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Learning is not decline
The mental lexicon as a window  
into cognition across the lifespan

Michael Ramscar,1 Peter Hendrix,1 Bradley Love2  
and Harald Baayen1

1 Eberhard Karls Universität Tübingen / 2 University College London

As otherwise healthy adults age, their performance on cognitive tests tends to 
decline. This change is traditionally taken as evidence that cognitive processing 
is subject to significant declines in healthy aging. We examine this claim, show-
ing current theories over-estimate the evidence in support of it, and demon-
strating that when properly evaluated, the empirical record often indicates that 
the opposite is true.
	 To explain the disparity between the evidence and current theories, we 
show how the models of learning assumed in aging research are incapable of 
capturing even the most basic of empirical facts of “associative” learning, and 
lend themselves to spurious discoveries of “cognitive decline.” Once a more ac-
curate model of learning is introduced, we demonstrate that far from declining, 
the accuracy of older adults lexical processing appears to improve continuously 
across the lifespan. We further identify other measures on which performance 
does not decline with age, and show how these different patterns of perfor-
mance fit within an overall framework of learning.
	 Finally, we consider the implications of our demonstrations of continuous 
and consistent learning performance throughout adulthood for our under-
standing of the changes in underlying brain morphology that occur during the 
course of cognitive development across the lifespan.

Learning is not Decline: The Mental Lexicon as a Window  
into Cognition across the Lifespan 

As otherwise healthy adults age, their performance on cognitive tests tends to 
change. These performance changes have traditionally been taken as showing that 
the functionality of underlying cognitive processes is subject to significant declines 
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even in healthy aging (Deary et al., 2009; Salthouse, 2009, 2011; Singh-Manoux et 
al., 2012). However, in a recent article Ramscar et al. (2014) pointed out that it is 
impossible to determine whether cognitive processes actually decline across the 
lifespan in the absence of models of processing, and without an understanding of 
the way that learning changes the processing demands imposed on the cognitive 
system. In a series of case studies, Ramscar et al. showed that, over a range of cog-
nitive tasks, once a proper measure of processing load is taken into account, the 
pattern of performance change typically seen across the lifespan can be accounted 
for without having to invoke “declines” in otherwise undefined “processes.” Once 
learning processes were formally defined, the performance of older and younger 
adults on cognitive tests could be more straightforwardly modeled in terms of a 
set of relatively consistent capacities faced with processing loads of increasing size 
and complexity.

The central thesis put forward by Ramscar et al. is that the evidence for cogni-
tive decline in healthy minds is weak and that the methods used to argue that our 
cognitive abilities decline critically fail to account for the growing information 
processing loads that experience brings. Since this article was published, many 
researchers have questioned these claims (see e.g., Rabbitt, 2014; Carey, 2014; 
Brink, 2014). The message coming from these specialists on cognitive aging is 
that there is good evidence that the minds and brains of healthy adults do decline, 
and that these declines occur in ways that belie Ramscar et al.’s information pro-
cessing concerns.

In what follows, we examine these objections, and show that researchers mas-
sively over-estimate the extent to which the available empirical evidence actu-
ally supports claims to the effect that cognitive processes decline in the course 
of healthy aging. Indeed, we present evidence that, when properly evaluated, in 
many case the empirical record indicates that the opposite is true: 

First, we show how the models of learning that are tacitly accepted across the 
aging literature are not only simplistic, but that they ignore all of the progress that 
has been made in understanding learning over the past half century. We show that 
the models of learning assumed in aging research are incapable of capturing the 
most basic of established empirical facts relating to simple “associative” learning 
processes. 

Second, we show how this faulty model lends itself naturally to spurious dis-
coveries of “cognitive decline.” We demonstrate how, given the naïve assumptions 
about learning made by psychometricians, analyses of a large, normative Paired 
Associate Learning (PAL) data set appears to reveal that PAL performance in oth-
erwise healthy adults is subject to significant declines between 39 and 49 years 
of age. We show how this conclusion is unwarranted, revealing that once a more 
accurate model of learning is combined with a more faithful representation of 



© 2013. John Benjamins Publishing Company
All rights reserved

452	 Michael Ramscar et al.

lexical information, it would seem that far from declining, the accuracy of older 
adults’ representation of the lexicon improves continuously across the lifespan.

Third, we consider the confirmation bias that prevails throughout the aging 
literature: we suggest that researchers find “declines” because they expect to find 
them, and because their research programs are designed to confirm the “cognitive 
decline” hypothesis. We identify several measures on which performance does 
not decline with age, and show how more accurate modeling can make sense of 
these different patterns of performance within an overall framework of learning.

Finally, we consider the implications of our findings, and of our demonstra-
tions of continuous and consistent learning performance across the lifespan for 
our understanding of the changes in underlying brain morphology that occur 
during the course of cognitive development across the lifespan.

The Nature of Lexical Learning across the Lifespan

A central part of the argument put forward in Ramscar et al. (2014) is that lexical 
learning continues throughout the lifespan. This raises a question, where is the 
evidence of this continued learning? As Rabbitt (2014) puts it: 

Ramscar et al. insist that vocabulary tests cannot be appropriate measures be-
cause they are biased towards [sic] low frequency words and so do not accurately 
assess older people who know more rare words that are not tested. It is question-
able whether most older people actually do know more rare words than most 
young adults, but scores on vocabulary tests are not the only, or the best compar-
ison. … Perhaps Ramscar et al. elide this point because of their need to counter a 
quite different objection that old people generally have only equal or even lower 
scores on vocabulary tests than the young. 

Ramscar et al. (2004) show how some straightforward facts about sampling and 
the statistical nature of lexical distributions (Baayen, 2001) guarantee that vo-
cabulary tests will become increasingly less accurate as people get older. If we 
disregard vocabulary tests as a useful tool for assessing cognitive decline, we are 
left with Rabbitt’s suggestion that older people may not actually know more rare 
words than young people. Does this actually make sense? 

Consider life as a continuous process of sampling the world. In infancy, the 
part of the world sampled is highly restricted to the cot, the high-chair, and the 
family (Pereira, Smith, & Yu, 2014). During the school years, pupils are trained 
to absorb selected samples of the world at a rate far beyond that which individual 
experience would allow. In their twenties and thirties, speakers marry, and may 
have children of their own. They move to other places, travel more widely, and 
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experience an ever-increasing array of technological innovations. In their sixties, 
speakers may become grandparents, start a new hobby and become expert bridge 
players, or captains of industry. It seems likely that as their experiences of the 
world accumulate, speakers will need a more diverse and more specialized vo-
cabulary to communicate their experiences to other speakers. In other words, 
given how experience is sampled over the lifetime, it is extremely unlikely that the 
limited vocabulary acquired by the end of puberty would remain unchanged and 
sufficient for the remainder of life.

We can supplement this intuitive line of reasoning by an empirical fact. Fig-
ure 1 presents the accuracy of young (mean age 21.1 years) and old (mean age 
73.6 years) adults in a lexical decision task with 2284 words (Balota et al., 1999) 
as a function of these words’ (log-transformed) frequencies of occurrence in the 
CELEX lexical database (Baayen et al., 1995; see Table A1 in the Appendix for 
details of the corresponding statistical model). For the highest-frequency words, 
both groups perform with comparable accuracy. As frequency decreases, accura-
cy plummets for the young subjects to approximately chance performance. And 
while the old participants also make more errors on low frequency than high 
frequency words, they still outperform the young participants by a wide margin. 
For the lowest-frequency words, where the young subjects are at chance, the older 
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Figure 1.  Proportion correct responses in visual lexical decision for the young and old 
subjects in Balota et al. (1999), plotted as a function of log word frequency in a logistic 
linear mixed model. The old subjects notably outperform the young subjects on low 
frequency words. 
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subjects still get 80% of their responses correct. The markedly different accuracy 
levels of older adults as compared to the younger adults for the lowest-frequen-
cy words are completely incompatible with Rabbitt’s suggestion that the former 
would not know more rare words than the latter. 

Given that vocabulary tests clearly misrepresent what older speakers really 
know, this raises a question: to what extent are current interpretations of scores 
on other psychometric tests equally guilty of distorting the true extent of lexical 
knowledge in older adults? As we will now show, because learning in the lexicon 
involves more than simply adding new items to a list, current interpretations of 
scores for other psychometric tests are also guilty of underestimating older adults’ 
cognitive abilities. 

To demonstrate this point, we take as an example “Paired Associate Learning” 
(PAL), a common cognitive performance measure in which people are required 
to memorize associations between two words (e.g., dig-guilty, or lead-pencil). 
The test is popular as a clinical measure, and often used as a means for evaluate 
learning and memory processes in experimental settings. Further, in compari-
son with other memory measures, researchers consider that, “performance on 
PAL may be of greater prognostic relevance for day to day functioning where the 
same associative abilities are required” (desRosiers & Ivison, 1988). In a typical 
test, participants hear a list of cue (w1) and response (w2) words (e.g., dig-guilty, 
lead-pencil…) and are then required to produce w2 when given w1 as a cue. Fig-
ure 2 plots the performance of 200 30–39 year olds and 200 40–49 year olds, who 
provided normative data for forms 1 and 2 of the PAL subtest of Wechsler’s Mem-
ory Scale (WMS; desRosiers & Ivison, 1988). 

If we were simply to focus on the changes between the items in the per-
formance of the thirty and forty year-olds shown in Figure 2, then these data 
would appear to provide evidence that PAL learning capacities decline signifi-
cantly between ages 39 (M PAL Accuracy = 70%), and 49 (M Accuracy = 66%; 
t(39) = 4.793, p < 0.0001). This finding, though perhaps surprising, would seem 
to support other claims to the effect that age-related cognitive declines are clearly 
visible after adults reach their mid-forties (Singh-Manoux et al., 2012).

However, in addition to declining performance, these data also clearly show 
that PAL performance changes between the two groups in a systematic fashion: 
“hard” PAL items appear to become proportionally harder to learn over time. 
This suggests that the initial interpretation we suggested, that these data provide 
evidence of declining learning abilities in early middle-age, may be premature: 
All other things being equal, we might expect that, given the association rate in 
each test is consistent (participants hear each w1–w2 pair once, repeated across 
three list trials), then if we assume that PAL tests are a straightforward measure 
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of participants’ ability to learn associations, “declines” in this ability ought to be 
consistent across items.

However, empirically, it has been shown that association rates (the frequen-
cies at which items are encountered together) are insufficient to explain the sys-
tematic patterns of behavior associated with associative learning. In particular, 
two additional frequency factors have been shown to exert a significant influence 
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Figure 2.  Average by-item performance for adults aged 30-39 and aged 40–49 (50% 
females in each group), tested on forms 1 (Top Panel, N = 200) and 2 (Bottom Panel, 
N = 200) of the WMS-PAL subtest (desRosiers & Ivison, 1988). Performance changes 
systematically: on average, performance differences are greater for harder items than the 
easier items.
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on learning in associative tasks: cue background rates (Rescorla, 1968; Ramscar et 
al., 2013a; in the case of PAL, the frequency with which a cue word appears absent 
a response word), and blocking (the predictability of a response in the learning 
context based on prior learning, Kamin, 1969; Arnon & Ramscar, 2013, which in 
the case of PAL, is the predictability of the response word given the cue). 

Further, the skewed distribution of language means that the relative influ-
ence of the factors that either inhibit (blocking and background rates) or promote 
learning (association rates) are likely to change as learners sample more and more 
words over time. This is important, because the co-occurrence-rates participants 
are exposed to in training in a PAL learning study remain constant: a pair is heard, 
and participants have to learn to associate it. This means that unless the effects 
that sampling and prior learning can be expected to have on PAL learning are 
controlled for, it is impossible to know whether changes in PAL performance 
shown in Figure 2 result from increased experience or cognitive declines.

To illustrate this point, Figure 3 shows what happens when all these factors 
come into play during associative learning in a very simple model of a lexicon. 
It depicts a small sample lexicon containing the stock phrases American – Eagle 
and Obey – Rules, and the “novel” pairings Legal – Eagle and Obey – Eagle. The 
plot shows the outcome of learning simulated using Danks (2003) equations for 
the Rescorla-Wagner model (a simple model that still embodies sufficient sys-
tem complexity to account for the basic facts of associative learning; Rescorla &  
Wagner, 1972). As can be seen, as the frequencies of the stock phrases increase, 
the association weight between Obey and Eagle declines. This is despite the fact 
that the structure of the lexicon remains constant, as does the association rate of 
Obey – Eagle (at a frequency of 1; see the Appendix for full details, and the R code 
for this simulation).

Figure 3 illustrates the consequences of a basic fact about associative learning 
that has been known for around half a century: That the outcome of any single 
learning trial cannot be predicted by considering the association rate that a learn-
er is exposed to on a single trial in isolation (Rescorla & Wagner, 1972; Ramscar 
et al., 2010). This also explains why it is wrong to think that by-item declines in 
performance in PAL reveal declines in associative learning capacities: This faulty 
inference depends on the assumption that PAL performance is determined by 
association rates alone. This erroneous assumption, which characterized classical 
behaviorism — and which, disturbingly, still lies at the heart of many contempo-
rary researchers’ understanding of learning — has been rejected by all modern 
learning theories (see Rescorla, 1988, for discussion of both of these points).

To try to get a better estimate of the systematic role that the factors that have 
actually been shown to determine the outcome of associative learning are playing 
in this instance, we estimated values for three critical parameters (background, 
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blocking and association rates; Kruschke, 2003; Nelson, Dyrdal, & Goodmon, 
2005) that can be expected to influence the learning of PAL w1–ws word pairs 
(these parameters were: log transformed, w1 word frequencies, differences in 
word frequencies expressed as frequency(w2)/frequence(w1), taken for the peri-
od 1980–1990 from the Corpus of Historical American English, COHA, Davies, 
2012 and w1–w2 co-occurrence rates, taken from Google). When these were en-
tered into a linear regression in order to predict the relative performance of 30–39 
and 40–49 year olds tested in 1988 (plotted in Figure 2) for each word pair in the 
normative PAL data, they accounted for over 65% of the observed variance in 
performance (r = .82, F(4) = 19.385, p < 0.01). Also, as predicted, our estimated 
background and blocking rates were associated with lower scores, whereas associ-
ation rates were associated with higher scores (all, p < .01).

Once the parameters we estimated from the corpus data are entered into the 
picture, it would appear that most, if not all of the difference in PAL performance 
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Figure 3.  Cue strength for Obey to Eagle as a function of the frequency of two ‘stock 
phrases’ American – Eagle and Obey – Rules, in a small lexicon with the two stock phras-
es and two ‘novel’ pairings Legal – Eagle and Obey – Eagle. The frequency of the novel 
pairings is always 1. The plot shows how when learning is simulated using Danks (2003) 
equations for the Rescorla-Wagner (1972) model, the association weight between Obey 
and Eagle declines as the stock phrases’ frequencies increase, even though both the struc-
ture of the lexicon and the association rate of Obey – Eagle remain constant (at 1).
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seen between adults in their thirties and forties is due to learning. In particular, 
it appears that over time, learning hard PAL w1–w2 word pairs gets harder as lan-
guage experience increases. As Figure 3 helps illustrate, this is because as learners 
master the informative details of the lexicon, the learning of a nonsensical link 
between two unconnected words must increasingly compete with prior learning 
to the effect that this link is nonsensical. It is worth noting here that one reason for 

20–29

–1
.5

–1
.0

–0
.5

0.
0

0.
5

30–39 40–49
Age (in years)

E�
ec

t s
iz

e 
(s

lo
pe

)

50–59 60–69

Association
rate (Google)

Background
rate (F1)

Blocking (P2)

Figure 4.  Mixed-effects slope estimates for the three parameters that estimate learnabil-
ity constraints on the by-item PAL performance of the full set of 60–69, 50–59, 30–39 
and 20–29 year-old adults in the normative data set (desRosiers & Ivison, 1988). Larger 
slope values indicate a greater degree of alignment with the structure of the language. All 
predictor effects and interactions in the model are significant, and all slopes (except the 
slope for blocking (P2) for the youngest age group) are significantly different from 0  
(see Table 2 in the Appendix). There is no significant main effect of age in the model. 
This analysis shows how lifelong PAL performance patterns reveal an ever-growing 
understanding of the systematic structure of the English lexicon as adult age increases, 
rather than any decline in learning capacity.
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this is that the learning of these kinds of dissociations is an important part of dis-
crimination learning. Virtually all of the models of associative learning that have 
been developed in the past half-century actually implement discriminative learn-
ing principles, because it is these principles that actually appear to govern the 
processes that we still colloquially refer to as, “associative learning” (see Rescorla, 
1988; Ramscar et al., 2010). 

Our finding that many of the changes in PAL learning performance observed 
in early-middle-age are better attributed to learning than cognitive decline raises 
a further question: To what extent are the changes seen in PAL learning across 
the rest of the adult lifespan the product of the same, systematic learning factors? 

To begin to address this question, we analyzed the full set of normative PAL 
data collected by desRosiers & Ivison (1988). The data was collected from 1000 
adults, 50% of whom were men and 50% women. These were equally divided 
into the age groups 20–29, 30–39, 40–49, 50–59 and 60–69, and each participant 
completed either form 1 or form 2 of WMS PAL, such that each of data point 
represents the average score of 100 tests. The participants in desRosiers & Ivison’s 
study were patients who had been hospitalized for non-neuropsychiatric condi-
tions, and thus were tested in the same, relatively age-neutral context.

Along with our three corpus based learning parameters, these data were en-
tered into a linear mixed effects model with word pair as random-effect factor. 
The details of this model are reported in the appendix (Table A2). As can be seen 
from the plot of mixed-effects slope estimates in Figure 4, the impact of the fac-
tors that basic learning theory predicts will inhibit the learning of an associa-
tion — blocking and background rates — grow systematically across the lifespan, 
as does the influence of the factor that basic learning theory predicts will promote 
the learning of an association (the association rate). In other words, our analysis 
of Paired Associate Learning indicates that the changing performance patterns that 
have been observed across the lifetime in PAL tasks are evidence of an ever-growing 
understanding of the systematic structure of the English lexicon that develops as age 
and experience grow. Not only do these patterns not support the idea that older 
adults’ learning capacities are in decline, they are also clear evidence that, in fact, 
learning capacities are both retained and fully engaged across adulthood.

Why Decline Appears to be in the Eye of the Beholder.  
And why a Cognitive Account of Lifelong Cognitive Development Matters

Ramscar et al. (2014; see also Ramscar, 2014) point to another serious shortcom-
ing in current approaches to the study of cognitive development in adulthood: 
whether older participants’ performance on even the simplest of cognitive tests 
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improves or declines appears to be a function of the context in which participants 
are tested. Consider, for example, the FAS task, in which people are asked to gen-
erate as many words beginning with F as they can in 60 seconds, followed by as 
many words beginning with A in 60 seconds, followed by as many words that 
begin with S. (A couple of rules govern the words that are allowed as responses 
in the test: Proper names like Steve or France are not allowed, nor are different 
versions of the “same” word, e.g., friends, friendly.)

In a meta-analysis of 134 studies, Ramscar et al. found that while older par-
ticipants outperformed younger adults at FAS recall in smaller studies, in very 
large surveys of the elderly population, older participants’ performance declined 
as the total number of people tested in a study increased. Moreover, this effect was 
not due to regression to the mean (the analysis presented in Ramscar et al., 2014, 
controlled for this). Instead, it appears that in the data reported in the literature, 
there is a clear relationship between the FAS test scores of older adults and the 
number of older adults tested.

Test performance is both influenced by context, and can vary widely across 
cohorts (see e.g., Lynn, 1982; Flynn, 1987; Teasdale & Owen, 2005). However, 
although there is a large historical literature devoted to these very real problems 
(Schaie, 1959; 1973; 1975; 1977; 1988), and despite the fact that the researchers 
who employ the current generation of psychometric methods are careful to ac-
knowledge that they cannot conclude anything about causality from the results 
of any given test, it appears that in practice whenever changes are observed on 
the correlated results of these tests, the temptation for researchers to interpret 
them causally — as evidence of decline — invariably proves too strong to re-
sist. Although the cognitive aging literature contains a huge body of work that 
purports to chart the supposed declines in “cognitive abilities” that are assumed 
to undermine the minds of adults as they age, the fact is that this literature con-
tains little more than a correlational record showing that scores change on tests 
that are incapable in themselves of supporting causal inferences about the reasons 
for change (Naveh-Benjamin & Old, 2008; Deary et al., 2009; Salthouse, 2009;  
Salthouse, 2011; Singh-Manoux et al., 2012).

Our analysis of PAL learning highlights the worrying shortcomings of these 
current methodologies. The introduction of even the most elementary discrimi-
native learning model into an analysis of Paired Associate Learning reverses the 
standard, purely correlational interpretation of PAL test scores. Systematical-
ly lower scores do not reveal decline, but rather, they simply show a pattern of 
changes that any cognitively plausible model of lexical learning would predict. 
Indeed, the same patterns of change among lexical associations with experience 
revealed by our analysis can be observed in two-year olds (Ramscar et al., 2013a). 
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These points matter a great deal. Figure 5 plots the performance of a group 
of 23 nineteen year olds and a group of 23 fifty-seven year olds on a range of 
measures of “cognitive performance” (from Hargreaves, Pexman, Zdrazilova, & 
Sargious, 2012). There are several things to note about this data: 

First, it was an experimental study in which participants were carefully 
matched on a range of control variables, including the number of participants 
tested in each group. 

Second, it was a study of expertise rather than a study of “aging”. There are 
many good reasons to believe that this matters, most notably that making elderly 
participants aware of their age and of the stereotypes associated with aging, can 
inhibit their performance on tests (Steele, 1997; Hess et al., 2003; Hess & Hinson, 
2006; Hess, Hinson, & Hodges, 2009). 

Third, while, perhaps unsurprisingly, older adults’ print exposure is great-
er than that of the younger adults, it is notable that of the 7 cognitive measures 
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Figure 5.  Performance of two control groups (group 1 N = 23; M age 19.4 years; group 2 
N = 23; M age 57.4 years) in Hargreaves et al. (2012). Young adult performance is plotted 
as a reference, and the performance of the older adults reflects the change in their per-
formance against this baseline. The leftmost two bars represent estimates of the relative 
amount of print exposure each group has experienced, and the remaining bars plot per-
formance in tests of Digit Symbol recall (recalling strings of alphanumeric characters), 
generating words beginning with F, A, S and UN, animal naming, and anagram solving.
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tested, the older group outperform the younger group on 6 of them. And even if 
we collapse all of the FAS related tasks into one, the fact is that the older adults 
outperform the young on 3 out of 4 of these measures. Further, while the younger 
adults performance on digit symbol is slightly better than that of the older adults, 
the younger adults performance on the anagram task is vastly inferior to that of 
the older adults.

Further evidence for the inferior sensitivity of younger adults to the distri-
butional properties of the language can be gleaned from the lexical decision data 
discussed above, which indicated that adults perform the task more accurately 
(Figure 1). Figure 6 presents some central partial effects in a generalized additive 
mixed model fitted to the response latencies, with younger subjects in the left 
panels and older subjects in the right panels. The top panels present the effect 
of frequency. As expected, reaction times are longer for lower-frequency words.  
Older subjects slow down slightly more than younger subjects for the lower-fre-
quency words. 

Before we attribute this to cognitive decline, we should first consider the low-
er panels, which present contour plots for the interaction of two latent variables, 
PC1 and PC2. PC1 contrasted forward enemies with phonological neighbors 
(and accounted for 43.5% of the variance in the 10 consistency measures), while 
PC2 contrasted friends with backward enemies (accounting for 22.2% of the vari-
ance; for further details, see Baayen, Feldman & Schreuder, 2006). The non-linear 
interaction of these two (orthogonal) latent variables was modeled with a ten-
sor product smooth (Wood, 2006, see the appendix Table A3 for the full model). 
Importantly, the interaction for the younger adults fails to reach significance, in 
contrast to the interaction for the older adults. Note that the contour lines for the 
younger adults are 0.005 log RT units apart, whereas those for the older adults are 
0.01 log RT units apart. In other words, the younger adults are beginning to show, 
albeit very weakly, the pattern that characterizes the performance of the older 
adults. It is the older adults which evidence clear fine-grained sensitivity to the 
consonances and dissonances between spelling and sound in English. 

A difference between older and younger subjects not shown in Figure 6 is that 
older subjects have longer RTs compared to younger subjects. Older participants’ 
judgments are thus slower and more accurate, a phenomenon that might also be 
described as a “speed accuracy trade-off ”. This is consistent with applications of 
the drift-diffusion model to speed and accuracy data, which also indicates that the 
quality of information processing is not impaired in healthy aging, and suggests 
instead that slow downs in aging are largely attributable to other factors (Ratcliff, 
Thapar, & McKoon, 2011; 2010), such as non-decision time (e.g., motor move-
ment) and boundary separation (i.e., the degree of cautiousness in responding).
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What is worth noting here is that while the characterization of a lexicality 
response as accurate or inaccurate in cross-generational lexical decision is made 
against the background of the lexicon of the total speech community, a young 
participant classifying a low-frequency word that she doesn’t know as a non-word 
is still making what is to her an accurate and correct response. This has subtle 
consequences for this speed-accuracy trade-off, because this means that young 
adults are confronted with materials that contain — for them — a higher propor-
tion of non-words than words, and this will make real words more noticeable and 
easier to respond to.

While this suggests yet another reason to doubt that the slower responses 
of older adults present compelling evidence for degraded performance, impor-
tantly it also indicates that older and younger adults may be processing different 

Young

Log frequency

Pa
rt

ia
l e

�
ec

t (
lo

g 
RT

)

0

–0
.1

0.
0

0.
1

0.
2

4 6 8 102

Old
PC

2

–2
0

2
4

6

PC1
–6 –2 0 2 4 6–4

Old

Pa
rt

ia
l e

�
ec

t (
lo

g 
RT

)

–0
.1

0.
0

0.
1

0.
2

Log frequency
0 4 6 8 102

Young

PC1

PC
2

–2

–2

0

0

2

2

4

4

6

6

–6 –4

Figure 6.  Upper panels: the partial effect of log frequency on log response latency. 
Younger adults (left) have shorter latencies for the lower-frequency words compared to 
older adults (right). Lower panels: the nonlinear interaction of two latent variables for 
orthographic consistency. The interaction does not reach significance for the younger 
adults, but is highly significant for the older adults, which reveal enhanced sensitivity to 
the distributional properties of sound-meaning mappings in English.
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information in completing this task. Ramscar et al. (2014) presented a large-scale  
simulation study using the Rescorla-Wagner equations, which correctly predicted 
the pattern of slower responses to lower frequency words observed in older adults. 
Figure 7 plots the simulated and empirical reaction times reported in Ramscar et 
al. (2014) in a way that allows the models’ predictions — as well as the empirical 
effects just described — to be easily apprehended.

These models allow us to develop causal hypotheses about the nature of in-
formation in this task, and to explain why these particular patterns of response 
latencies emerge. (Note, simply saying, “because frequency,” hardly counts as a 
causal hypothesis: saying that lower frequency words are read slower because they 
are lower in frequency — and we know more frequent words get read faster — is 
a re-description of the data, not an explanation.) First, note that the variance in 
model’s predicted simulated RTs for younger and older adults in the lower fre-
quency-range (Figure 7, left panel) is entirely a function of the weights the models 
learned from the training sets for the two age groups, which are set without free 
parameters (save for the selection of the size of the training samples themselves). 
These weights connect letter conjunctions (n-gram cues) in the words the mod-
el reads with the lexemes that humans and the models have to discriminate in  
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Figure 7.  Left panel: fit of a generalized additive model to the simulated response 
latencies for the 2284 words tested by Balota et al. (1999) taken from the old and young 
models presented in Ramscar et al. (2014). Right panel: fit of a generalized additive mod-
el to the empirical response latencies for the same word taken from young (mean age: 
21.1) and old (73.6) adults (Balota et al., 1999). It is well established that lexical decision 
responses are slower for lower- frequency words (e.g., “whelp”) than higher-frequency 
words (“where”). This overall effect of frequency is present for both young and old adults 
and in the models. However, while frequency effects asymptote at higher frequencies in 
both models, they also level off again at the lowest frequencies in the younger model, a 
pattern also observed in the empirical data (see Figure 6 for more detail).
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reading (i.e. they represent the learned connection between the letters d o and g 
and the lexeme dog). 

In the models, the n-gram cues are initially undifferentiated, and their learned 
values are set competitively, as the models seek to predict words from the letters 
they ‘read.’ The logic underlying this process can be intuitively grasped by consid-
ering the different cue values of letters in scrabble: if you have Q and A but no U, 
QA is an excellent cue for the legal scrabble words qaid, qanat and qat; however, 
D and I appear in many words, so DI only weakly supports individual words like 
oxidize, dim and odium. 

As Table 1 shows, when it comes to the test (and hence the training) set that 
produced the data plotted in Figure 6, the lower frequency words contain sig-
nificantly more uncommon (low frequency) n-grams than the higher frequen-
cy words (Ramscar et al., 2014). This means that, while in a smaller vocabulary, 
these low frequency n-grams tend to be very good cues to a given lexeme, as a 
vocabulary grows, the probability that new words will also contain these n-grams 
increases (suppose someone who knows qaid, learns qanat playing scrabble, or 
hears that qantas is the name of an airline), then cue competition will increase 
(this is the same process that produces the changes in the weights of the w1 cue 
obey to the w2 response eagle in Figure 3).

Thus, in the model, the slower reaction times for lower frequency words for 
older speakers are the result of learning, and reflect the increasing demands im-
posed by having to discriminate between more and more lexemes composed of 
the same set of alphanumeric cues, which is in turn reflected in the increased 
accuracy of older participants in the lexical decision task. Or, to put it another 
way, while we may learn more and more words across our lifetimes, we do not learn 
any more letters. And although we can arrange letters in ways that yield more 
cues, even this process is not infinite. This means that over time, learning more 
vocabulary items must inevitably increase the information processing demands 
associated with letter cues. (This point also raises developmental issues, which we 
return to below.) 

Table 1.  The 20 lowest frequency items in the set used to train the models and test older 
and young adults; BLASH has the lowest frequency of these items, and SKULK the 
highest. As can be seen, many of the letter bigrams in this set of words are fairly rare in 
English (see also, Nusbaum, 1985).

 BLASH  SOUSE  CROME  VELDT

 SCHNOOK  WHIG  GIBE  SLOE
 LETCH  FILCH  LISLE  CONK
 ZOUNDS  RHEUM  FLAYS  FRAPPE
 JAPE  PARCH  SPLOTCH  SKULK
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We should acknowledge that the models are hypotheses, and that compared 
to the complexities of actual human experience, their training is absurdly sparse. 
However, against this we should note that the learning algorithm in the model 
at least approximates our best understanding of how brains learn (Schultz et al., 
1997; Schultz, 2006; Daw, Courville & Dayan, 2008; Daw et al., 2011), and that in 
practice, even noting their limitations, these models do seem capable of providing 
insights into human learning that are useful, if not exactly “right” (Box & Draper, 
1987; see Ramscar & Yarlett, 2007; Gureckis & Love, 2010; Ramscar et al., 2010; 
Ramscar et al., 2011; Ramscar et al., 2013a; Ramscar et al., 2013b; Ramscar et al., 
2013c; Arnon & Ramscar, 2013; Baayen et al., 2011; Baayen, Hendrix, & Ramscar, 
2013).

Moreover, some systematic insights into the complexities of learning and ag-
ing can only be gotten from a useful hypothetical model. To return to the empir-
ical data plotted in Figure 5, it clearly suggests that there may be an age-related 
interaction between digit symbol performance and anagram solving: a model 
provides a framework in which to examine whether a causal relationship between 
these facts actually exists. For example, the model we just described suggests that 
the slowing in older adult’s lexical decision responses is the product of loading 
more and more lexical outcomes on a relatively finite set of combinations of letter 
cues (see also Anderson, 1974). 

We might expect that this will lead to (at least) two outcomes: First, just as 
virtually any PAL w1–w2 pair will become more dissociated as lexical learning 
increases (Figure 3), we can expect that the association between virtually any two 
letter unigrams will decrease in exactly the same way for very similar reasons. 
This means that increased lexical learning will inevitably make the digit symbol 
task harder in the same way that it makes learning specific PAL pairings harder. 
However, given that the dissociations in letter n-grams are driven at least to some 
extent by their being learned as cues to more and more words, it follows that 
increased lexical learning will mean that any given n-gram is likely to cue more 
and more lexemes. Given the role of prefrontal cortex (PFC) in filtering response 
behavior (Shimamura, 2000; Chrysikou, Weber, & Thompson-Schill, in press), 
and the way that learning alters the dynamics of the responses that PFC serves to 
filter (Ramscar & Gitcho, 2007; Thompson-Schill, Ramscar, & Chrysikou, 2009) 
and helps modulate perseverative behavior (Ramscar et al., 2013b), it is hardly 
surprising that learning to associate more lexical outcomes with n-grams serves to 
improve people’s ability to solve anagrams, or that older scrabble experts should 
be particularly adept at this (Hargreaves et al., 2012).

Thus, just as a model can help us understand why there is an interaction be-
tween speed and accuracy in lexical decision with age, and why slower lexical deci-
sions speed do not necessarily betoken “decline,” so it can also help us understand 
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why there is an interaction between digit symbol accuracy and anagram solving 
with age, and why performance on the two measures in the latter is as inextricably 
linked as speed and accuracy “performance” in the former.

Why Better Functional Models of Behavior across the Lifespan  
are Necessary to Understanding the Aging Brain

An improved functional understanding of the behavioral changes we see in 
healthy adults as they age is necessary to determining which (if any) of these 
changes can be considered “decline.” Model-based analyses (Davis, Love, &  
Preston, 2012a, 2012b; Turner et al., 2013) of brain imaging data and model se-
lection methods (Kriegeskorte & Kievit, 2013; Mack, Preston, & Love, 2013) have 
proven invaluable in interpreting brain activity for younger adults. If we are to un-
derstand the aging brain, better functional models will also need to be developed, 
applied, and evaluated. Thus, for example, studies employing a range of imaging 
techniques and a variety of tasks have revealed a posterior to anterior shift in 
patterns of task-related activation as adults age, and a concomitant decrease in 
the degree to which tasks trigger activation patterns that are lateralized to one 
(in particular the left) hemisphere (Reuter-Lorenz et al. 2000; Cabeza et al. 1997; 
Grady et al., 2006; Cabeza, 2002; Cabeza et al., 2002; Cabeza et al., 2004; see Park 
& Reuter-Lorenz, 2009 for a review). In the cognitive neuroscience literature this 
shifting pattern of activations is thought to reflect the results of a “scaffolding” 
process, in which contra-lateral and frontal areas step in to pick up the slack in 
the processing capacity of left-lateral and posterior areas that occurs in “direct 
response to the magnitude of neural insults that occur with age” (Park & Reuter-
Lorenz, 2009). 

Although this idea is widely accepted, the literature offers no details (nor even 
detailed speculations) as to quite how it is that frontal areas come to be aware of 
the plight of their insulted brethren in posterior regions (it seems reasonable to 
assume that dead cells don’t talk), nor are accounts forthcoming of how it is that 
ensembles of neurons in functionally distinct areas of cortex are able to acquire 
the tunings that enable them to replicate the functions of circuits in other regions 
that have succumbed to the ravages of time. Finally, nor does the literature offer a 
suggestion, let alone a convincing explanation, of why it is that, for example, pos-
terior regions are systematically more susceptible to insults than anterior regions 
across the entire human population as it ages.

By contrast, consider the model of the relationship between digit span per-
formance and anagram solving we just described. It outlines a (clearly over-) sim-
ple feed-forward network in which the perception of letter cues in turn activate  
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lexemes, and, in the case of anagram solving, any activated lexemes are then fil-
tered along with other task relevant information in prefrontal cortex in order 
to generate a response. Over the lifetime, the model thus predicts a systemat-
ic pattern of changes will occur as a learner’s lexical experience grows: First, in 
posterior regions associated with reading letter forms, such as left posterior oc-
cipitotemporal sulcus (pOTS; Mano et al., 2013) the model predicts that more 
experience will lead to less neural activation, because learning and cue-competi-
tion will increasingly serve to tune n-gram representations (this is consistent with 
findings from imaging studies, which show stronger activation of the left pOTS 
to pseudowords and low frequency words as compared to high frequency words; 
Kronbichler et al., 2004, 2007; Bruno et al., 2008; Schurz et al., 2010; Mano et al., 
2013); Second, since these increasingly tuned n-gram representations will become 
associated with more and more lexemes, which will activate when they are acti-
vated, the model predicts that greater experience will result in more activation of 
the anterior regions associated with lexical processing itself, such as the superior 
temporal gyrus (STS), inferior frontal gyrus (IFG) and PFC (see e.g., Friederici, 
2011), because activating increasingly specialized n-gram representations will re-
sult in the activation of increasingly larger sets of lexemes. 

That is, a simple functional model of reading that incorporates learning can 
predict and explain the interaction between digit span performance and anagram 
solving and provide an account of the posterior to anterior shift in activation 
during lexical processing without having to make the many dubious assumptions 
involved in theories of “neural scaffolding.” Further, the model we have outlined 
does so in ways that are highly compatible with our best understanding of the 
functions of the brain regions involved. Moreover, given that this model does not 
automatically assume that changing patterns of activation are evidence of “neural 
insults,” it is more consistent with biological models of brain aging, which have 
revealed that the brains of healthy adults do not experience significant cell loss as 
they age, nor do they undergo dramatic changes in neuronal morphology (in a re-
cent review, Burke & Barnes, 2006, describe the widely held beliefs to the contrary 
as “the myth of brain aging”.) 

The patterns of change in neuronal morphology over the lifespan are both 
more complex and more puzzling than the notion of “brain atrophy” embraced 
by the scaffolding hypothesis supposes. Most of the typical changes in brain mor-
phology that are observed in healthy aging involve declines in the density and 
organization of neuronal dendrites and spines (gray matter) and axons (white 
matter). Although the typical pattern of change that is usually observed in many 
areas of the dorsal, frontal, and parietal lobes in adulthood involve reductions in 
grey matter density, in some brain areas, such as the cingulate gyrus, the density 
of grey matter appears to remain consistent across the lifespan in healthy adults 
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(Sowell et al., 2003). Moreover, in some brain areas, such as the parahippocampal 
gyrus, there is evidence of significant dendritic growth in normal human aging 
(but not in senile dementia, Buell et al., 1979, 1981). 

While it goes without saying that the complex and systematic pattern of 
changes that are actually seen in neural morphology are not going to be explained 
without the development of functional models of what brain systems actually do, 
the need for good functional models of cognitive processes is particularly acute 
because given the changes that typify aging in healthy brains, it is extremely dif-
ficult to disentangle “declines” in brain function from the effects of learning. This 
is because learning is itself reflected in neuronal morphology as changes in the 
density and composition of grey and white matter (see e.g., Merrill et al., 2001; 
Zuo et al., 2005; Rapp et al., 1996; Flood et al., 1991, 1993; Burke & Barnes, 2006; 
Zatorre, Fields, & Johansen-Berg, 2012). 

It follows from this that in order to be sure that all of the changes in neu-
ral morphology that ones sees in a healthy brain are insults, rather than signs of 
learning, one first needs a functional model of “normal” learning and process-
ing. For example, studies of 11–17 year-olds have revealed patterns of changes in 
gray and white matter densities that are remarkably similar to those associated 
with aging (Alemán-Gómez et al., 2013). Should these findings be interpreted as a 
marker for the (extremely) early onset of age-related declines in neural plasticity, 
or as ordinary, business-as-usual learning?

Similarly, consider that more extensive age-related reductions in grey mat-
ter density are typically observed in the posterior temporal cortex in the left (as 
compared to right) hemisphere (Sowell et al., 2003). Are these differences, which 
are particularly evident in posterior language areas, really just the result of simple 
(and presumably random) insults, and atrophy caused by “brain aging?” While it 
is, of course, possible that they are, it seems highly likely that, given that language 
is one of the most extensive functional systems any brain ever learns, at least some 
of the systematic changes in neuronal morphology seen in posterior temporal 
cortex reflect the effect of learning this system. If so, then this means that, again, 
the process of distinguishing learning from decline — if indeed there is decline in 
healthy brain aging — is likely to be far more subtle and complex than the litera-
ture currently acknowledges.

Understanding Lexical Processing and Understanding Lexical Learning

Rabbitt (2014) points out that our assumption that greater information processing 
loads result in slower processing appears to be confounded by empirical results 
that, in comparing across people of the same age, as opposed to between people 
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of different ages, reveal that people who have larger vocabularies often perform 
better than people with smaller vocabularies. 

people of any age whose brains are so stuffed with words that they can produce 
more names of animals within a fixed time also produce words in other catego-
ries correspondingly faster and more accurately. This does not support the Ram-
scar hypothesis that words are retrieved more slowly from a large vocabulary.
�  (Rabbitt, 2014)

The reason these findings do not contradict our central hypothesis, is, of course, 
that the mind and brain are not fixed systems: 

plasticity is not an occasional state of the nervous system; instead, it is the normal 
ongoing state of the nervous system throughout the lifespan. A full, coherent 
account of any sensory or cognitive theory has to build into its framework the 
fact that the nervous system, and particularly the brain, undergoes continuous 
changes in response to modifications in its input afferents and output targets. 
� (Pascual-Leone et al., 2005)

It goes without saying that learning changes the brain. Just 7 days training in 
something as inconsequential as juggling is sufficient to produce visible changes 
in gray matter density and to the organization of white matter pathways in the 
occipito-temporal areas associated with the processing of complex visual motion 
(Draganski et al., 2004; Driemeyer et al., 2008); notably, these patterns of change 
are even visible in elderly participants (Boyke et al., 2008; albeit that the elderly 
learn less well on average over the same time frame). 

Because learning changes the brain, prior learning always impacts subse-
quent learning. As our case study of PAL learning demonstrated, there is no such 
thing as “learning” in a vacuum. This in turn means that a full, coherent account 
of lexicial processing across the lifetime can’t simply consider the effects of having 
a large vocabulary in a vacuum: In order to understand the interaction between 
experience, vocabulary size and processing, one has to consider how people end 
up with different sized vocabularies, and how this might affect learning and pro-
cessing at different stages of linguistic development. 

Studies of children clearly show that, consistent with Rabbitt’s observation, 
larger vocabulary scores actually predict faster lexical processing in childhood. 
Children with larger vocabularies process words faster than children with small-
er vocabularies (Fernald & Marchman, 2012; Bion, Borovsky, & Fernald, 2013). 
Perhaps unsurprisingly, these studies have also shown that vocabulary scores and 
processing speeds are highly correlated with the amount of language a child is ex-
posed to (Fernald & Marchman, 2012; Bion, Borovsky, & Fernald, 2013; Weisleder 
& Fernald, 2013; Fernald, Marchman, & Weisleder, 2013). Moreover, as Hart & 
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Risely (1995) revealed in their landmark studies, depending on the social environ-
ment a child grows up in, the amount of language she hears can differ dramatically. 

These points are of particular importance when we are dealing with human 
brains, because in children, not only will learning be having an impact on the 
local morphology of areas processing the various factors that contribute to be-
havior, but also because the maturation and development of the overall structure 
of the human brain is occurring throughout childhood (Ramscar & Gitcho, 2007; 
Thompson-Schill, Ramscar, & Chrysikou, 2009). Given what we know about the 
way brains learn and develop, it seems at least reasonable to suppose that children 
who are exposed to large amounts of language develop much richer neural net-
works in the areas involved in lexical processing than children whose linguistic 
experience is impoverished. In developing the model we used to predict lexical 
processing speeds above, we considered the relation between network density 
and processing speed, and, in theory at least (in practice, we should acknowledge 
that this is a free parameter), the model predicts that dedicating more processing 
hardware to a task in the brain will lead to faster processing speeds.

Ultimately, what we want to be able to do is integrate the many strands that 
influence the development of neural networks in the maturing mind, and the way 
processing in these networks responds to information gains in mature minds. We 
don’t pretend for a second that our models are even close to doing all this. Yet 
consider the complexity involved in the task we just described, and in the inter-
actions between experience, weights and learning in the analyses and simulations 
we described above. However simple and flawed the various models presented 
above are, they at least offer insight.

This observation highlights an important point in this debate: Researchers 
in the brain and cognitive sciences are engaged in a tortuous process of trying to 
reverse engineer a complex physical information processing device. Yet the sim-
ple fact is that very few researchers in the field have any training in information 
processing systems, and of the few that do, most have training at the software 
rather than the hardware end. Most researchers have only the dimmest idea how 
increases in data and task complexity impact information processing in the phys-
ical systems that actually do the processing. While it is clear that the brain is not 
a computer in a straightforward sense, the fact is that machine information pro-
cessing still represents our best model of neural information processing (indeed, 
formally, it is the only model we have) and it seems highly unlikely that a “no 
model” approach will lead to meaningful progress in our search to understand the 
mind, and the effects of age on it. 
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Conclusion: Learning is not Decline

Do the ravages of time inevitably result in declines in cognitive processing in oth-
erwise healthy brains? We remain open to the possibility that the answer to this 
question is, “yes.” What we have sought to show above is that, when it comes to 
aspects of lexical learning where we now can quantify the environment in which 
learning takes place (in large part thanks to the development of large corpora), 
once one controls for the effects of learning on performance, there is precious 
little variance left to be described in terms of “decline.” Not only are the changing 
patterns of performance observed in paired-associate learning better accounted 
for by learning models than by vague notions of “cognitive decline,” but detailed 
comparison of the specifics of those performance patterns suggests that instead 
of declining with age, older adults’ lexical knowledge in fact becomes more and 
more attuned to the information structure of the lexicon.

Similarly, we have shown that if one simply attends to speed in lexical deci-
sion tasks, one will inevitably find evidence of decline. Whereas if one integrates 
a measure of accuracy into one’s analysis, a different picture emerges: a picture in 
which an improvement in one dimension — accuracy — is shown to come at a 
cost in another, speed. 

In one sense, the findings we report are hardly surprising: they simply suggest 
that one rarely gets something from nothing, and that actions have reactions, and 
these are hardly new ideas. However, we would suggest what our findings reveal 
about our folk theories of the mind, and of the effect of aging on the mind ought 
to surprise us: It would appear that many of the implicit assumptions that serve 
to underpin received ideas about cognitive declines involve the idea that some 
things — especially learning — ought to come for free, and that some actions — 
especially the acquisition of knowledge — ought not to have a reaction. Our find-
ings not only undermine these implicit assumptions, they also undermine the 
muddled thinking that is embodied in received ideas about cognitive decline, 
both in the literature, and in society more generally.

We have sought to show how many of the tacit, over-simplified assumptions 
about the nature of learning in the literature are leading researchers to serious-
ly overestimate of the degree to which cognitive function declines with age. We 
would not wish to argue that this means that functionality does not change. For 
instance it may be that a side-effect of some kinds of prior-learning is that subse-
quent learning is inhibited in ways that, essentially, amount to functional losses, 
in much the same way that children learning of a native sound system function-
ally impedes the later learning of non-native phonetic contrasts (Werker & Tees, 
1984). Rather, we would suggest that a better understanding of learning can do 
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much to assist our understanding of cognitive functions themselves (see e.g., 
Baayen et al., 2011), and the way these functions develop across the lifetime.

Finally, in relation to this last point, we should reiterate why all this is im-
portant. In numerous studies, Carol Dweck and her colleagues have shown how 
people who believe that their abilities can be improved through hard work learn 
far better than those who think that their abilities are fixed (Dweck, 2006, 1999; 
Dweck & Leggett, 1988; Yeager & Dweck, 2012; see also Mangels et al., 2012;  
Rattan, Good, & Dweck, 2012; Dweck et al., 1978). Since it is clear from the find-
ings we present here that people’s ability to learn stays with them at all ages, and 
from the work of Dweck and colleagues that thinking of ability as a fixed factor 
has an adverse influence on children and younger adults’ ability to learn, we can 
only shudder to think what the pervasive mythology of “cognitive decline” is do-
ing to older adults’ ability to adopt a positive mindset, or to believe that their 
efforts can lead to improvement.
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Appendix

Table A1.  Fixed-effects estimates in a mixed-effects logistic regression model with word 
as random-effect factor fitted to the visual lexical decision latencies of old and young 
participants. Data available in the languageR package (Baayen, 2008), dataset “english”. 
Model fitted with the glmer function from the lme4 package (Bates et al., 2013). 

Fixed effects:
															               Estimate		 Std. Error		 z value		 Pr(>|z|)
Intercept										           1.40760		 0.07432				   18.940		 < 2e-16
WrittenFrequency						       0.36847		 0.01515				   24.320		 < 2e-16
AgeSubject=young						      -1.23280		 0.05348			   -23.053		 < 2e-16
WrittenFrequency:AgeSubject=young
															                0.06914		 0	.01220			   5.666			  1.46e-08

R code for the simulation of the PAL task:

lex = read.table(“obeyRulesLex.txt”, T)

lex
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		  Cues								        Outcomes		 Frequency
1		 Context_American	 Eagle				   1
2		 Context_Obey				   Rules				   1
3		 Context_Obey				   Eagle				   1
4		 Context_Legal			  Eagle				   1

ibrary(ndl)
wmlist = list()
for (i in 1:50) {
	 cuesOutcomes = lex
	 cuesOutcomes$Frequency[1:2] = rep(i, 2)
	 wmlist[[i]] = estimateWeights(cuesOutcomes)
	 }

frequencies = 1:50
strength = sapply(wmlist, FUN=function(m)return(m[4,1]))
plot(frequencies, strength, ylim=c(-0.5, 0),type=“l”, 
	 xlab=“frequency of the stock phrases”,
	 ylab=“cue strength of Obey and Eagle”)
	 abline(h=0, col=“darkgray”)

Table A2.  Coefficients in a linear mixed effects model (with Item as random-effect fac-
tor) for the results plotted in Figure 4. Slope coefficients estimate the slopes for each age 
group separately. The t-tests evaluate whether a slope is zero. A separate analysis using 
treatment contrasts (not shown) indicated that all interactions were highly significant. 
F1: frequency of the first word (background rate); P2: ratio of the frequency of the first 
and second word (blocking); Google: google frequency of the first and second word pair 
(association rate).

										           Estimate		  Std. Error		 t value
Intercept						      2.55064			  0.68220				   3.739
Sex=Male						      -0.10740		  0.02211			   -4.858
F1:AgeGroup20			   -0.36897		  0.14189			   -2.600
F1:AgeGroup30			   -0.55493		  0.14189			   -3.911
F1:AgeGroup40			   -0.60279		  0.14189			   -4.248
F1:AgeGroup50			   -0.65100		  0.14189			   -4.588
F1:AgeGroup60			   -0.73176		  0.14189			   -5.157
P2:AgeGroup20			   -0.80059		  0.41103			   -1.948
P2:AgeGroup30			   -1.08672		  0.41103			   -2.644
P2:AgeGroup40			   -1.23984		  0.41103			   -3.016
P2:AgeGroup50			   -1.28778		  0.41103			   -3.133
P2:AgeGroup60			   -1.44944		  0.41103			   -3.526
Google:AgeGroup20		 0.34482			  0.06214				   5.549
Google:AgeGroup30		 0.46774			  0.06214				   7.528
Google:AgeGroup40		 0.50119			  0.06214				   8.066
Google:AgeGroup50		 0.53815			  0.06214				   8.661
Google:AgeGroup60		 0.59641			  0.06214				   9.599
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Table A3.  Specification of the generalized additive mixed model predicting log response 
latency in visual lexical decision from age, log frequency, and two latent variables for 
orthographic consistency.

Parametric coefficients:
								        Estimate		 Std. Error		 t value		 Pr(>|t|)
(Intercept)		  6.661213		 0.001773			  3757.7		 <2e-16
age=young		   -0.221721		 0.001862		   -119.1		 <2e-16

Approximate significance of smooth terms:

																						                      edf		  Ref.df	 F				     p-value
smooth frequency for age = old						      6.555	 7.290	  218.335	 < 2e-16
smooth frequency for age = young					    6.245	 6.975	  229.127	 < 2e-16
tensor product PC1 x PC2 for age = old		 7.081	 8.147	    6.804	 5.62e-09
tensor product PC1 x PC2 for age = young	3.829	 4.147	    2.122	 0.073
random intercepts word										         341.173	 2192		    1.601	 < 2e-16
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