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Abstract 

This work explores the influence of motivation on choice 
behavior in a dynamic decision-making environment, where 
the payoffs from each choice depend on one’s recent choice 
history. Previous research reveals increased levels of 
exploratory choice among participants in a regulatory fit. The 
present study placed promotion and prevention-focused 
participants in a dynamic environment for which optimal 
performance requires that participants sustain a single choice 
strategy in the face of temporary payoff decreases. These 
participants either gained or lost points with each choice. Our 
behavioral results and model-based analysis, using the 
average-reward reinforcement learning framework, revealed 
differential levels of reactivity to local changes in payoffs—
specifically, participants in a regulatory fit were less reactive 
to local perturbations in payoffs than participants in a 
regulatory mismatch and performed more optimally as a 
result. 

Keywords: Decision making; motivation; reinforcement 
learning 

Introduction 
Motivation is essential to action (e.g., Carver & Scheier, 
1998; Yerkes & Dodson, 1908). Social psychology makes 
the distinction between two general motivational 
orientations (or regulatory foci), a promotion focus and a 
prevention focus, which accentuate potential gains and 
losses in the environment, respectively (Higgins, 1997). 
Recent research reveals that an interaction occurs between 
one’s regulatory focus and the reward structure of the task 
being performed, affecting peoples’ use of flexible 
strategies in a number of tasks. In one study (Worthy, 
Maddox, & Markman, 2007) utilizing a two-armed bandit 
task for which optimal choice behavior required exploratory 
choices as opposed to exploitative choices (c.f.  Daw et al., 
2006), participants attempting to earn a prize (inducing a 
promotion focus) exhibited more optimal choice behavior 
when the task environment had a gains reward structure 
(i.e., participants were maximizing gains of points) than 
when the task environment had a losses reward structure 
(i.e. participants were minimizing loss of points). Likewise, 
participants attempting to avoid losing a prize (a prevention 
focus) performed more optimally when the task involved a 
losses reward structure than when the task involved a gains 
reward structure. 

In n-armed bandit tasks where which the decision-maker 

learns to maximize his or her payoffs by making choices 
and experiencing the consequences of those choices (e.g. 
Daw et al., 2006; Bechara, A.R. Damasio, H. Damasio, & 
Anderson, 1994), optimal performance depends on 
balancing the demands of gathering and exploiting 
information about choice payoffs. Worthy et al.’s (2007) 
study demonstrated that participants in a regulatory fit, for 
whom their situational regulatory focus matches the reward 
structure of the task environment, exhibit more exploratory 
choice strategies than do participants in a regulatory 
mismatch, who exhibit more exploitative choice strategies. 
Through continued exploration of choices—with the 
consequence of occasionally taking decreases in payoffs—
participants in a regulatory fit display behavior that is 
adaptive for the overall long-term pursuit of rewards.  
Further, their model-based analyses suggested that 
participants in a regulatory fit place less weight on outcomes 
from recent choices than do participants in a regulatory 
mismatch. While this class of tasks is well suited for 
investigating exploratory versus exploitative choice 
behavior, we seek to understand how motivational factors 
affect the degree to which recent changes in payoffs drive 
choice behavior. 

In this report, we examine the effects of regulatory fit in a 
two-option, repeated-choice decision making task in which 
payoff-maximizing, long-term optimal behavior requires 
that participants persevere with one choice strategy, 
sustaining temporary decreases in payoffs in order to 
maximize long-term gain. Our experiment placed 
participants in a version of the “rising optimum” task, 
previously used to investigate temporal-difference accounts 
of learning (Eagelman, Person, & Berns, 1998; Montague & 
Berns, 2002) and the problem of temporal credit assignment 
in human sequential decision-making (Bogacz, McClure, Li, 
Cohen, & Montague, 2007). Unlike other bandit tasks in 
which payoff contingencies remain invariant to participants’ 
behavior (e.g., Bechara et al., 1994; Daw et al., 2006; 
Worthy et al., 2007; Yechaim & Busemeyer; 2005), in this 
task, the state of the task environment changes as a function 
of a participant’s recent choices, which in turn governs the 
payoffs associated with each action.  

Consider the two payoff curves depicted in Figure 1, 
which correspond to the possible payoffs for two choices A 
and B in Egelman et al.’s (1998) “rising optimum” task. The 
payoff received from a choice depends on the proportion of 
A choices made over the last 20 trials, represented by the  



 
 

Figure 1: Payoff functions for two choices as a function 
of response allocation. (See text for details). 

 
horizontal axis. For example, if the participant makes only B 
choices for 20 trials in a row—effectively making their 
fractional allocation to the A choice 0—the payoffs from 
choices A and B would be 0.38 and 0.19 respectively. If the 
participant makes one A choice at this point, his or her 
response allocation would change to 0.05, as only 1 out of 
20 of the last trials were A choices. Consequently, the 
payoffs for choice A and B would be .36 and 0.2. Thus, the 
payoffs associated with the choices fluctuate with the past 
choice behavior of the participant. In this task, optimal long-
term choice behavior requires consistent A choices every 
trial, as the global optimum is located where the 
participant’s fractional choice allocation to choice A is 1 
(Montague & Berns, 2002).  

Prior research utilizing the rising optimum task reveals 
that participants easily become “stuck” in a local cycle 
around the crossing point of the curves where the fractional 
allocation to choice A is approximately 0.3 (Bogacz et al., 
2007; Montague & Berns, 2002). To illustrate, consider a 
participant who makes repeated A choices until they find 
themselves at the crossing point of the two curves (Figure 
1). As they continue to make A choices, exceeding an 
allocation of 0.3, the immediate payoff from choice A will 
decrease, with greater immediate payoffs resulting from 
choice B. Should they elect to make B choices at this point, 
rewards for that option will decrease until the fractional 
allocation falls below 0.3 whereupon choice A will yield 
higher immediate payoffs. This globally suboptimal 
response strategy—akin to matching behavior by humans 
described by Herrnstein (1990)—is predicted by simple 
temporal-difference (TD) learning models of reinforcement 
learning (Montague & Berns, 2002; Sutton & Barto, 1998). 
An optimal strategy of consistent A choice requires that the 
participant persist in the face of the local decrease in payoffs 
as they depart the “matching” crossing point and move 
towards the global optimum of the A payoff curve.  In the 
absence of experimental manipulations, both Montague and 
Berns (2002) and Egelman et al. (1998) grouped participants 
by their choice strategies (i.e., those who stayed near the 
crossing point, and those who were able reach near-optimal 
allocations), finding that a substantial number of 
participants exhibited choice behavior not anticipated by 

standard TD-learning models.  
A number of studies have explored factors that shape 

participants’ choice allocations both in the rising optimum 
task and other similar dynamic environments. Bogacz et al. 
(2007) demonstrated how optimal choice performance 
depends on the amount of time that elapses between choices 
(i.e., inter-choice interval) using an eligibility trace model. 
A question then, comes to bear in light of prior research: 
how can motivational factors influence humans’ pursuit of 
overall long-term rewards in the face of local reward 
decreases, consequently driving them toward or away from 
payoff-maximizing choice in the rising optimum task? 

The present work extends previous research in two ways. 
First, we demonstrate that situational regulatory fit (and 
mismatch) affect the degree to which participants are able to 
sustain temporary decreases in payoffs in order to maximize 
long-term payoffs. Second, in the framework of 
reinforcement learning (RL), we provide a model-based 
analysis of choice behavior using a variant of the TD-
learning algorithm (Sutton & Barto, 1998) known as 
average-reward learning, elucidating our hypothesized 
differences about participants’ reactivity to local changes in 
payoffs. In short, we hypothesize that the interaction 
between one’s motivational state and the reward structure of 
the environment will influence individuals’ ability to sustain 
globally advantageous choices in the face of local 
perturbations, such that decision-makers in a regulatory fit 
will exhibit more optimal, payoff-maximizing response 
allocations than decision-makers in a regulatory mismatch. 

Experiment 1 
We placed participants in a variant of the Rising Optimum 
task, whose payoff schedule (under the gains reward 
structure) is depicted in Figure 1. Participants in the gains 
condition started with 0 points and gained between 0 and 1 
points with each choice, while participants in the losses 
condition started with 0 points and lost between 0 and -1 
points with each choice. The bonus criteria was positioned 
such that participants would need to earn at least 75% of the 
total possible points at the end of the experiment—which 
required that participants persevere in the face of local 
reward decreases as they made repeated A choices. 
Consequently, participants whose choice allocations 
remained near the “matching” equilibrium would not 
achieve the bonus criterion.   

Participants in a promotion focus were told that they 
would receive an entry into a drawing for a 1 in 10 chance at 
winning $50 if they achieved the bonus criterion. 
Participants in a prevention focus were given an entry into 
the drawing and told that they had to achieve the bonus 
criterion to avoid losing the entry. As in previous research 
(e.g. Shaw & Higgins, 1997), this manipulation was 
designed so that participants in the promotion and 
prevention focus conditions were effectively in the same 
objective situation.  

In light of previous work revealing heightened 
exploratory choice in regulatory fit (Worthy et al., 2007), 



we hypothesized that participants in a regulatory fit (a 
promotion focus with a gains reward structure or a 
prevention focus with a losses reward structure) will sustain 
globally advantageous choice strategies, exhibiting less 
reactivity to local changes in payoffs. In contrast, we 
hypothesized that participants in a regulatory mismatch (a 
prevention focus with a gains reward structure or a 
promotion focus with a losses reward structure) would 
exhibit more reactivity to local changes in payoffs and thus 
exhibit less globally optimal response allocations. Table 1 
provides another description of our factorial design and 
hypotheses. 
 

Table 1: Overview of regulatory focus manipulation.  
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Method 
Participants Forty undergraduates from the University of 
Texas community participated in the experiment for course 
credit. They were also given the opportunity to win an entry 
into a drawing for $50 cash, and were told that no more than 
10 participants would be included in each drawing. The two 
between-subjects independent variables were the situational 
regulatory focus (promotion and prevention) and the reward 
structure of the task (gains and losses). 

 
Materials The experiment stimuli and instructions were 
displayed on 17-inch LCD monitors. At the start of the 
experiment, participants were informed that they would 
either earn (promotion condition) or keep (prevention 
condition) a entry into the drawing if they met a bonus 
criterion. Participants were instructed to make repeated 
choices with the goal of maximizing overall, long-term 
gains of points (gains condition) or minimizing overall long-
term losses of points (losses condition). 
Procedure At the start of the experiment, each participant’s  
 

 
Figure 2: Example gains task interface. 

response history was randomized such that the mean starting 
allocation of A choices was 0.5 across all participants. Each 
trial, participants were presented with two buttons labeled 
“Choice A” and “Choice B”. The mapping of response 
buttons to choices was counterbalanced across participants. 
The task interface under the gains condition is shown in 
Figure 2. Using the mouse, participants clicked one of the 
buttons to indicate their choice, and white payoff bar grew 
(or fell, in the losses condition) vertically to indicate the 
amount of points gained (or lost, in the losses condition) on 
that trial. There was no time limit for making choices.  

The payoff each trial was a function of the relative 
fraction of the number of A choices made by the participant 
over the last 20 trials. Specifically, the payoff for each 
option, in the gains condition, with respect to relative 
fraction of A choices, is depicted in Figure 1. Gains payoffs 
were all between 0 and 1. Payoffs in the losses condition 
were calculated by subtracting 1 from the gains payoffs, 
resulting in all negative payoff values. Cumulative gains (or 
losses) were displayed on the side of the screen, as a bar that 
grew (or shrunk, in the losses condition) in relation to the 
bonus criterion. This bonus criterion was determined by 
calculating the average cumulative payoffs after 250 trials 
with an “A” choice allocation of 0.75. This criterion was 
equated across the gains and losses conditions. 

After 250 trials, participants were given feedback on 
whether they had met the bonus criterion or not. If they met 
the bonus criterion, participants in the promotion focus 
condition were given a ticket and told to enter it in the 
drawing, and participants in the prevention focus condition 
were informed that they could keep their ticket and enter it 
in the drawing.   

Results 

Performance Measures 
As a measure of response optimality, we analyzed the 

proportion of trials for which participants made optimal  
“A” choices. A 2 (regulatory focus) x 2 (reward structure) 
ANOVA conducted on overall proportion of A choices 
collapsed over the course of the experiment revealed a 
significant interaction (F(1,38)=32.48, p<.001) and no 
significant main effects. Among participants in the gains 
reward structure, participants in a promotion focus 
(M=0.591, SD= 0.05) made significantly more A responses 
than participants in a prevention focus (M= 0.389, SD= 
0.03) [t(18)=3.30, p<.01]. For participants in the losses 
reward structure, participants in a prevention focus 
(M=0.522, SD= 0.03) made significantly more A responses 
than participants in a promotion focus (M= 0.330, SD= 
0.01) [t(18)=5.97, p<.001].  
 



 

 
 

Figure 3: Proportion optimal (A) choices made, by group, 
over the course of the 250 trials, in bins of 50 trials. 

 
Figure 3 shows the proportion of “A” choices calculated 

over blocks of 25 trials at a time averaged across 
participants. We conducted a 2 (regulatory focus) x 2 
(reward structure) x 5 (trial block) ANOVA on number of A 
choices made across the course of the 5 blocks, revealing a 
significant 2-way interaction between regulatory focus and 
reward structure (F(1,38) =17.32, p<.001), as well as a 
significant main effect of reward structure (F(1,38) = 4.48, 
p<.05) and a significant main effect of trial block (F(1,38) = 
7.86, p<.01). All other main effects and interactions failed 
to reach significance. 

As another measure of optimal performance, we 
calculated each participant’s final distance from the bonus 
criterion, as depicted in Figure 4.  A 2 (regulatory focus) x 2 
(reward structure) ANOVA on this measure revealed a 
significant interaction (F(1,38)=20.05, p<.001) and no 
significant main effects. Among participants in the gains 
reward structure, participants in a promotion focus (M= 
39.96, SD=8.67) came significantly closer to the bonus 
criterion than did participants in a prevention focus (M= 
66.53, SD= 4.91) [t(18)=2.66, p<.05]. For participants in the 
losses reward structure, participants in a prevention focus 
(M=52.68, SD= 4.40) ended significantly closer to the 
bonus criterion than participants in a promotion focus (M= 
75.06, SD= 0.72) [t(18)=5.022, p<.001].  

 

 
Figure 3: Average distance, in points, from bonus 

criterion by group.  

Model-Based Analysis 
Model Definition We implemented a variant of temporal 

difference (TD)-learning known as average reward learning 
(Schwartz, 1993; Sutton & Barto, 1998), as theoretical work 
suggests that average-reward may be a more realistic model 
of human behavior than discounted-reward models (Daw & 
Touretzky, 2000; Gureckis & Love, in press).  Our 
descriptive model affords a direct assessment of a given 
participant’s reactivity to local perturbations in payoffs in 
the rising optimum task.  

Unlike standard TD-learning RL models (e.g. Yechaim & 
Busemeyer, 2005), which rely only on estimated values of 
individual actions, average reward learning maintains an 
estimate of the average reward per time step, ρ, across both 
actions. The value of an action is defined by its estimated 
value relative to the average reward. Thus, actions that lead 
to better-than-average rewards (i.e., positive transient 
differences with respect to ρ) are selected more frequently 
under an exploitative policy. Under average reward 
learning, the TD error δ is defined as: 

                             

! 

" = r
t+1 # $ #Q(ai)  ,                          (1) 

where rt+1 is the actual experienced reward on that trial and 
ρ  is the model’s average reward per time step estimate. 
Each trial, the update made to the estimated transient value, 
Q(aj) of each action aj is informed by the current TD error δ: 
                               

! 

Q(a j ) =Q(a j ) +" # e j # $ ,                      (2) 
where α is a learning rate parameter, 0 ≤ α ≤ 1 and ej  is an 
eligibility trace for that action (described below). If the 
chosen option ai had the greater estimated value between the 
two choices, the average reward estimate ρ is updated 
according to the current TD error δ:  
                                    

! 

" = " + (# $%) ,                                 (3) 
where β is an average-reward update size parameter, 0 ≤ β ≤ 
1, that determines how heavily the average-reward estimate 
weights recent rewards. When β is small, ρ relies on a large 
historical window and updates very slowly, while if β = 1, ρ 
depends only on rewards from the most recent trials and is 
updated quickly. Thus, a participant’s readiness to update 
their expectations of average, trial-to-trial payoffs could be 
encapsulated by their average-reward update parameter. 

Finally, the model utilizes the “softmax” method of action 
selection whereby the probability of making choice ai each 
trial is:                            
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P(ai) =
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                         (4) 

where γ is an exploitation parameter (c.f., Daw et al., 2006; 
Sutton & Barto, 1998) and Q(ai) is an estimate of the 
transient reward associated with choice ai.  

In order to effectively manage temporal credit 
assignment—that is, the rewarding or penalizing of past 
choices which occur at variable times prior to the current 
reward—the model utilizes accumulating eligibility traces in 
a manner similar to Bogacz et al. (2007), as shown in 
Equation 2. The eligibility trace ej for each action is 
initialized to 0 at the start of the trials and after each action, 
both eligibility traces are decayed by a constant term and the 
eligibility trace for the chosen action ei is incremented:                               
               

! 

e j = "e j               (5) 
              

! 
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i
+1                   (6) 

where λ is a decay parameter, 0 ≤ λ ≤ 1. Eligibility traces 
improve the rate of learning by allowing prediction errors to 
propagate backwards across multiple trials (Sutton & Barto, 
1998). 
Model Fit Predictions and Results Consider a decision-
maker, who passes the crossing point from left to right (see 
Figure 1) as they continually make A choices. If the 
decision-maker readily changes their average-reward 
estimate (i.e., large β) to reflect the dip in payoffs 
encountered, they will seek the high positive transient 
obtained from choosing B and move back towards the 
“matching” crossing point, maintaining a suboptimal choice 
allocation. However, if the decision-maker does not 
significantly change their estimate (i.e., small β) as they 
depart from the crossing point, their average-reward 
estimate will remain anchored roughly at the crossing point, 
meaning that choice B will not incur as large a transient 
payoff as it would if the average-reward estimate followed 
the dip. Consequently, choices A and B will have closer 
estimated transient values, and thus, will be more 
equiprobable choices under softmax action selection. Thus, 
in a sense, slower average-reward updating makes 
exploration tenable from the perspective of the local 
decision-maker. 

The examination of group differences with respect to 
average-reward update size parameter (β) values would 
allow us to evaluate the degree to which participants’ 
expectancies of global payoffs fluctuate with changes in 
local payoffs. As our behavioral results suggested that 
regulatory fit affected participants’ levels of reactivity to 
local payoff changes, we hypothesized that participants in a 
regulatory fit would be slower to update their expectations 
of average per-trial payoffs, and thus yield lower estimates 
of the average-reward update size parameter than would 
participants in a regulatory mismatch. We fit this model to 
the data using a parameter optimization procedure that 
maximized the likelihood of the each individual 
participant’s estimated parameter values given their choice 
behavior over 250 trials (see Yechaim & Busemeyer (2005) 
for details). To ensure our average-reward model captured 

 

 
Figure 5: Average estimates of average-reward update 

size parameter β by condition. 
 

participants’ response dynamics, we also fit a single-
parameter baseline model to each participant’s data, which 
assumed a constant probability of making A choices across 
all trials. The proportions of subjects in each condition for 
whom the average-reward model provided a better fit than 
the baseline model (by the Akaike Information Criterion, 
see Akaike, 1974) are reported in Table 2. 

Figure 5 depicts the average update size parameter values 
for each condition. A 2 (regulatory focus) x 2 (reward 
structure) ANOVA conducted on estimated update size 
parameters revealed a significant interaction (F(1,38)= 6.56, 
p<.05). On average, participants in regulatory fit had lower 
estimated values of this parameter. The estimated values for 
the four model parameters are also summarized in Table 2. 
The estimated values of γ, α, and λ were not of interest in 
this analysis, and no significant interactions or main effects 
were found across the four conditions. 

 
Table 2: Proportion of Subjects for whom Average-Reward 

Fit Best, and Average Estimated Parameter Values by 
Experimental Condition. Standard Deviations for these 

Parameter Values are Shown in Parentheses. 
 

Condition Proportion 
Best Fit 

γ α β λ 

Promotion-
Gains 0.70 17.839 

(6.797) 
0.061 

(0.094) 
0.010 

(0.011) 
0.559 

(0.878) 
Promotion-

Losses 0.70 18.478 
(6.884) 

0.034 
(0.039) 

0.134 
(0.268) 

0.540 
(0.597) 

Prevention-
Gains 0.80 11.547 

(7.872) 
0.192 

(0.287) 
0.139 

(0.315) 
0.514 
(1.02) 

Prevention-
Losses 0.80 15.267 

(9.660) 
0.108 

(0.194) 
0.004 

(0.005) 
0.567 

(0.803) 

Discussion 
This report examines the effects of regulatory fit on 

optimal decision-making performance in a dynamic task 
environment. While previous research has addressed the 
neural correlates of “risky” choice behavior (Montague & 
Berns, 2002) and the effects of decaying memory for actions 
between choices (Bogacz et al., 2007) in decision-making 
environments where payoffs vary as a function of recent 
behavior, little work has examined motivational factors that 
bear on performance in this class of tasks. We have shown 



that regulatory fit strongly influences how human choice 
behavior adapts to changing payoff contingencies in the 
environment.  Specifically, we revealed that compatibility 
between one’s situational regulatory focus and the reward 
structure of the environment diminishes one’s reactivity to 
local changes in payoffs—which, in the rising optimum 
task, is necessary for optimal, payoff-maximizing patterns 
of choice. It should be noted, however, that optimal choice 
behavior did not depend solely on the reward structure of 
the environment (e.g., gains and losses), but rather the 
interaction between situational regulatory focus and task 
reward structure.  

A possible interpretation of differential levels of 
sensitivity to local payoff changes is that continually 
modifying one’s response policy on the basis of local payoff 
information impedes systematic exploration of the decision 
space. That is, reactivity to local changes in payoffs 
precludes full, systematic exploration of the decision space. 
The notion of systematic exploration is closely related to 
“temporal abstraction” in reinforcement-learning as 
described by Botvinick et al. (in press) by which agents can 
reduce the effective size of the decision space through 
structured, multiple-action patterns of exploration. While 
previous accounts of motivational influences of choice in 
bandit tasks find that regulatory fit engenders more 
stochastic decision-making on the independent, trial-to-trial 
level (Worthy et al., 2007), participants’ choice behavior in 
the present work suggests that regulatory fit also facilitates a 
more systematic form of exploration which persists over 
multiple choices. 

We have shown in this report that motivational factors in 
the environment can influence individuals’ level of 
reactivity to local payoff changes in a dynamic decision-
making task, which can in turn impact their willingness to 
explore globally optimal choice strategies. These results add 
to the body of findings from the decision-making and 
classification literatures (Maddox, Baldwin, & Markman, 
2006; Worthy et al., 2007), which suggest motivation holds 
strong effects for human cognition and behavior.  
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