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Abstract

A long-standing debate in decision making has been whether
people rely on very little information for making choices, or
weigh and add all available information. We propose a new
method to determine whether a non-compensatory (Take-The-
Best) or compensatory strategy (Logistic Regression) is more
psychologically plausible: by looking at peoples active learn-
ing queries. This method goes beyond traditional model selec-
tion techniques as it reveals the information people choose to
learn early on, which subsequently drives their decisions. We
developed active learning algorithms for both Take-The-Best
and Logistic Regression, and designed an active learning ex-
periment to distinguish between these models. By letting both
models and humans actively learn, we could compare their
queries, and found that people follow a rank-based learning
strategy in non-compensatory environments, but prefer more
certainty-based queries in compensatory environments. We
argue that active learning studies provide a promising new
methodology to distinguish among decision models.
Keywords: Decision Making, Heuristics, Active Learning,
Take-The-Best

Introduction

How do we decide between two alternatives? This question
is as fundamental to research in judgment and decision mak-
ing as its answer is controversial (Todd & Gigerenzer, 2000).
Whereas some cognitive scientists believe that people only
require a few pieces of information to come up with good
decisions (Marewski et al., 2010), others have described hu-
mans as integrating all the evidence for both alternatives to
make a decision (Arkes et al., 1986) . One of the core ques-
tions in this debate concerns the way in which people look up
and integrate information.
Imagine you have to decide between two restaurants to go for
lunch. Both restaurants differ on several binary cues (for ex-
ample, one is in walkable distance, the other is not). One
decision strategy you could apply is to weigh the cues by
their importance and add them up; this is called a weighted
additive linear model (Payne et al., 1993, WADD). For each
restaurant, WADD would compute a weighted sum, and the
restaurant with the larger sum is chosen. Alternatively, peo-
ple might prefer a simpler strategy and base their decision
only on one cue. This is what the Take-The-Best heuris-
tic (Gigerenzer & Goldstein, 1996, TTB) does: it creates a
ranking order of the cues according to their validities, and
chooses the restaurant that is preferred by the highest ranked
cue. If that cue does not discriminate between restaurants,
then the second cue is considered, and so forth. WADD is a
compensatory strategy, whereas TTB is a non-compensatory
strategy. Compensatory strategies have the property that a
cue can be compensated for by combinations of subsequent
cues and regression is a typical examples thereof. In contrast,
the non-compensatory Take-The-Best heuristic ignores most

cues to make decisions, as the most powerful cue Ck can out-
weigh any combination of the subsequent cues Ck+1, . . . ,Ck+n
(Gigerenzer & Goldstein, 1999). Both strategies are known
to perform best in matching environments that have the same
properties, i.e., WADD performs best in a compensatory envi-
ronment and TTB in a non-compensatory environment (Mar-
tignon & Hoffrage, 1999).

Traditional model testing approaches

The dispute over the two model classes is about their psycho-
logical plausibility as models for human decision making. A
repeated argument has been that non-compensatory strategies
are simpler and require less computational capacity and are
therefore more plausible (Todd & Gigerenzer, 2000). Yet,
the most common method of pitting compensatory and
non-compenastory strategies against each other have been
statistical simulations, showing that one outperforms the
other in artificial environments. For example, multiple
studies show that the simpler TTB can outperform the
compensatory linear regression (Czerlinski et al., 1999) in
various datasets. In contrast, other studies show that there is
no strong reason to prefer TTB over other cognitive models
as it does not perform noticeably better (Chater et al., 2003;
Schulz et al., 2014).
All of these studies argue about the predictive accuracy of
cognitive models; nevertheless - just because one class of
models can beat another with better predictions, it does not
follow that this class is necessarily a better psychological
representation of what people actually do. Although whole
research paradigms are dedicated to solving the question
about whether people rely on simpler non-compensatory
heuristics or complex integrative mechanisms, different
methodologies currently in use to answer this question are
scarce and homogeneous. Another method has been probing
whether participants look up additional information (Newell
et al., 2003). This is only a limited approach to the problem
at hand since it is only ever possible to check for k + 1
look-ups given Ck cues presented so far and it has been
argued that people look up additional information but do not
use it (Marewski & Mehlhorn, 2011).

We propose active learning as a novel method to solve the
dilemma of discriminating among compensatory and non-
compensatory strategies as psychologically plausible deci-
sion models. What most of the previous studies have in com-
mon is that they study peoples decision making in static, pas-
sive and highly controlled experiments. In order to answer the
crucial question about what information people hold in mem-
ory and how they look up knowledge when making decisions,



we believe one has to look at an earlier stage in the process
–at the stage of learning the relevant information in the first
place. We argue that stronger evidence for peoples use of ei-
ther TTB or a WADD strategy comes from the way people
actively acquire information, i.e. cue weights and cue orders,
in the respective environments. If a cognitive agent has evolu-
tionarily developed to prefer a certain class of models as her
means to learn a cognitive representation in a particular en-
vironment, then the way she sequentially selects information
should (at least partially) reflect this representation. For ex-
ample, if an agent has come to apply TTB, then -intuitively-
she should try to find the most important cue first as this will
decrease her uncertainty maximally, and so forth. Using this
way of re-creating the structure of a cognitive mechanism,
it becomes possible to set up active learning algorithms for
many different cognitive models over time.

Active Learning: Do people learn with respect to

cue weights or cue orders?

The main idea of psychological theories of active learning
is to describe a learning agent as optimally designing exper-
iments (Chaloner & Larntz, 1989). That is, given that one
has to find the true hypothesis out of many potential explana-
tions as fast as possible, an agent assigns prior probabilities
to each hypothesis according to some objective criterion such
as the available frequency data or according to the subjec-
tively judged plausibility of each hypothesis. Each possible
outcome of any possible experiment can thus be considered,
and a “preposterior analysis” (Raiffa & Schlaifer, 1961) of
the ways in which each possible experimental outcome could
modify beliefs about the hypothesis, can be conducted. The
proposals for optimal experimental design (OED) work in
an information gain-driven fashion and maximize an infor-
mational utility, which is typically a measure of how much
beliefs have changed or how large the uncertainty reduction
is. There has been a great deal of interest in both norma-
tive and descriptive questions surrounding human informa-
tion acquisition. In a probabilistic framework, many OED
models have been used to model human behavior on cogni-
tive tasks such as feature learning (Griffiths & Austerweil,
2009), reward-specific information search (Meder & Nelson,
2012), and to assess the trade-off between exploration and ex-
ploitation (Knox et al., 2011).
In this current study, we want to assess to what extent dif-
ferent OED models match participants’ behavior in an ac-
tive learning experiment, but with the goal of distinguishing
among decision models. We specifically designed the per-
fect environments for both model classes, i.e., a fully non-
compensatory environment for TTB, and a fully compen-
satory environment for logistic regression (WADD strategy),
and several environments in between these extremes. As there
are no active learning counterparts to the two decision mod-
els yet, we focus on qualitative predictions. Consequently, we
developed two entropy-minimizing learning algorithms, one
for a cue-ranking strategy and one for a cue-weighing strat-
egy. Next, we compare the models’ a priori search queries

to the queries made by participants in an active learning task
with pairwise comparisons. By letting people freely choose
among pairwise comparisons, we can investigate whether
people pick information such that they learn about cue or-
ders, or instead learn cue weights directly as proposed by the
active WADD strategy.

Active learning algorithms

Both active learning algorithms essentially rely on a one-step
ahead greedy entropy minimization of their posterior esti-
mates. Greedy algorithms always choose as the next observa-
tion that which currently promises to reduce the uncertainty
about the learning model maximally.

Take-The-Best

The active learning algorithm for the Take-The-Best heuris-
tic is based on a entropy reduction method that considers a
distribution over all possible cue orders. Therefore, we gen-
erated all possible cue orders given the features, including
those where some cues are unimportant or negatively corre-
lated with the outcome1. Afterwards, we put a uniform prior
over the cue orders via pseudo counts. Pseudo counts here
can be seen as urns, where the number of balls represents
the current probability of a given order. The way we assess
(Shannon’s) entropy is by standardizing the balls per cue or-
der via the sum of all balls. Using the resulting values as a
probability density distribution, our algorithm predicts new
cases by generating a TTB output for each of the cue orders
and then estimating the overall mean, weighted by every cue
order’s current probability. Using this approach, we can eas-
ily estimate the probability for a new test item to be a win or
a loss and calculate the expected reduction in entropy over all
cues given a new training item. Entropy can be reduced via
some cue orders generating correct predictions and thereby
getting more counts on their pseudocounts. This is possible
as our model updates all cue orders that made correct pred-
citions at time point t by adding one more ball to their urns
at time point t + 1. The addition of balls will –over time–
put more and more probability mass on the true cue order and
thereby gradually reduce uncertainty. The used distribution
over all possible cue orders can also be seen as a distribu-
tion over the whole hypothesis space. The way our algorithm
then works is by the attempt to drive down the uncertainty
of this hypothesis space as quickly as possible, an approach
that is close to optimal in a Bayesian active learning context
(Golovin et al., 2010)2.

Logistic Regression

Logistic regression is set up as a competing compensatory
model to the non-compensatory TTB model. We use a
Bayesian version of logistic regression based on a random
walk Metropolis MCMC algorithm. Again, the way the algo-
rithm works is by maximizing the expected information gain

1This results in a very complex hypothesis space that increases
exponentially with the number of features.

2A technical description can be found in the appendix online.



for each trial. However, as a logistic regression does not learn
cue orders, the expected information gain is approximated by
the combined variance of all weights, the b-estimates. This
means that a Bayesian logistic regression is fitted to all past
observations and the current variance for all bs is calculated
and then compared to the variances that could be expected
from a newly fit model given a new input. This uncertainty
sampling-based algorithm provides us with a compensatory
active learning algorithm for the scenarios at hand. Instead of
trying to drive down the hypothesis space as quickly as possi-
ble, this algorithm tries to learn about the weights as precisely
as possible in order to make good compensatory judgments.

Degrees of Compensatoriness

We are interested in the performance of the two proposed ac-
tive learning models in environments with different “compen-
satoriness”. Note that a non-compensatory environment can
be defined as a WADD environment in which the b weights
are exponentially decreasing. In order to create different de-
grees of “compensatoriness”, we make use of a mathematical
trick that allows us to rely on a single parameter to smoothly
vary from compensatory to non-compensatory environments
through a “stick breaking process”. The generation would be
of a set of 4 weights b4

k=1 through:

b0
k ⇠ Beta(1,q) (1)

Define {b0
k}4

k=1 as: (2)

bk = b0
k

k�1

’
i=1

(1�b0
i) (3)

As the expectation of the Beta-distribution is defined as a
a+q ,

a perfect Take-The-Best environment corresponds to setting
q to 1 or greater as this would lead to a perfectly non-
compensatory weight structure. Given the strict boarder of
q = 1 that separates compensatory from non-compensatory
strategies, we will use q = [ 0,0.5,1,2,•] for all the upcom-
ing scenarios as this generates degrees of compensatoriness
starting from uniform weights (q = 0) all the way to an envi-
ronment where only one cue matters (q = •). Figure 1 shows
the weighting structures that result from simulating different
levels of compensatoriness for four cues by increasing q.

Experiment

The experiment was designed to find out whether people
are more likely to follow a rank-based or a weight based
active learning algorithm. The outcome has strong impli-
cations for either decision mechanism as plausible decision
strategies. We hypothesized that people are sensitive to the
structure of the environment (the degree of compensatori-
ness) in their choice of learning algorithms. We assigned
people randomly to one of the five above-mentioned com-
pensatoriness conditions. We expected participants in the
more non-compensatory environments to be better matched
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Figure 1: Compensatoriness for five different levels of q. The
x-axis represents four different cues and the y-axis displays
the weight magnitudes.

by the active Take-The-Best algorithm, while logistic regres-
sion would better match their choices in the compensatory
environments.

Participants

Two hundred and sixty-four (N = 264) participants (M = 35.4
years) were recruited via Amazon Mechanical Turk to take
part in the “Alien Olympics” study. Participants were paid
$0.50 for participation plus an additional bonus between $0
and $0.5 depending on their performance.

Materials and Stimuli

On each trial, participants had to choose a pair of Aliens
to compete against each other, in order to learn about their
strengths. The Aliens varied on four different features, which
are displayed in Figure 2. The features were designed to be
helpful in fights, e.g., wings enabled an Alien to fly which
helps in attacking enemies, while camouflage is useful for
defense. The features were explained to participants at the
start and they were told that the different characteristics might
not all be of equal importance for an Alien’s strength in a
fight. As there are four features, we generated all possi-
ble feature combinations which results in 16 different Alien
types. On each trial, participants were presented with four
random Aliens on the screen, and had to choose two of these
to compete against each other. After selecting a pair, they
received feedback about which Alien had won the compe-
tition. They were also told that sometimes a weaker Alien
could win against a stronger competitor as in any sport, which
reflects the probabilistic generation of the actual outcomes.
The underlying weights of the four features that people could
learn depended on the compensatoriness condition a partici-
pant was in. Importantly, we emphasized that people should



pick their Aliens wisely by selecting informative comparisons
out of the presented Aliens, as the goal was to learn how the
different features influenced an Aliens chances to win. Partic-
ipants were informed that they would need this feature knowl-
edge later in the experiment for an assessment task. The ac-
tual outcomes observed in feedback were generated by using
the weights from the respective compensatoriness conditions
(standardized to always add up to 10) and applying logistic
regression in order to determine an Alien’s strength, or likeli-
hood of winning against another Alien.

Procedure

The experiment was divided into a learning phase and a test
phase. The learning phase consisted of participants actively
choosing Alien pairs to fight against each other on 30 trials.
The test phase was designed to assess what people learned
and was structured as follows: On each trial, participants
were presented with only 2 different Aliens that were again
randomly drawn from the Alien database. We told partici-
pants that these Aliens were the candidates for their Olympic
Team, and it was their task to choose the Alien they consid-
ered to be stronger based on what they had learned about the
characteristics. This assessment phase consisted of 10 binary
choices. Participants were reminded that a bonus payment
would depend on their performance in this test phase.

Figure 2: Aliens varied on 4 different features (A-D): Anten-
nae, Wings, Diamonds, and Camouflage. E: Alien without
features, F: Alien with all features.

Results

Participants’ performance at identifying the stronger Aliens
during the test stage was highly above chance; the aver-
age percentage of correct choices made was 74% (t(263) =
27.44, p < 0.001) with a range of (30%,97%). Performance
varied as a function of the compensatoriness condition that
participants were in. Figure 3 represents the average score as
a function of compensatoriness: as the environmental struc-
ture gets more non-compensatory (i.e. more weight on just
a few cues), the average performance drops. This intuitively
makes sense as there is less information to be learned when
a cue dominates all others, which makes draws more likely
and informative comparisons less likely. However, peak per-
formance was observed for an environment not completely
compensatory (q = 0), but slightly compensatory.
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Figure 3: Average test performance across participants by
compensatoriness conditions.

Next, we demonstrate the model fits of the regular Take-
The-Best heuristic and Logistic Regression to participants’
choices at test. These were generated by fitting both models
to the set of Aliens participants had selected, and using the
fitted models to predict choices in the test set. Figure 4
presents the model fits as a function of the compensatoriness.
It can be seen that Take-The-Best was better at predicting
people’s behavior in the highly non-compensatory condi-
tions, whereas in the more compensatory conditions no
significant difference between the models could be found.
This demonstrates again that purely behavioral model fits
are limited in their ability to distinguish between common
decision models, even in a prediction-based test. Therefore,
we focus on the active learning results next.

Active Learning Results We categorized all possible pair-
wise comparisons people could choose on each trial into the
8 possible subtypes that can be seen on the x-axis of Figure 5.
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Figure 4: Behavioral model fits of the Take-the-Best Heuristic
and Logistic Regression. The y-axis represents the percent-
age of correct predictions with respect to people’s choices at
test.

WDDD for example signifies a comparison of two Aliens
with 3 similar features (D for draw), where one of the Aliens
had one more feature than the other (W for Win). A WLDD
comparison compares two Aliens with an equal direction of
two features but differing in two others (W for Win, L for
Loss), i.e., this might test whether the feature Wings are more
important than Camouflage for the outcome. People rarely
chose comparisons where it is unclear what feature was re-
sponsible for an outcome, e.g., a comparison of an Alien with
3 or 4 more features than its competitor (WWWD, WWWW).
Instead, the most common comparisons were simpler and
controlled, such as the WLDD, which test for the relative ef-
fect of one feature in comparison to another, i.e. searching for
orders among features. Although participants were told in the
instructions that all features are helpful in fights, the most fre-
quent comparison was the WDDD query, assessing whether
a feature improves the outcome. The fact that people pre-
ferred these simple queries could reflect a preference to per-
form confirmatory tests (Markant & Gureckis, 2012). Finally,
we compared queries selected by the two learning algorithms
against queries chosen by participants. We let both the TTB
and Logistic Regression algorithms learn in the same com-
pensatory and non-compensatory environment as the partic-
ipants, by creating as many simulated participant profiles as
there were participants in each compensatoriness condition.
Then, we let the models learn over time. As a result, the fre-
quencies of selections executed at each run by the algorithms
were matched with those by humans and an overall correla-
tion between the frequencies was calculated. Figure 6 shows
in the lower panel how well the selection frequency predicted,
and in the upper panel how well the selection frequencies by
the models correlated with participants’ frequencies.
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Figure 5: The 8 subtypes of active learning choices that par-
ticipants made and the a priori model choices.
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Figure 6: Frequency of queries by active learning algorithms
matched to participants’ queries. Lower panel: y-axis shows
the variance explained. Upper panel: y-axis displays correla-
tions.

These results demonstrate that participants in different con-



ditions differed in terms of which active learning algorithm
best described their queries (lower panel, Figure 6). With
an increase in non-compensatoriness, the Active Take-The-
Best model explained more variance and Logistic Regression
less, in line with our prediction. This is also reflected in the
number of noncompensatory tests performed (e.g., WWLD),
which increased in more non-compensatory conditions. The
underlying correlations between the models’ and peoples’ se-
lections (upper panel, Figure 6) reveal a similar picture for the
TTB learning algorithm - with more non-compensatoriness,
the TTB algorithm’s queries better matched what queries peo-
ple were choosing. However, as the environment becomes
more and more compensatory, participants tend to select ob-
servations that do not reduce uncertainty maximally with re-
spect to the weight-based logistic regression algorithm, and
instead select comparisons that are more certain which could
reflect more confirmatory hypothesis testing. This finding
also remained the same when we used predictive uncertainty
instead of information gain, showing that -as environments
get more compensatory- participants tend to select queries
where they already know the outcome better. Overall, the
Take-The-Best active learning algorithm which minimizes
uncertainty with respect to cue orders was a better descrip-
tion of how people learn in our experiment.

Discussion and Conclusion

Results demonstrated that–at least in more non-compensatory
environments– people learn more like an order-based strat-
egy, which lends support to the Take-The-Best heuristic
as a plausible decision mechanism in these environments.
This finding represents more processing-based evidence than
the usual predictive accuracy findings or descriptive model
fits. Furthermore, people do seem to be adaptive in their
choice of active learning strategies to the structure of the
environment: the more non-compensatory the environment
was, the more choices people made in accordance with the
TTB active algorithm. People were not well-described by
the weight-based logistic regression algorithm, and for very
compensatory environments they even seemed to pick the
opposite choices to the uncertainty reducing algorithm, i.e.,
they chose more certain queries. This could in turn be due
to the fact that –when all cues are equally important– people
notice they cannot learn any cue rank orders, and so they
might apply another strategy that is compensatory but not
captured by logistic regression, for example a tallying strat-
egy. This is a question we plan to address in a follow up study.

The current experiment demonstrates that active learning
experiments can be used to distinguish among prominent de-
cision strategies. Our results revealed a more informative pic-
ture than the traditional passive model fitting procedures. We
believe that the application of active learning algorithms as
a means to distinguish among decision algorithms is a novel
and promising approach. Creating active versions of classic
decision models and testing them in related experiments will

shed more light onto how people actually learn in different
tasks. We hope to utilize this new approach for more process-
based comparisons between different learning and decision
making models in the near future.
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