
In many real-world situations, short-term rewards con-
flict with long-term benefits. Consider the case of global 
warming, for which a group’s difficulty in changing its 
behavior reflects a considerable difference in immediate 
payoffs between long-term beneficial and long-term det-
rimental actions. That is, the long-term detrimental action 
(unrestricted pollution) results in greater immediate re-
ward (higher industrial output, greater comfort) than does 
the long-term beneficial option, which involves receiving 
smaller immediate rewards (lower industrial output, re-
duced comfort) but contributing to a larger overall pat-
tern of reward in the long term (greater overall quality of 
life). Effective decision making in real-world situations 
involves not only weighing the costs and benefits of par-
ticular actions, but also understanding how actions in the 
past influence the costs and benefits of future actions. It 
should be noted that this class of problem differs from 
those used in studies of delay discounting in humans (e.g., 
Myerson & Green, 1995), in which single decisions are 
made on the basis of explicit instructions and it is made 
clear at what point in time the larger, delayed rewards will 
be received (Rachlin, 1995).

In this article, we examine how information about the 
state of the world affects decision making in dynamic 
tasks that require valuing either long-term or short-term 
rewards. Unlike static and one-shot decision-making prob-

lems in which the payoff contingencies are not influenced 
by participants’ behavior (e.g., Ido & Barron, 2005), in 
our task, the possible payoffs associated with each choice 
change as a function of participants’ recent choices. Thus, 
participants’ behavior in the task can effectively influence 
the state of the task environment, which, in turn, has con-
sequences for future rewards. In our experiments, we ma-
nipulated the information that people had about the cur-
rent task state in order to study the relationship between 
their mental representation of the task and their ability to 
adopt effective decision strategies.

For example, in Figure 1A, each curve represents the 
payoff from one of two choice options in a repeated-choice 
task. The horizontal axis represents the current state of 
the task environment, and the vertical axis represents the 
payoff from selecting either choice. In all states, one op-
tion (which we call long-term decreasing [LT-D]) always 
yields a higher payoff than does the other option (called 
long-term increasing [LT-I]). Note that the current task 
state is defined as the number of LT-I choices made over 
the last 10 trials. Increases in the proportion of LT-I selec-
tions in one’s history shift the current state of the system 
rightward on the horizontal axis (increasing the payoffs 
for both choices), whereas increases in the proportion 
of LT-D selections move the state leftward (decreasing 
the payoffs for both choices). Thus, options that lead to 
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LT-I and LT-D choices would result in payoffs of 45 and 35, 
respectively. The payoffs associated with the choices fluc-
tuate with the recent choice behavior of the participant.

In this dynamic payoff structure, a payoff-maximizing 
response pattern requires forgoing the LT-D choice and 
continually making LT-I choices (because the equilibrium 
point for the LT-I option is higher than that for repeated se-
lections of the LT-D option). However, this strategy is not 
apparent to participants at the outset and must be learned 

larger immediate payoffs negatively affect future payoffs, 
whereas options that are less immediately attractive lead 
to larger future payoffs.

Consider a participant who has made only LT-D choices 
for 10 trials in a row, effectively making the task state 0. 
The payoffs from the LT-I and LT-D choices would be 30 
and 40, respectively. If he or she makes one LT-I choice at 
this point, the task state would change to 1, since only 1 out 
of 10 of the last trials were LT-I choices. Consequently, the 
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Figure 1. (A) Payoff functions for two choices as a function of response alloca-
tions over the previous 10 trials: Payoff functions in the close together payoff 
curves condition (similar to the one used in Gureckis & Love, in press). Of par-
ticular interest is the fact that the highest point of the long-term increasing (LT-I)  
curve is higher than the lowest point of the long-term decreasing (LT-D) curve. 
Thus, the optimal strategy is to choose the LT-I option on every trial. (B) In 
contrast, consider the payoff structure when the LT-D choice always generates 
higher immediate payoffs than does the LT-I choice but the global minimum of 
the LT-D payoff curve is greater than the global maximum of the LT-I payoff 
curve. Among pure response strategies, consistently choosing LT-D is the opti-
mal pattern of response. Critically, optimal behavior in the two payoff structures 
depicted in panels A (i.e., close together) and B (i.e., far apart) requires different 
patterns of choices. The two reward curves were tested in the experiment.
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payoffs when a cue was provided indicating the task state. 
However, in Gureckis and Love’s study, the impact of two 
different types of perceptual cues was evaluated: In one 
condition, the currently active cue moved unidirectionally 
with the changing state from one end of the cue array to 
the other, whereas in another condition, the cue positions 
mapped randomly to different task states. Although both 
types of cues made clear that each choice changed the 
current task state—thereby helping participants overcome 
the problem of perceptual aliasing—the authors found 
that only unidirectional cues significantly improved par-
ticipants’ ability to make long-term payoff-maximizing 
responses, as compared with participants who did not 
have any disambiguating perceptual information.

Gureckis and Love (in press) suggested that observ-
ing the covariance between changing payoffs and the 
systematic movement of the state cue led participants to 
generalize experience acquired in one state to other, not-
yet-experienced states, akin to extrapolating the slopes of 
the payoff curves. That is, participants who successfully 
learned that the payoffs were greater in State 2 (i.e., the 
number of LT-I responses over the last 10 trials was two) 
than in State 1 might have extrapolated this relationship to 
predict greater payoffs in States 9 and 10. Consequently, 
these participants were better able to move systemati-
cally through the decision space, adopting near-optimal 
response patterns. Simulations of an RL model—utilizing 
a simple linear network to estimate action values for each 
choice—revealed that supplying the model with consis-
tent state information afforded extrapolation of rewards 
in unexperienced states and, subsequently, improved per-
formance. Furthermore, this model provided the best ac-
count of participants’ behavior, in comparison with other 
contemporary RL models (Bogacz, McClure, Li, Cohen, 
& Montague, 2007; Daw, O’Doherty, Dayan, Seymour, 
& Dolan, 2006). The authors concluded that local state 
information helped participants adopt optimal response 
patterns by reducing the perceptual aliasing inherent in 
abstract decision spaces.

One possible explanation of Gureckis and Love’s (in 
press) findings is that participants provided with cues will 
engage in more systematic exploration of the state space 
and realize that there are two fixed points associated with 
the end points of the cue arrangement, where the payoffs 
no longer change. Through explicit comparison of the pay-
offs associated with these end point landmarks (namely, 
the minimum of LT-D and the maximum of LT-I, which 
are located at States 0 and 10, respectively), participants 
will settle on a strategy of consistent LT-I choices, since 
the maximum of the LT-I option yields greater payoffs 
than does the minimum of the LT-D curve. Alternatively, 
Gureckis and Love’s model predicts that participants will 
extrapolate the gradient of the payoff function, perform-
ing actions that guide them “upward” to the optimal state. 
In other words, participants generalize from the local sig-
nal of rising payoffs, leading them to make repeated LT-I 
choices until they reach the global maximum of the LT-I 
payoff function. This local strategy is effective because the 
optimal strategy in the task requires repeated LT-I choice.

through experience. Prior research using similar payoff 
structures suggests that under certain task environment 
conditions, people eventually learn the optimal reward-
maximizing response strategy (Herrnstein, Loewenstein, 
Prelec, & Vaughn, 1993; Tunney & Shanks, 2002). One 
question of interest in the literature concerns the sort of 
information that facilitates globally optimal responding in 
these tasks (Neth, Sims, & Gray, 2006).

Gureckis and Love (in press) pointed out that one chal-
lenge participants face in this class of tasks is forming an 
appropriate representation of the state of the task envi-
ronment. Each time a participant makes a selection, the 
environment state can change so that the payoff for the 
chosen option changes on the next trial. Thus, it is not 
transparent to participants whether the task environment 
itself is changing or whether choice payoffs are simply 
fluctuating over time. In the standard version of this task 
(e.g., Herrnstein et al., 1993, Experiment 3; Tunney & 
Shanks, 2002, Experiment 2), it is difficult to recognize 
these changes without information that specifies the cur-
rent state of the environment. One may view the problem 
as one of perceptual aliasing, wherein the decision-maker 
confounds environment states that it must distinguish in 
order to solve the task (Whitehead & Ballard, 1991).

Perceptual aliasing is a common problem that arises in 
spatial navigation tasks in which observations often fail 
to differentiate between multiple locations that an agent 
may actually occupy (Stankiewicz, Legge, Mansfield, & 
Schlicht, 2006). Historically, this literature has empha-
sized the importance of landmarks, defined as salient 
contextual cues associated with particular states or loca-
tions in the environment that serve as anchors or reference 
points to guide decision making and planning (O’Keefe 
& Nadel, 1978). There is evidence that landmarks play a 
prominent role in navigation performance for both humans 
and animals in spatial tasks (Cartwright & Collett, 1982; 
Siegel & White, 1975), but little research has been done to 
examine the role of landmarks in other types of sequential 
decision spaces. In the class of dynamic decision- making 
tasks considered in this article, the states are more ab-
stract, representing the individual’s recent choice history, 
as opposed to concrete spatial locations within the envi-
ronment. Landmark-type information may bear influence 
on decision-making performance in these tasks.

Gureckis and Love (in press) found that an accurate rep-
resentation of the task environment state facilitated optimal 
decision-making behavior, consistent with reinforcement-
 learning (RL) models (Sutton & Barto, 1998). Key to their 
behavior manipulations was the presentation of percep-
tual state cues (akin to visually salient landmarks) that 
indicated the current task state. In Gureckis and Love’s 
study, participants saw an array of 11 lights arranged hori-
zontally across the screen, only 1 of which was active. 
The location of the active light perfectly correlated with 
the current state of the task environment (i.e., the number 
of LT-I responses made over the last 10 trials). This ma-
nipulation is similar to that employed by Herrnstein et al. 
(1993, Experiment 1), which showed a marginally benefi-
cial effect on participants’ ability to maximize long-term 
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generalization view predicts that participants will perform 
less optimally with cues than without cues in the far apart 
payoff structure.

METhOD

Participants
A total of 104 undergraduates at the University of Texas at Austin 

participated in this experiment for course credit plus a small cash 
bonus tied to performance on the task. The participants were ran-
domly assigned to one of four conditions that varied in both the 
payoff structure (close together or far apart) and the presence or ab-
sence of state cues (cues vs. no cues). Twenty-six participants were 
assigned to each condition.

Materials
The experimental stimuli and instructions were displayed on 17-in. 

monitors. The participants read a cover story about extracting oxy-
gen from the Mars atmosphere and were told that their goal was to 
maximize overall long-term extraction by pressing one of two buttons 
on each trial, corresponding to two systems for oxygen extraction. 
The participants were informed that the specific oxygen-extracting 
properties of the two systems were unknown but that they should 
learn the best strategy. It was also explained that each decision could 
temporarily change the quality of the atmosphere.

Procedure
The experiment consisted of 500 trials. At the start of the experi-

ment, the number of LT-I responses over the last 10 trials (i.e., the 
state) was initialized to five. On each trial, the participants were 
presented with a control panel with two buttons labeled “Robot 1” 
and “Robot 2,” shown in Figure 2. Using the mouse, the participants 
clicked one of the buttons to indicate their choice, after which a 
chirping sound was played and the payoff was presented visually, 
using an 11 3 11 grid of blue dots. The number of visible dots in-
dicated the number of oxygen points extracted on that trial, also 
shown in Figure 2.

As was described above, in the close together payoff structure 
condition (Figure 1A), the number of oxygen points generated for 
selections of the LT-I option was 30 1 50 * (h/10), whereas the 
payoff for selecting the LT-D option was 40 1 50 * (h/10), where 
h in both equations represents the number of LT-I choices made by 
the participant over the last 10 trials. In contrast, in the far apart re-
ward curves shown in Figure 1B, the payoff for LT-I was defined by 
5 1 50 * (h/10) and the payoff for LT-D was 65 1 50 * (h/10).

The fixed points and generalization accounts can be 
dissociated. If the payoff curves are spaced farther apart, 
so that LT-I is no longer a globally optimal choice (as 
shown in Figure 1B), participants following the payoff 
gradient should actually do worse overall when provided 
with cues, because chasing the rising rewards is not the 
globally maximizing strategy.

The experiment reported here elucidates the candidate 
mechanisms—specifically, the fixed points view and the 
generalization view assumed by Gureckis and Love (in 
press)—responsible for human choice patterns in dynamic 
decision-making environments. Using a task environment 
similar to that in Gureckis and Love, we manipulated 
the properties of the payoff curves to create situations in 
which linear extrapolation from one state to the next ei-
ther did or did not lead participants to make consistently 
optimal choices. To foreshadow, our results suggest that 
participants indeed utilize payoff estimates obtained from 
generalization, a strategy that can lead to suboptimal per-
formance, depending on the reward structure.

In the present experiment, we examined how par-
ticipants use consistent state information to guide their 
choices. The experimental procedure was similar to the 
one used by Gureckis and Love (in press; Experiment 2). 
Payoff curves varied between participants. In one case, the 
curves for the LT-D and LT-I responses were placed close 
together so that the optimal strategy was to always choose 
the LT-I option (see Figure 1A). In the other, we spaced the 
curves far apart (without changing their slope), so that the 
optimal strategy was to actually choose the LT-D option 
(Figure 1B). By comparing the choice allocations of par-
ticipants for these two payoff structures with and without 
these landmark-like cues, we can determine whether gen-
eralization about payoff function gradients is indeed the 
mechanism by which these cues drive choice behavior.

If consistent state cues assist participants with system-
atic exploration of the decision space according to the 
fixed points view, state cues should lead participants to 
make repeated LT-I choices in the close together payoff 
structure (Figure 1A) and repeated LT-D choices in the far 
apart payoff structure (Figure 1B). In other words, since 
comparison of payoffs at fixed points reveals the optimal 
long-term response strategy to participants, the fixed 
points hypothesis predicts that participants with state cues 
will make significantly more optimal decisions than will 
those without state cues in both payoff structures.

On the other hand, if choices are driven by generaliza-
tion from unidirectional cue movement and payoff gradi-
ents, then “following” the positive slope of the LT-I curve 
should lead participants with state cues to make repeated 
LT-I choices in both payoff structures. That strategy is op-
timal for the close together payoff structure. In contrast, 
this strategy is suboptimal in the far apart payoff structure, 
where the minimum payoff of the LT-D choice exceeds 
the maximum of the LT-I choice. According to this view, 
participants with state cues should make a greater propor-
tion of LT-I choices in both payoff structure conditions, 
because the state information will promote generalization/ 
extrapolation about payoff curve slopes. Crucially, the 

Figure 2. Screenshot of “Farming on Mars” experiment in the 
cues condition with an example immediate trial payoff.
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In addition, we evaluated the extent to which state 
cues facilitated systematic exploration of the state space. 
Whereas the fixed points view predicts that participants 
with state cues should visit both fixed points (namely, 
the minimum and maximum of the LT-D and LT-I pay-
off curves, respectively) and remain there long enough to 
observe that the payoffs stop changing, the generalization 
view predicts that state cues will simply drive participants 
toward the maximum of the LT-I curve. As a proxy, we 
considered a fixed point as visited if a participant had 
spent at least 10 consecutive trials in that state. The pro-
portion of participants in each condition who visited both 

The participants in the cues condition saw a display that included 
a row of 11 dots, 1 for each possible state, above the two choice but-
tons, as shown in Figure 2. The position of the active dot indicated 
the current state h, ranging from 0 to 10 (akin to its position on the 
horizontal axis in Figures 1A and 1B). Each time the participant 
made a choice, the position of the active dot was updated to reflect 
the state of the task environment. The presence and function of these 
state cues were not mentioned in the task instructions. This row of 
dots was not present for the participants in the no-cues condition.

The mapping of response buttons to choices and the direction of 
cue movement (leftward or rightward as h increased) were counter-
balanced across participants. At the end of the trials, the participants 
were paid a cash bonus commensurate with their cumulative payoffs.

RESuLTS

The main dependent measure was the proportion of 
trials for which participants made LT-I responses, de-
picted in Figure 3A. In short, our results favor Gureckis 
and Love’s (in press) generalization view over the fixed 
points view. A 2 (payoff structure) 3 2 (presence of state 
cues) ANOVA revealed a main effect of cue presence 
[F(1,102) 5 20.03, p , .001], a main effect of distance 
between payoff curves [F(1,102) 5 12.53, p , .001], 
and a significant interaction [F(1,102) 5 3.97, p , .05]. 
Among the close together payoff curve groups, the par-
ticipants with state cues (M 5 .72, SD 5 .054) made 
significantly more optimal LT-I responses than did the 
participants without state cues (M 5 .57, SD 5 .043) 
[t(50) 5 2.12, p , .05]. In the far apart payoff curve con-
dition, those with state cues (M 5 .62, SD 5 .057) made 
significantly more suboptimal LT-I responses than did 
those without state cues (M 5 .31, SD 5 .051) [t(50) 5 
4.11, p , .01]. Among participants with state cues, the 
participants’ response proportions were not significantly 
different between the far apart and close together payoff 
curve conditions [t(50) 5 1.25, p 5 .216].

Optimality of responding was measured by calculating 
the proportion of each participant’s cumulative payoff to 
the maximum possible cumulative payoff under an optimal 
pure response strategy (strictly LT-I responses in the close 
together condition and strictly LT-D responses in the far 
apart condition). These average cumulative payoff propor-
tions are depicted in Figure 3B. A 2 (distance between re-
ward curves) 3 2 (presence of state cues) ANOVA on this 
measure revealed a significant interaction [F(1,102) 5 
11.69, p , .001] and a main effect of distance between 
reward curves [F(1,102) 5 33.39, p , .001], with no sig-
nificant main effect of state cue presence. Within the close 
together payoff curve condition, the participants with state 
cues (M 5 .852, SD 5 .027) garnered significantly more 
total reward than did the participants without state cues 
(M 5 .779 SD 5 .021) [t(50) 5 2.14, p , .05]. Among 
the participants in the far apart payoff curve condition, the 
participants with state cues (M 5 .895, SD 5 .010) earned 
significantly less than did the participants without state 
cues (M 5 .947, SD 5 .008) [t(50) 5 24.102, p , .001]. 
As predicted by the generalization view, the participants 
in the far apart payoff structure responded less optimally 
with cues than without cues.
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Figure 3. Overall results of Experiment 1. (A) Average overall 
proportion of long-term increasing (LT-I) choices as a function of 
condition. (B) Average proportion of cumulative payoff to maxi-
mum possible payoffs as a function of condition. Error bars are 
standard errors of the means.
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A number of previous studies in which the impact of 
additional information (i.e., beyond immediate choice 
payoffs) on choice behavior in dynamic decision-making 
environments has been examined deserve mention. Warry, 
Remington, and Sonuga-Barke (1999) found that provid-
ing the expected payoffs of the choices on the next trial 
facilitated optimal choice behavior when the difference 
in immediate payoffs between payoff curves was large. In 
contrast, Neth et al. (2006) found that even prospective 
feedback reflecting participants’ expected total earnings—
emphasizing the global suboptimality of their choices—
did not alter participants’ ability to make globally optimal 
choices. Both of these manipulations were attempts to 
influence globally optimal responding, using global pat-
terns of feedback. In contrast, our results show that local 
information (i.e., information about the current state) can 
have a strong impact on behavior. Our study shares some 
similarities with Herrnstein et al. (1993), which reported 
that a simple cue reflecting the current state of the task en-
vironment improved participants’ ability to make payoff-
maximizing responses. The present work extended these 
investigations, elucidating the mechanisms by which peo-
ple, for better of for worse, utilize local state information 
to infer global solutions; specifically, we found that local 
state information facilitated generalization about payoff 
gradients. Surprisingly and counterintuitively, the efforts 
documented above were not able to elicit global changes 
in behavior, even with global feedback.

It is well documented that humans make use of land-
mark information to guide them through spatial decision 
spaces (e.g., Siegel & White, 1975). However, the pres-
ent study evaluated the role of these cues in other, more 
abstract decision spaces. We found that humans use the 
structure of such cues to make inferences about unseen, 
future rewards, which can sometimes lead to suboptimal 
performance. One can easily conceive of a more complex 
decision environment in which the optimal response strat-
egy is more complex than the “pure” strategy (i.e., repeat-
edly select the LT-I option) tested here. In these situations, 
adopting a strategy of following rising rewards— especially 
in the face of consistent state information—may be a kind 
of heuristic.
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