learning system uses reinforcement learning
and is only concerned with the valence of feedback, which is equally supplied by min-
imal and full feedback. A gating system determines whether the rule or procedural
system executes the overt response, with the rule system maintaining control unless
it is performing at a low level.

The observed interaction in the experiment arises because the procedural system is
best suited to information-integration categories whereas the rule system is best

2 A series of decision bound models were also applied to the data from each participant in each block of
trials. Each model instantiated either a rule-based or a procedural strategy. Standard parameter estimation
and model fitting procedures based on maximum likelihood were utilized to identify the best model for
each data set. As expected, in the information-integration conditions, the proportion of participants whose
data was best fit by a rule-based strategy was higher in the full feedback condition (39% of data sets across
blocks) then in the minimal feedback condition (26% of data sets across blocks), with this difference
increasing across blocks. In the rule-based conditions, on the other hand, the proportion of participants
using rule-based strategies was high (82% and 84% of data sets across blocks for the full and minimal
feedback conditions, respectively), but participants in the full feedback condition converged more quickly
on the optimal rule and optimal decision criteria.
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suited to rule-based categories (e.g., Ashby et al., 1998; Ashby & Maddox, 2005).
However, for both category structures learned under full feedback, the rule-based
system will tend to respond above chance early in learning. Even for information-
integration categories, the rule system can approach 50% accuracy, which is far
above the 25% chance level. These early successes delay the transfer of control to
the procedural system, which hurts performance in the Information-Integration-
Minimal-Feedback condition after the initial training blocks.

One key question for our theory is whywould evolution give rise to a procedural sys-
tem that does not make optimal use of full feedback? It would seem that such a basic
learning system, especially one that is phylogenetically older, shouldoptimally leverage
feedback from the environment. We believe the answer lies in the other functions that
the procedural system serves and the concordant computational demands placed on
the system. The procedural system is primarily concerned with proceduralizing com-
plex behaviors or skills. These skills often involve sequencing actions in a proper order.
For example, hitting a softball does not involve one decision per trial as in our exper-
iment, but involves a multitude of cascading actions with each action impacting the
future state of the system. Perhaps even more challenging from a learning perspective,
the reward signal for such dynamic tasks often appears only at the end of a sequence of
actions (e.g., when the softball is hit or missed). The only known learning systems that
can effectively learn in these situations without explicit planning, which would require
WM resources, are reinforcement learning systems that process rewards as in our pro-
posed procedural system (e.g., Nagy et al., 2007). Thus, the computational require-
ments, along with what we know of the neurobiology of dopamine-mediated
learning, point to a system that would not distinguish between minimal and full feed-
back, but nevertheless could be interfered with if the Bayesian system were to be oper-
ative (such as when full feedback is given).

One important point to make is that we do not deny that there are other systems
that contribute to category learning. For example, it is clear that aspects of category
learning are mediated by a hippocampal learning system (Foerde, Knowlton, &
Poldrack, 2006; Love & Gureckis, 2007), and we have shown that this system may
be involved in certain aspects of rule learning (Nomura et al., 2007). However, the
present experiment was designed to differentially tap the rule and procedural sys-
tems. A complete theory will have to take into account the hippocampal and other
learning systems. The present contribution is speculative, but demonstrates that
valuable predictions can be made by working with models inspired by know neuro-
biology. Regardless of the ultimate correctness of our proposal, we believe the cur-
rent results speak to the utility of this basic approach.
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