
Two basic approaches to explaining the nature of the 
mind are the rational and the mechanistic approaches. 
Rational analyses attempt to characterize the environ-
ment and the behavioral outcomes that humans seek to 
optimize. The rational approach holds that people are 
adaptive and learn (at the individual or species level) to 
behave optimally given the nature of the environment 
(i.e., given available information or statistics). The formal 
product of a rational analysis is an abstract mathematical 
model (often Bayesian) that details the behavioral strate-
gies that optimize some cost function, given the environ-
ment. Such models do not have recourse to how people 
actually process and represent information but are, in-
stead, abstract.

Considerations of the environment and optimality also 
resonate with adherents of the mechanistic program, but 
unlike for a rational model, the main goal of a mechanis-
tic model is to simulate human behavior by using mecha-
nisms (i.e., analogous processes and representations) that 
are the same as those that support human behavior. The 
mechanistic program seeks to reverse engineer the human 
brain and peer inside the black box. The issues of primary 
importance to the mechanistic program are how people 
represent and process information.

One common criticism of mechanistic approaches is 
that they lead to ad hoc explanations that lack the elegance 
and clarity of models derived from rational analysis. To 
the extent that two models converge on a common set 
of predictions, the more transparent and mathematically 
motivated model should be favored. Echoing these senti-
ments, Anderson (1991b) stated, “All mechanistic propos-
als which implement the same rational prescription are the 
same,” and “a rational theory provides a precise charac-
terization and justification of the behavior the mechanis-
tic theory should achieve.” These views are seconded by 
Chater and Oaksford (1999): “The picture that emerges 
from this focus on mechanistic explanation is of the cogni-
tive system as an assortment of apparently arbitrary mech-
anisms, subject to equally capricious limitations, with no 
apparent rationale or purpose.”

The upshot of these statements is that mechanisms are 
subservient to rational accounts of thought. Perhaps in a 
moment of candor or euphoria, Anderson (1991b) stated 
that rational models render mechanistic models unneces-
sary: “One might take the view (and I have so argued in 
overenthusiastic moments; Anderson, in press) that we do 
not need a mechanistic theory, that a rational theory of-
fers a more appropriate explanatory level for behavioral 
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jects tended to classify intermediate items into the higher 
variance category. This sensitivity to category variance 
was verified in subsequent learning studies (e.g., Cohen 
et al., 2001; Hahn et al., 2005). Preferences in general-
izing to high-dispersion categories have also been found 
in experiments that tapped preexisting knowledge and 
categories (Rips, 1989), as opposed to utilizing learning 
procedures.

Experiment  1 refined aspects of previous learning 
studies. In Experiment 1, subjects learned to classify lines 
varying in length into one of two categories. The design 
is illustrated in Figure 1. Learning items are illustrated as 
dark triangles. The six items (L1–L6) forming one cate-
gory are less variable than the six items (H1–H6) forming 
the contrasting category. Following learning, the subjects 
classified a variety of items, including some items that 
were not experienced during learning, such as Item N6. 
These novel items were tests of how subjects generalize. 
Item N6 was of particular interest since it was midway 
between the nearest trained members (L6 and H1) of the 
low- and high-dispersion categories.

To foreshadow, our results replicated previous findings 
indicating that people generalize border items to the high-
dispersion category. After the method and results have 
been presented, mechanistic and rational models will be 
derived and fit to the data.

Method
Fifty University of Texas undergraduates learned to correctly as-

sign 12 line stimuli (represented by dark triangles labeled L1–L6 and 
H1–H6 in Figure 1) into Category A or B through trial-by-trial clas-
sification learning with corrective feedback. The members of one 
category (L1–L6) varied relatively little in their lengths, whereas the 
members of the other category (H1–H6) were highly variable. The 
stimulus lengths in pixels (100 pixels 5 33.25 mm) are presented 
in Figure 1. To eliminate possible influences of absolute line length 
on performance (Ono, 1967), whether the high-dispersion category 
had longer or shorter lines than the low-dispersion category was 
counterbalanced between subjects (see Figure 1). The border item 
(N6) had the same length in both conditions.

On each training trial, one line was presented horizontally at the 
center of a display, and the text “Category A or B?” appeared at the 
top left corner of the display. After responding A or B, the subjects 
received visual (e.g., “Right! The correct answer is A.” or “Wrong! 
The correct answer is B.”) and auditory (a low-pitch tone for errors 
and a high-pitch tone for correct responses) corrective feedback. 
The visual feedback (presented at the bottom left corner of the dis-
play) and the stimulus were displayed for 2,000 msec after the sub-
jects had responded. The subjects completed 10 blocks of training 
trials. A block comprised presentation of every training item in a 
random order. The density curves shown in Figure 1 are illustrative 
of possible mental representations, as discussed below, and do not 
indicate information about the frequency of presentation during the 
experiment.

Following training, the subjects answered three addition prob-
lems to prevent rehearsal of information from the learning phase. 
Finally, the subjects completed two blocks of transfer classification. 
In each transfer block, the subjects classified the 12 studied items 
and 11 novel items (represented by light triangles labeled N1–N11 in 
Figure 1) in a random order as they did in the training phase, except 
that no corrective feedback was provided in the transfer phase. Our 
main interest was the subjects’ performance on the border transfer 
item (N6) that was midway between the nearest studied members 
(L6 and H1) of the two categories.

data” (p. 471). We believe that these general sentiments 
explain the rising popularity of rational accounts of cogni-
tion (for reviews, see Chater, Tenenbaum, & Yuille, 2006; 
Griffiths, Kemp, & Tenenbaum, 2008).

In this article, we advance a different view of mechanis-
tic and rational models. Rather than viewing the details of 
mechanistic models as arbitrary, we argue that these differ-
ences are key to generating novel predictions. We do not 
view mechanistic models as simply implementing rational 
models. We argue, by way of demonstration, that mecha-
nistic and rational models are likely to diverge in important 
ways once the full entailments of the mechanistic model 
are appreciated. In other words, mechanistic models can 
motivate predictions beyond those of a successful rational 
analysis. Thus, mechanistic models are properly under-
stood as driving theory advancement, rather than as bas-
tardized instantiations of more abstract rational analyses.

Of course, both rational and mechanistic accounts can be 
constructed after the fact to account for any data set. These 
two approaches can also be viewed as complementary and 
compatible in that they address behavioral phenomena at dif-
ferent levels of explanation (see Marr, 1982). To be clear, our 
key metascientific argument is that mechanistic models are 
best suited for deriving surprising behavioral predictions.

To offer tentative support for our metascientific argu-
ment and to make an independent empirical contribution, 
we conducted two experiments in which we examined 
how people learn about the variance of categories. Experi-
ment 1 was in the tradition of studies exploring people’s 
sensitivity to category variability (e.g., Cohen, Nosofsky, 
& Zaki, 2001; Fried & Holyoak, 1984; Hahn, Bailey, & 
Elvin, 2005). Experiment 2 expanded on Experiment 1 to 
consider how trial order impacts perceptions of category 
variability. The domain we chose was a simple category-
learning task in which mechanistic and rational accounts 
were already fleshed out.

An initial experiment in which the role of category vari-
ability in generalization was explored suggested obvious 
models from within both perspectives. The two models 
were largely in accord, but an examination of how the 
mechanistic model built internal representations of the 
categories in response to corrective feedback suggested 
a second experiment in which the predictions of the two 
accounts diverged and for which the results supported 
the mechanistic account. Empirically, in Experiment 2, 
we demonstrated how people’s impressions of category 
variability could be strongly affected by manipulating the 
order in which category members were experienced.

The unique predictions of the mechanistic model fol-
lowed from the insight that people incrementally build 
representations in memory, rather than from any insight 
into the structure of the environment. In effect, the mecha-
nistic model suggested revision of the rational account—a 
direction of theory development opposite that advocated 
by proponents of rational analysis.

Experiment 1

Fried and Holyoak (1984) found that after training 
on two contrasting categories of unequal variance, sub-



Mechanistic and Rational Approaches        1059

ory). From these estimated means and variances, the prob-
ability that a novel item belongs to each category can be 
calculated, and the item can be assigned to the more likely 
category. One such model is the unequal variance signal 
detection model (Green & Swets, 1966; Maddox & Ashby, 
1998) when the standard deviation and mean of each cat-
egory distribution are estimated from all previous learning 
trials. These rational models correctly predict that Border 
Item N6 will be assigned to the high-dispersion category.

To facilitate comparison, we derive a mechanistic model 
that principally differs from the aforementioned rational 
models in that the mechanistic model does not have per-
fect memory for the training items. Instead, it sequentially 
updates its representation of each category (both mean 
and dispersion) on the basis of the current stimulus, using 
error-driven learning. Like the rational models, the mecha-
nistic model represents each category in terms of its mean 
and variance. This information is represented by a cluster 
for that category (cf. Anderson, 1991a). The cluster tracks 
the prototype of the category while also encoding its vari-
ability. This model is more correctly viewed as a suitable 
comparison with the aforementioned rational models and 
as a distillation and simplification of previous proposals 
than as a new model. Related mechanistic proposals have 
extended multiple prototype models (Love & Jones, 2006, 
which extends Love, Medin, & Gureckis, 2004) and ex-

Results
Border Item N6 was more likely to be classified into the 

high- than into the low-dispersion category. As is shown 
in Figure 2, averaged across the two transfer blocks, the 
subjects assigned the border item to the high-dispersion 
category with greater-than-chance probability [.69 vs. .5; 
t(49) 5 3.86, p , .001]. In the first transfer block, more 
subjects (33 of 50) classified the border item into the high-
dispersion category than was expected by chance (exact 
binomial p 5 .033, two-tailed). The same pattern (36 
of 50) was found for Item N6 in the second transfer block 
(exact binomial p 5 .0026, two-tailed).

Rational and Mechanistic Models
Straightforward rational analyses, whether following a 

maximum likelihood (e.g., Fried & Holyoak, 1984) or a 
Bayesian (e.g., Tenenbaum & Griffiths, 2001) canon, con-
verge in their account of Experiment 1. A rational analysis 
of Experiment 1 suggests a model that estimates the true 
mean and variance of each category on the basis of the un-
biased integration of information conveyed by the training 
items. Although these estimates can be made incrementally 
(e.g., the current trial’s posterior distribution serves as the 
next trial’s prior distribution in a Bayesian scheme), they are 
equivalent to estimating the mean and variance on the basis 
of all experienced items (i.e., perfect and unbiased mem-

N1 N2 L1 . . L6 N3 N4 N5 N6 N7 N8 N9 H1 H2 H3 H4 H5 H6 N10 N11

Low-Dispersion Category High-Dispersion Category

Item

Length in Pixels (100 pixels = 33.25 mm)

C1: 120 130 140 150 160 170 180 190 200 210 220 230 250 270 290 310 330 340 350

260 250 240 230 220 210 200 190 180 170 160 150 130 110 90 70 50 40 30C2:

. .

. .

Figure 1. The design of Experiment 1. Dark triangles (L1–L6 and H1–H6) represent studied items, and light triangles (N1–N11) 
represent novel items that did not appear during learning. The item lengths are spaced to scale. Item N6 is exactly midway between 
the nearest studied members (L6 and H1) of the low- and high-dispersion categories. Each studied item in the low-dispersion cat-
egory differs from its nearest neighbor by 2 pixels, whereas each studied item in the high-dispersion category differs from its nearest 
neighbor by 20 pixels. To eliminate possible influences of absolute line length on performance, whether the high-dispersion category 
had longer (Condition C1) or shorter (Condition C2) lines than the low-dispersion category was counterbalanced between subjects. 
The two density functions are illustrative of the category representations developed by both rational and mechanistic models when 
applied to this task.
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otherwise. Cluster means are initialized at the value of 
the first presented stimulus in each category, and standard 
deviations are initialized at s0.

The mechanistic model was trained and tested in a trial-
by-trial fashion paralleling the procedure used with the 
human subjects. Figure 3 illustrates the dynamics of the 
model simulated on Experiment 1. This figure is based on 
an average over 10,000 separate runs, using the parameter 
values s0 5 20, α 5 .05, εs 5 70,000, and εm 5 98,000. 
These parameters were chosen to fit data from Experi-
ments 1 and 2 simultaneously, but the qualitative results 
of both experiments were robust to the majority of the 
parameter space explored.

Prior to training, both clusters have the same standard 
deviation of 20, and Border Item N6 is closer to the cluster 
representing the low-variability category. Thus, Item N6 
should initially be assigned to the low-variability category, 
since it more strongly activates that category’s cluster. To 
confirm this intuition, 25 University of Texas undergradu-
ates were shown the two category prototypes (no other 
training) and chose the category to which the border stimu-
lus belonged. In this single triad task, 22 of 25 subjects pre-
ferred to classify Border Item N6 into the low-dispersion 
category (i.e., the nearer prototype) (exact binomial p 5 
.00016, two-tailed). Clearly, Experiment 1’s categorization 
training strongly reversed people’s initial preferences.

Cluster dispersions are adjusted to maximize within-
category activation and to minimize unwanted activation 
from items belonging to the opposing category. These dy-

emplar models (Rodrigues & Murre, 2007, and Sakamoto, 
Matsuka, & Love, 2004, extend Kruschke, 1992).1

Activation of cluster i, ai, represents the strength of evi-
dence that a stimulus belongs to category i and is a Gauss-
ian function of the presented stimulus value, x:
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where mi and si are the cluster’s mean and standard devia-
tion, respectively. The generalization gradient of a category 
is captured by si. The response probability for each cate-
gory is proportional to the activation of the corresponding 
cluster (i.e., the probability matching response rule).

Cluster means and standard deviations are updated by 
gradient descent on an error, E 5 ½(ti 2 ai)2:
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where εm and εs are learning rates for cluster means and 
standard deviations, respectively, and ti is the feedback to 
cluster i, equal to α if the stimulus is in category i and to 0 
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Figure 2. The probability of subjects’ classifying each stimulus item as a 
member of the high-dispersion category during the transfer phase of Experi-
ment 1. Training items are shown as dark triangles; novel items are shown as 
light triangles. Item N6 is midway between the nearest studied members (L6 
and H1) of the low- and high-dispersion categories. Items are not spaced to 
scale (see Figure 1 for the physical scale).
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In Experiment 2, we manipulated trial order to tease 
apart predictions for the mechanistic and rational models. 
Order effects have been extensively studied in category 
learning (e.g., Clapper, 2006; Medin & Bettger, 1994; 
Zaki & Homa, 1999). In fact, rational models have been 
developed to account for the effects of category drift (i.e., 
recency effects) for autocorrelated environments that 
change over time (Elliott & Anderson, 1995). Unlike these 
previous studies and modeling efforts, we consider how 
order can affect perceptions of variability along a single 
stimulus dimension. This is in contrast to the majority of 
ordering studies, which have focused either on recency 
effects or on detection of category patterns defined across 
multiple stimulus dimensions.

Experiment 2’s design explored the key difference 
between the mechanistic and the rational models con-
sidered in Experiment 1. Unlike the rational models con-
sidered in Experiment 1, the mechanistic model updates 
its memory representation of each category in a local 
trial-by-trial fashion. The mechanistic model predicts 
that perceptions of category variability are based on 
trial-by-trial discrepancies between the current stimulus 
and the memory representation of the category (i.e., the 
position of the respective cluster). The rational models 
considered are not subject to the mechanistic model’s 
processing limitations and, therefore, are not sensitive 
to this class of ordering effects.

namics lead to learned standard deviations of 9.7 for the 
low-dispersion category and 22.7 for the high-dispersion 
category (averaged across simulations). Consequently, 
Item N6 more strongly activates the high-dispersion cat-
egory’s cluster after learning. These effects are illustrated 
in the bottom panel of Figure 3. The ratio of cluster ac-
tivations for Stimulus N6 leads to a 70% probability of 
selecting the high-dispersion category, in close agreement 
with the empirical data. The operation of the mechanistic 
models mirrors that of rational models, with the one subtle 
difference being that the mechanistic model’s estimates 
of mean and variance are made locally with regard to the 
current category representation.

Experiment 2

Both rational and mechanistic accounts captured Exper-
iment 1’s main finding: Key Border Item N6 was assigned 
to the high-variance category during transfer. Given the 
elegance, soundness, and nonarbitrary form of the rational 
accounts, one might question the value of a mechanis-
tic account that requires consideration of unobservable 
learning processes and category representations. To the 
contrary, we argue that the worth of mechanistic accounts 
lies in these considerations and that consequent deviations 
from rationality (even ostensibly minor ones) can lead to 
important insights into human behavior.
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Figure 3. The activations of the clusters encoding the low- (Cluster L) and high-dispersion (Cluster H) categories in the mechanistic 
model are shown for each stimulus item in Experiment 1. The top panel shows that the variability for each cluster is equal before 
learning. An arrow indicates the number of standard deviations from the mean of each cluster to Border Item N6. Before learning, 
the border item is fewer standard deviations from Cluster L’s center than from Cluster H’s center, leading to greater activation and 
higher response probability for the low-dispersion category. The bottom panel shows that the opposite pattern arises after learning, 
due to the tightening of Cluster L and the widening of Cluster H (which make each cluster relatively more responsive to its category’s 
members). After learning, the border item is more likely to be assigned to the high-dispersion category.
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Every member of each category appeared exactly twice during 
training. The presentation order for this phase was determined by 
first generating a sequence for each category and then randomly 
interleaving these sequences in blocks of 10 (5 from each category 
sequence). The sequence for the ordered category was designed to 
reduce local variability. This sequence proceeded from the middle 
of the category distribution to the extreme (i.e., moving away from 
the category boundary), from the extreme to the category boundary 
(passing through the middle), and then from the boundary back to 
the middle of the category. More precisely, the sequence was gen-
erated by starting with the sequence O12, . . . , O1, O1, . . . , O25, 
O25, .  .  .  , O13 and swapping each adjacent pair (excluding the 
first and last) with a probability of .5. Under this scheme, the items 
closest to Border Item N6 are presented after the items farthest 
away, so a simple explanation from recency effects works against 
our hypothesis. The presentation order for the random category was 
random, except for the first and last items, which were constrained 
to be R14 and R13, respectively (mirroring the ordered category). 
Figure 4 shows an example stimulus sequence.

The transfer stimuli consisted of lines of lengths (in pixels) 40 and 
50 (novel items); 60, 90, 120, 150, and 180 (training items); 190, 200, 
210, 220, 230, 240, and 250 (novel items); 260, 290, 320, 350 and 
380 (training items); and 390 and 400 (novel items); with 220 as the 
critical Border Item N6. As in Experiment 1, the subjects completed 
two blocks of transfer, each with a random presentation order.

Results and Model Fits
The subjects were more likely to classify Border Item N6 

into the random than into the ordered category. As is shown 
in Figure 5, averaged across the two transfer blocks, the 
subjects assigned the border item to the random category 
with a probability of .80, which is significantly greater than 

In Experiment 2, members of one category appeared in 
an ordered fashion, so that successively presented members 
did not vary much from each other. In contrast, members 
of the other category were presented in a random fash-
ion, as were members of both categories in Experiment 1. 
Globally, both categories in Experiment 2 had identical 
variability. However, the mechanistic model predicts that 
the discrepancy between the position of a category’s clus-
ter and the current stimulus will be smaller, on average, 
for the ordered category and, therefore, humans should 
treat the random category as more variable and assign 
Item N6 to it. This prediction is based on how cluster po-
sitions are updated in a local, trial-by-trial fashion. For the 
random category, the cluster position will fluctuate tightly 
around the true category mean, whereas for the ordered 
category, the cluster position will smoothly track the peri-
odic oscillations created by the ordering manipulation (see 
Figure 5), leading to smaller average discrepancies and a 
lower estimate of category variability. To foreshadow Ex-
periment 2’s results, the predictions of the mechanistic 
model held.

Method
Forty-eight University of Texas undergraduates were tested. The 

procedure was the same as that in Experiment 1, except for the line 
lengths and order of stimulus presentation. Stimuli ranged from 60 
to 180 pixels in one category and from 260 to 380 pixels in the 
other. Adjacent items differed by 5 pixels, resulting in 25 items per 
category. Whether the ordered category had longer or shorter lines 
than the random category was counterbalanced across subjects.

0

20

40

60

80

100

Tr
ia

l

O1 O13 O25 N6 R1 R13 R25

Stimulus

Cluster

Ordered Category Random Category

Figure 4. Cluster position (i.e., estimated category mean) learning over a typical simulation of the mechanistic model in Experi-
ment 2. The horizontal axis denotes stimulus length, and the vertical axis captures the learning trial sequence. Each training stimulus 
is depicted by a solid triangle. The solid lines show evolving cluster positions. The cluster position for the ordered category follows 
the trajectory of the learning items. In comparison with the random category, this tracking leads to smaller differences between each 
stimulus and the current cluster position. Because of these smaller discrepancies, the model learns a lower variability for the ordered 
category and assigns Border Item N6 to the random category, in agreement with human subjects.
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new items. One distinguishing and nonrational aspect of 
the mechanistic account is that estimates of category mean 
and variance are made in a trial-by-trial fashion. Instead 
of calculating an unbiased estimate of these quantities, 
the mechanistic model employs local learning rules that 
are driven by discrepancies between the memory repre-
sentation of the category (i.e., the cluster) and the current 
stimulus. 

This departure from rationality might seem modest, 
but it was the basis for a surprising prediction that was 
confirmed in Experiment 2. In Experiment 2, both cat-
egories had equal variance, but one category was ordered 
semiregularly, so that differences between the stimuli on 
successive trials were small. The mechanistic model pre-
dicted that this ordering would create an illusion of low 
variability for the ordered category, since the discrepancy 
between each presented stimulus and the current category 
representation was relatively small. Accordingly, human 
subjects assigned the border item at transfer to the ran-
domly ordered category. Overall, these empirical and 
modeling results suggest that people estimate variability 
by making incremental adjustments to memory represen-
tations on the basis of local comparisons. These results 
also suggest that consideration of mechanistic models, 
with their accompanying processes and representations, 
is a fruitful research strategy, particularly when departures 
from rationality are considered.

One persistent criticism of the mechanistic approach 
is that multiple mechanisms can give rise to the same be-
havior (Townsend, 1974). Proponents of the rational ap-

chance [t(47) 5 6.19, p , .001]. In the first transfer block, 
more subjects (38 of 48) classified the border item into the 
random category than was expected by chance (exact bino-
mial p 5 .000062, two-tailed). The same pattern (39 of 48) 
was found in the second transfer block (exact binomial p 5 
.000015, two-tailed).

The mechanistic model was fit to Experiment 2’s data, 
using the same parameter values as those used in Experi-
ment 1’s simulation. As was expected, the cluster mean for 
the ordered category tracked the stimuli, leading to lower 
average discrepancy between the cluster mean and each 
current stimulus, which in turn resulted in a lower vari-
ability for that cluster than for the cluster for the random 
category. This local effect, shown in Figure 4, resulted in 
average standard deviations of 17.9 for the ordered cat-
egory and 25.6 for the random category after learning. 
Consequently, Item N6 more strongly activated the ran-
dom category’s cluster, leading to a 79% probability of 
selecting the random category, in close agreement with 
the human result.

Discussion

In Experiment 1, people appeared sensitive to category 
variability and assigned a transfer item lying between two 
categories to the higher variability category. This find-
ing suggests natural accounts from both mechanistic and 
rational perspectives. These accounts largely converge, in 
that both assume that people learn the mean and variabil-
ity of each category and use that information to classify 
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Figure 5. The probability of subjects’ classifying each stimulus item as a 
member of the random category during the transfer phase of Experiment 2. 
Learning items are shown as dark triangles; novel items are shown as light tri-
angles. Item N6 is midway between the nearest studied members (O25 and R1) 
of the ordered and random categories (and also midway between the prototypes 
of the two categories).
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rules and progressing toward more complex rules when 
simple rules fail. Boolean complexity preserves many of 
these insights, albeit in a more abstract form that does away 
with RULEX’s proposed search and memory processes. 
Instead, Boolean complexity offers a well-formulated met-
ric that is derived through a rational analysis.

Although our discussion has been provocative and 
heavily tilted in favor of mechanistic approaches, we do 
not wish to suggest that rational analysis does not have 
its place. Here, we suggest that mechanistic models can 
guide rational analyses. Likewise, rational analyses can 
guide the development of mechanistic models. A rational 
analysis can uncover the principles that mechanistic mod-
els approximate and bring into focus how a mechanistic 
model deviates from rationality. Experiment 2’s design 
was motivated by such considerations. In addition, con-
sideration of what environmental assumptions would ra-
tionally justify behaviors exhibited by mechanistic models 
can provide insight into our cognitive environment, such 
as the idea that real categories drift over time, as suggested 
by a post hoc rational analysis of Experiment 2. Research-
ers in the field are likely to make progress when intellec-
tual effort is devoted to both approaches. Given the recent 
tilt toward rational approaches, we would like to end by 
encouraging the researchers in the field not to shy away 
from mechanistic explanations. If the main question we 
are trying to answer is how the mind works, we should not 
fear directly addressing this question by developing and 
evaluating mechanistic models.
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